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Abstract. A model of heterogeneous, composite material is introduced, consisting of randomly distributed
identical structural micro-domains endowed with electric charges or dipoles. Two cases are presented,
one corresponding to a tightly packed (dense) material, another corresponding to highly-dispersed, small
domains. The polarizability is computed in both cases, under the action of an external uniform electric
field oscillating in time (a quasi-stationary field), and it is related to the displacement of the micro-domains
from their positions of local equilibrium (translations or rotations). It is shown that the polarizability (or
electric susceptibility) can exhibit characteristic (resonance) frequencies in the radio-frequency range and,
even for moderate external fields, the material can undergo a displacive transition (similar to a ferroelectric
transition), governed by non-linearities in the interaction energy of the micro-domains. The shift in the
characteristic frequencies of the polarizability is estimated, as caused by the displacive modification.

1 Introduction

Most of the commonly used materials become heteroge-
neous, even if they are made of one chemical substance [1].
There are a large variety of heterogeneity types, referred to
by a great deal of terms (composites, suspensions, colloids,
polymers, blends, multi-phase alloys, etc.). Basically, in a
simplified picture, such materials exhibit structural micro
(or meso)-domains (grains, crystallites, etc.), which may
appear naturally in the process of fabrication (grinding,
milling, thermal treatments, etc.). The micro-domains, as
well as their walls, may have their own dynamics (fluc-
tuations included) [2]. One of the most interesting prop-
erties is the accumulation (segregation) of electric charge
at the interfaces. Sometimes, this feature is known as the
Maxwell-Wagner-Sillars phenomenon, and it is associated
with an appreciable dielectric loss [3–7]. “In the heteroge-
neous materials there is usually an interfacial polarization
arising from the accumulation of charge at structural in-
terfaces. This is of little fundamental interest, but it is
of considerable practical interest because commercial in-
sulating materials are usually heterogeneous” [8,9]. We
show here that the electric polarization of the domains in
heterogeneous materials can exhibit interesting properties
at the fundamental level, with surprising practical impli-
cations. Specifically, we show that a displacive transition
of the domain polarization can occur in such materials,
induced by an external field, leading to a remanent polar-
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ization (and a hysteresis loop), whose dynamics is inves-
tigated here.

The dielectric properties of such composite materials
have ever enjoyed a great deal of interest. On one hand,
these materials have a wide range of applications, such
as shielding enclosures, electromagnetic absorbants, anti-
static devices, capacitive memory disks, etc. [10]. On the
other hand, there are many theoretical investigations de-
voted to the effective electric susceptibility of such ma-
terials [11–16]. Such studies aim, generally, at relating
the macroscopic electromagnetic properties to the internal
micro-structure, and, especially, understanding the role
played by interfaces in the dielectric properties. Ferro-
magnetic alignment has recently been demonstrated for
nano-inclusions embedded in bulk superconductors [17].
Fractal structure of composite materials, especially struc-
tured interfaces, has been exploited for non-linear electric
conductivity of Josephson junctions, with potential appli-
cations in radio-physical devices [18]. Composite materials
with radioactive inclusions have been designed, amenable
to controlling the electromagnetic properties, particularly
the dielectric function [19]. A great deal of work is done
for relating the dielectric function of a composite to the
dielectric functions of its components, as well as for
characterizing various relaxation mechanisms and their
implications. We introduce here a model of randomly dis-
tributed micro-domains, either densely packed or highly
dispersed, endowed with electric charges or dipoles, and
investigate the dynamics of these micro-domains under
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the action of an external uniform electric field oscillating
in time. We show, on one side, that the electric polariz-
ability (or susceptibility) can exhibit characteristic (res-
onance) frequencies in the radio-frequency range and, on
the other, that these micro-domains can suffer a displacive
transition under the action of the external field (transla-
tions for charges, rotations for dipoles), with a remanent
polarization (and a hysteresis loop), very much alike a fer-
roelectric material.

