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Department of Mathematics, University of Zagreb, Bijenička cesta 30,
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Abstract Let A be a C∗-algebra and let ΘA be the canonical contraction form the Haagerup tensor
product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider
the following conditions on A: (a) A is a finitely generated module over the centre of M(A); (b) the
image of ΘA is equal to the set E(A) of all elementary operators on A; and (c) the lengths of elementary
operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct
sum of unital homogeneous C∗-algebras. We also show that if a separable A satisfies (b) or (c), then A

is necessarily subhomogeneous and the C∗-bundles corresponding to the homogeneous subquotients of
A must be of finite type.
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1. Introduction and preliminaries

Throughout this paper A will denote a C∗-algebra and Ah will denote the self-adjoint
part of A. The centre of A is denoted by Z(A), and the set of all ideals of A is denoted
by Id(A) (in this paper, by an ideal we shall always mean a closed two-sided ideal). For
J ∈ Id(A), we denote the annihilator of J by J⊥ (i.e. J⊥ = {x ∈ A : xJ = 0}) and we
denote the quotient map A → A/J by qA

J . By Â and Prim(A), respectively, we denote
the spectrum of A (i.e. the set of all classes of irreducible representations of A) and the
primitive spectrum of A (i.e. the set of all primitive ideals of A), equipped with the
Jacobson topology.

Let A ⊗h A be the Haagerup tensor product of A with itself. If B is a C∗-subalgebra
of A, we shall always assume that B ⊗h B ⊆ A ⊗h A, by the injectivity of the Haagerup
tensor product [11, Proposition 1.4.3]. If M(A) denotes the multiplier algebra of A and
ICB(A) denotes the space of all completely bounded maps T : A → A that preserve
every ideal of A (i.e. T (J) ⊆ J , for each J ∈ Id(A)), then there is a canonical contraction
ΘA : M(A) ⊗h M(A) → ICB(A) that is given on elementary tensors by

ΘA(a ⊗ b)(x) := axb (a, b ∈ M(A), x ∈ A).
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100 I. Gogić

The subspace ΘA(M(A) ⊗ M(A)) of Im ΘA (i.e. the image of ΘA) is denoted by E(A):
the set of elementary operators on A. The length �(T ) of T ∈ E(A) is defined as the
smallest number d such that

T = ΘA

( d∑
k=1

ak ⊗ bk

)
,

for some ak, bk ∈ M(A). If sup{�(T ) : T ∈ E(A)} < ∞, we say that E(A) is of finite
length.

The operators that belong to ImΘA have some nice properties. For example, each
T ∈ Im ΘA is a strong central bimodule homomorphism of A (i.e. T ∗∗ preserves every
ideal of A∗∗, where A∗∗ denotes the von Neumann envelope of A, and T ∗∗ is the second
adjoint of T on A∗∗ (see [1, § 5.3])). But in general it is difficult to recognize when the
operator T ∈ ICB(A) belongs to Im ΘA. In [8] Magajna considered the problem when the
image Im ΘA is as large as possible, and hence equal to the space ICB(A). He showed that
(for a separable A) this happens if and only if A is a finite direct sum of homogeneous
C∗-algebras of finite type, and then we have ICB(A) = E(A). Recall that A is said to be
n-homogeneous if all irreducible representations of A are of the same (finite) dimension n.
In this case, by [3], ∆ := Prim(A) = Â is a (locally compact) Hausdorff space, and there
exists a locally trivial C∗-bundle E over ∆ with fibres isomorphic to Mn(C) such that
A is isomorphic to the C∗-algebra Γ0(E) of all continuous sections of E that vanish at
infinity. If ∆ admits a finite open covering {Ui}1�i�m such that each restriction bundle
E|Ui is trivial (i.e. isomorphic to Ui × Mn(C), as a C∗-bundle), then we say that E,
and hence A, are of finite type. Note that if A is a finite direct sum of homogeneous
C∗-algebras of finite type, then so is M(A) (by [1, Lemma 1.2.21] and [8, Remark 3.3]),
and hence, by the Serre–Swan Theorem [7, Theorem I.6.18], M(A) is a finitely generated
(projective) module over its centre. It is then easy to check that for such A, E(A) must
be of finite length (see the proof of Theorem 2.7).

In this paper we consider the following conditions on A:

(a) A is a finitely generated module over Z(M(A));

(b) E(A) is of finite length; and

(c) Im ΘA is as small as possible; that is, it is equal to E(A).

We show that A satisfies (a) if and only if A is a finite direct sum of unital homogeneous
C∗-algebras. If A satisfies (b) or (c), we show that A is necessarily subhomogeneous.
Recall that A is said to be n-subhomogeneous (n ∈ N) if sup{dim π : [π] ∈ Â} = n. In
this case, by [9, 6.2.5], A has a finite composition series

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jp = A

of ideals of A such that each quotient Ji/Ji−1 is a homogeneous C∗-algebra. The ideal
J1 is called the n-homogeneous ideal of A (since it is the largest ideal of A that is n-
homogeneous, as a C∗-algebra). We also show that if A is separable and satisfies (b) or (c),
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Elementary operators and subhomogeneous C∗-algebras 101

then each quotient Ji/Ji−1 is of finite type. In this case we say that A is subhomogeneous
of finite type. Note that in a separable and unital case, this notion coincides with Phillips’s
notion [10] of recursive subhomogeneous algebra. We also conjecture that conditions (b)
and (c) are equivalent, but we were not able to prove this.

Finally, we state the next two results, which will be very useful to us. The first is a
combination of the results in [10, Proposition 2.9], [8, Lemma 3.2] and [8, Remark 3.3].

Theorem 1.1. Let E be a locally trivial C∗-bundle over a locally compact Hausdorff
space ∆ with fibres Mn(C). The following conditions are equivalent:

(i) E is of finite type (as a C∗-bundle);

(ii) E is of finite type when regarded as a complex vector bundle (of rank n2) over ∆,
by forgetting the additional structure.

In this case E can be extended to the locally trivial C∗-bundle F over the Stone–Čech
compactification β∆ of ∆, and Γ (F ) ∼= Γb(E) = M(Γ0(E)), where Γb(E) denotes the
C∗-algebra of all continuous bounded sections of E. Specifically, the multiplier algebra
of an n-homogeneous C∗-algebra of finite type is also n-homogeneous.

Hence, to show that an Mn(C)-bundle E is of finite type, it is sufficient to check that
the underlying n2-dimensional vector bundle is of finite type. The next lemma gives a
useful way of doing this, and its proof can be found in [8, § 1].

Lemma 1.2. Let E be a locally trivial vector bundle of constant rank over a para-
compact Hausdorff space ∆. The following conditions are equivalent:

(i) E is of finite type;

(ii) there exists a finite subset {a1, . . . , am} of Γb(E) such that

span{a1(s), . . . , am(s)} = E(s) for all s ∈ ∆.

2. Results

Definition 2.1. Let A be a C∗-algebra. We say that A is finitely centrally generated
if A, as a module over Z(M(A)), is finitely generated.

Lemma 2.2. Suppose that A is a finitely centrally generated C∗-algebra. Then A is
unital.

Proof. Let e1, . . . , em ∈ A be the generators of A as a module over Z(M(A)). Since
A is the linear span of Ah, we may assume that each ei is self-adjoint. Let

a :=
( m∑

k=1

e2
k

)1/4

.

Note that

eie
∗
i = e2

i �
m∑

k=1

e2
k = a4 for