2 Polarization and electric susceptibility

We assume a simple model of identical micro-domains of
(linear) size d, mass M and charge ±Q, separated by a
mean distance D (D > d) and randomly distributed in an
infinite (composite) solid, in a metastable equilibrium. By
analogy with an ionic solid, we assume that the potential
energy of each domain can be written as U = Cu2/2,
where u is the small displacement of the the domain from
its (local) equilibrium position and the force constant C is
of the order of C = Q2/D3. It is easy to see that such an
interaction energy introduces a characteristic oscillation
frequency Ω0 given by:

Ω2
0 =

Q2

MD3
. (1)

The charge Q is usually accumulated on the surface of the
micro-domains, on a number Ns of atoms, of the order
of the number of atoms on the surface. It is convenient
to refer this charge to the electron charge e, and write
Q = eNs. Similarly, it is convenient to refer the micro-
domain mass M to a mass M0 of the order of the atomic
mass, and write M = M0N , where N is the number of
atoms in the micro-domain. Since d3 is of the order of the
domain volume, we may write also d3 = a3N , where a is of
the order of the atomic interparticle separation distance.
From equation (1) we get:

Ω0 = ω0

(
d

D

)3/2
Ns

N
� ω0

(
d

D

)3/2
a

d
, (2)

where ω0 =
√

e2/M0a3 can be viewed as an (atomic)
plasma frequency. Typically, ω0 is of the order of 1–10 THz.
We can see that the factors intervening in equation (2)
can reduce this frequency considerably. We distinguish two
cases: d � D and d � D. The former case corresponds to
a densely packed composite, with quasi-adjoining micro-
domains (high filling factor). The latter case corresponds
to highly dispersed micro-domains, of small size, sepa-
rated by an electrically quasi-inert medium (low filling
factor). In the first case we may take d � D = 100 μm
(Ns/N � 10−6) and get a characteristic frequency Ω0 �
106–107 Hz, i.e., in the radio-frequency range. For d � D
we may take d � a and D = 1 μ for instance, and the re-
sulting characteristic frequency is again Ω0 � 106–107 Hz
in the radio-frequency range. Equation (2) implies a large
variability in the characteristic frequency Ω0, depending
on the parameters d and D, with the general feature that

this characteristic frequency is lowered to a large extent
in comparison with the the atomic-scale frequencies ω0.

The equation of motion for a micro-domain
(of charge Q) under the action of an external, uniform
electric field E0 can be written as:

Mü = QEt − MΩ2
0u − Mγu̇, (3)

where γ is a damping parameter and Et = E0 + E is
the total electric field, E being the internal (polarization)
electric field. Equation (3) refers to the relative displace-
ment of a micro-domain with respect to its surround-
ings, so that M should be viewed as the reduced mass
of two (oppositely charged) micro-domains; it is of the
same order of magnitude as the mass of a single micro-
domain. By Fourier transform, we get from equation (3)
the displacement:

u(ω) = −QEt(ω)
M

× 1
ω2 − Ω2

0 + iωγ
. (4)

According to the classical electromagnetism, for d � D
the polarization is given by:

P (ω) =
Qu(ω)

D3
= −Ω2

p1

4π
× Et(ω)

ω2 − Ω2
0 + iωγ

, (5)

where

Ωp1 =

√
4πQ2

MD3
, (6)

is the well-known plasma frequency (for charged micro-
domains) and the factor 4π has been introduced according
to the usual conventions. We can see that Ωp1 is of the
same order of magnitude as the characteristic frequency
Ω0 given by equation (1).

For small micro-domains (d � D) highly dispersed in
an electrically quasi-inert medium d � D, the polarization
is given by:

P (ω) =
Qu(ω)

d3
= −Ω2

p2

4π
× Et(ω)

ω2 − Ω2
0 + iωγ

, (7)

where

Ωp2 =

√
4πQ2

Md3
= Ω0

(
D

d

)3/2

. (8)

We can see that Ωp2 can be much higher in this case than
the characteristic frequency Ω0 (Ωp2 � Ω0; it may reach
the THz range). Since the active, polarized micro-domains
are low in number and have a small size, the internal field
generated by them is vanishing, so we may take:

P (ω) = −Ω2
p2

4π
× E0(ω)

ω2 − Ω2
0 + iωγ

, (9)

an equation which defines the polarizability (per unit
volume)

α(ω) = P (ω)/E0(ω) = −Ω2
p2

4π
× 1

ω2 − Ω2
0 + iωγ

. (10)
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It coincides with the electric susceptibility, which, in both
cases, is given by:

χ(ω) = P (ω)/Et(ω) = −Ω2
p1,2

4π
× 1

ω2 − Ω2
0 + iωγ

(11)

(the polarizability for the first case (d � D) is computed
in the next section).

It is worth noting that we discuss here two limiting
cases (d � D and d � D) for the micro-structure of a
model composite, in order to bring to light salient fea-
tures of the polarization dynamics associated with struc-
tural inhomogenities. In general, the polarization of the
background medium containing the interspersed micro-
domains must be considered, for various filling factors,
which implies more elaborate models and a more complex
dynamics (including the loss mechanisms).

3 Polarizability for a dense material

As it is well known, with usual notations, the Maxwell
equations read:

divE = −4πdivP, divH = 0,

curlE = −1
c

∂H
∂t

, curlH =
1
c

∂E
∂t

+
4π

c

∂P
∂t

, (12)

where the polarization charges (ρp = −divP) and currents
(jp = ∂P/∂t) are explicitly introduced as sources for the
internal fields E and H. The polarization P in these equa-
tions, as well as the fields, are spatially averages, which are
supposed to be meaningful for the case d � D.

We take the curl of Faraday’s equation in equation (12)
and use curl × curl = −Δ + grad × div. Making use of
Gauss’s law for the electric field in equation (12) we get
easily:

1
c2

∂2E
∂t2

− ΔE = 4πgrad × divP − 4π

c2

∂2P
∂t2

, (13)

which is the wave equation (for the internal electric field)
with polarization sources. We can expand the electric field
and the polarization in equation (13) in series of eigenfunc-
tions of the Laplacian (corresponding to the shape and the
boundary conditions of the polarized piece of matter; in
general, we leave aside the depolarizing fields associated
with finite-size samples). For an infinite solid, we take the
spatial Fourier transform of equation (13) (with respect
to wavevectors k), together with the temporal Fourier
transform. Omitting for simplicity the arguments ω,k this
equation becomes:

(ω2 − c2k2)E = 4πc2k(kP) − 4πω2P. (14)

We use this equation in conjunction with a more general
definition of the electric susceptibility:

P(ω,k) = χ(ω,k)Et(ω,k) = χ(ω,k) [E0(ω,k) + E(ω,k)] ,
(15)

which includes the spatial dispersion, i.e., the
k-dependence. The algebraic equations (14) and (15) can
be solved straightforwardly. Leaving again aside the argu-
ments ω,k for the moment we get the electric field:

E = −4πχ

ε

εω2E0 − c2k(kE0)
εω2 − c2k2

, (16)

and the polarization:

P =
χ

εω2 − c2k2

[
(ω2 − c2k2)E0 +

4πχ

ε
c2k(kE0)

]
, (17)

where ε = 1 + 4πχ is the dielectric function. We can see
from these equations the well-known polaritonic disper-
sion relation εω2 = c2k2 for the propagation of the electro-
magnetic field in matter. We can also check the well-known
relationship D = (ε/χ)P = εEt, where D = Et + 4πP is
the electric displacement, as well as the equality of the
longitudinal components kD = kE0 (kE = −4πkP) of
the electric displacement D and the external field E0.

For a uniform polarization and a uniform external elec-
tric field we take the limit k → 0 in the above equations.
We get immediately:

P (ω) =
χ(ω)
ε(ω)

E0(ω) =
χ(ω)

1 + 4πχ(ω)
E0(ω), (18)

where P (ω) and χ(ω) are given by equations (5) and (11),
respectively. Equation (18) defines the polarizability:

α(ω) = P (ω)/E0(ω) =
χ(ω)

1 + 4πχ(ω)

= −Ω2
p1

4π
× 1

ω2 − Ω2
0 − Ω2

p1 + iωγ
, (19)

we can see that it differs from the susceptibility by the
renormalization of the characteristic frequency Ω2

0 → Ω2
0+

Ω2
p1. We introduce the characteristic frequency Ωc =√
Ω2

0 + Ω2
p1, which is of the same order of magnitude as

the frequencies Ω0,p1 and write the polarizability as:

α(ω) = −Ω2
p1

4π
× 1

ω2 − Ω2
c + iωγ

. (20)

Taking into account the results of the previous section, we
use the general equation:

α(ω) = −Ω2
p

4π
× 1

ω2 − Ω2
c + iωγ

, (21)

where Ωp,c are viewed as free parameters. For our present
purpose we distinguish two cases, Ωp � Ωc (d � D) and
Ωp � Ωc (d � D). The characteristic frequency Ωc is in
the radio-frequency range, while the plasma frequency Ωp

may get as high as the THz range (for d � D). Making use
of equations (5) and (7), we can see that the displacement
u = D3P/Q or u = d3P/Q is given by:

u(ω) = −QE0(ω)
M

× 1
ω2 − Ω2

c + iωγ
, (22)
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in both cases. Equation (22) corresponds to the equation
of motion of the form:

ü =
QE0

M
− Ω2

cu − γu̇, (23)

which is similar to the equation of motion (3), except for
the occurrence of the external field E0 in place of the
total field Et and the renormalization of the characteristic
frequency Ωc (for d � D).

4 Induced displacive transition

It is worth estimating the amplitude of the displacement
u(t) under the action of an external field with a main
Fourier component ω = Ωc. Making use of equation (22)
we get easily:

u � QE0(Ωc)
MΩc

� QE0

MΩc
Δt, (24)

for the amplitude of this displacement, where E0 is the am-
plitude of the external field and Δt is the duration of the
wave packet centered on the frequency Ωc. For a moderate
field E0 = 103 V/m (1 V/m = (1/3) × 10−4 statvolt/cm)
and Ωc = 1 MHz M0 = 104 m (where m is the electron
mass) we get u(cm) � 106(Ns/N)Δt(s), which is a very
large displacement. It is due mainly to the low value of the
characteristic frequency Ωc in comparison with “atomic”
frequencies.

Under these circumstances the harmonic approxima-
tion in the equation of motion (3) is not valid anymore.
The potential energy MΩ2

cu2/2 acquires higher-order non-
linear terms. It can be written as:

U =
1
2
MΩ2

cu2
0

(
v2 − Av4 +

1
3
Bv6

)
, (25)

where v = u/u0, u0 is a scale length and A, B > 0 are
parameters. This potential energy has two minima, one
for v = 0 (U = 0) and another for v0 given by:

v2
0 =

1
B

(
A +

√
A2 − B

)
, (26)

for A2 > B. This minimum energy can be either pos-
itive or negative, depending on the parameters A and
B. In both cases the material acquires a static displace-
ment u0v0, and a corresponding static polarization (P =
Qu0v0/D3 or P = Qu0v0/d3), under the action of a thres-
hold external field (or by other external means). The tran-
sition may either require energy or release energy. The
material exhibits a displacive transition, similar to a fer-
roeletric transition. It is easy to see that the equation of
motion for the coordinate u (reduced coordinate v) writ-
ten with an external field and the force derived from the
potential U given by equation (25) exhibits a character-
istic bi-stable solution, which represents the well-known
Landau-Devonshire hysteresis loop [20–25].

In the vicinity of v0 the potential energy can be ex-
panded in powers of the displacement ξ around its mini-
mum value; the quadratic term reads:

U2 =
1
2
MΩ2

c (1 − 6Av2
0 + 5Bv4

0)ξ2, (27)

which indicates a shift of frequency:

Ωc → �Ωc = Ωc(1 − 6Av2
0 + 5Bv4

0)1/2

= 2Ωc

�
−1 +

A2

B
+

�
A2

B

�
A2

B
− 1

��1/2

.(28)

It is reasonable to assume A2 ≥ B � 1 (in order to have
a small value for v0). The new frequency is given in this
case by:

Ω̃c � 2Ωc(A2/B − 1)1/4. (29)

For A2 = 4B/3, the potential energy does not change
during the transition (U0 = 0) and the frequency remains
unchanged (Ω̃c = Ωc).

For A2 ≥ B � 1 the remanent polarization (zero
field) corresponds to vr � √

A/B (close to the satura-
tion polarization, which is obtained from the extreme of
the total force) and the coercive field corresponds to vc �√

5(A2/B − 1).

5 A random distribution of dipoles

Let us consider a random (or quasi-random) distribution
of identical dipoles p, of charge Q and length d, separated
by distances of the order of the distance D (d � D). The
total polarization can be zero or non-zero. Each dipole
p1 is surrounded by identical dipoles, randomly oriented
and randomly distributed around it, at distance D. It is
reasonable to assume that the average over such a sur-
rounding is a dipole p2, separated by the former dipole
by the position vector R (whose magnitude is of the order
of D). As it is well known, the interaction energy of the
two dipoles is given by:

U =
1

R5
[(p1p2)R2 − 3(p1R)(p2R)]. (30)

We introduce the angles α and β between R and p1,
respectively, p2, and the above energy becomes:

U =
p1p2

R3
[cos(α − β) − 3 cos α cos β]

=
p1p2

D3
(−2 cos α cos β + sinα sin β). (31)

Let we assume that p2 is fixed, and p1 is in local equi-
librium. Then, the derivative of U with respect to α must
vanish, 2 sin α cos β + cos α sin β = 0. Making use of this
relation, the quadratic variation of U becomes:

U2 =
p1p2

D3

(δα)2√
1 + 3 sin2 α

. (32)
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The angle α is randomly distributed, so we can take the
average with respect to this angle in equation (32) (which
is of the order of unity); similarly, we can take approx-
imately the same value p for the magnitude of the two
dipoles and get an interaction energy:

U2 � p2

D3
(δα)2. (33)

A change δα gives a force −(2p2/dD3)δα and a torque
−(2p2/D3)δα. Let us apply an external, uniform electric
field E0, which makes an angle γ with the dipole p (ran-
domly oriented). The potential energy is −pE0 cos γ. It
gives a force (pE0/d) sin γ and a torque pE0 sin2 γ. Its
mean value is (pE0/2). The equation of motion for the
rigid body is then:

Iδ̈α =
1
2
pE0 − 2p2

D3
δα, (34)

where I = Md2 is the momentum of inertia of the dipole
(we neglect the relaxation). The angle variation δα implies
a displacement u = dδα, so that we get the equation of
motion:

ü =
pdE0

2I
− 2p2

ID3
u, (35)

and the displacement:

u(ω) = −pdE0(ω)
2I

× 1
ω2 − Ω2

c

. (36)

We can see that the characteristic frequency
Ωc =

√
2p2/ID3 =

√
2Q2/MD3 is of the same order

of magnitude as the frequency Ω0 given by equation (1),

or the characteristic frequency Ωc =
√

Ω2
0 + Ω2

p1, where
Ωp1 is defined by equation (6). It may lie very well in the
radio-frequency range. It is worth noting the close analogy
between the frequency Ωc derived here and the (classical)
Rabi frequency, if we put the electric field E � p/D3.
(In quantum regime I = L/ω and the quantum of angu-
lar momentum L is Planck’s quantum �; the frequency
ω � √

pE/I given above becomes ω = pE/�, i.e., the
frequency of a spatial rotator, as it is well known [26].)

The projection of a dipole p along the direction of
the external field E0 is p cos γ. Its variation gives a dipole
momentum p |sin γ| δα which signifies a mean polarization:

P � p

d4
u = −p2E0(ω)

2Id3
× 1

ω2 − Ω2
c

, (37)

which defines a “plasma” frequency given by:

Ω2
p =

2πp2

Id3
=

2πQ2

Md3
. (38)

It is of the same order of magnitude as the plasma fre-
quency Ωp2 given by equation (8).

We can see that a random (or quasi-random) distrib-
ution of dipoles gives the same results as a charge distrib-
ution (for d � D). The electric polarizability is given by:

α(ω) = −Ω2
p

4π
× 1

ω2 − Ω2
c

, (39)

where Ωp � Ωc, and it is identical to the electric suscep-
tibility (since the internal field is very low at the position
of the dipoles).

6 Concluding remarks

A model of heterogeneous composite material is
introduced, and the dynamics governing its electric polar-
ization is discussed. The model consists of randomly dis-
tributed micro-domains, either densely packed or highly
dispersed, endowed with electric charges or dipoles. The
electric polarization is computed for this model and re-
lated to the charge displacement or dipole rotation. It is
shown that the polarization (and the electric susceptibil-
ity) may exhibit characteristic (resonance) frequencies in
the radio-frequency range and the material may undergo
a displacive modification (translations or rotations) under
the action of an external, uniform electric field, very much
alike an induced ferroelectric transition. The origin of this
change, which may appear even for moderate intensities
of the external field and be driven by non-linear micro-
domain interaction, is the low values of the characteristic
radio frequencies. The transition shifts the characteristic
frequencies, exhibits a hysteresis loop and is associated
with a high dielectric loss. It is very likely that in the sta-
tic limit the phenomenon investigated here is known as
the Maxwell-Wagner-Sillars polarization.

The authors are indebted to the members of the Seminar of the
Institute of Atomic Physics and the Laboratory of
Theoretical Physics, Magurele, Bucharest, for useful discus-
sions and a careful reading of the manuscript. This work
was supported by the Romanian Government Research Agency
Grant #306/SMIS 26614.
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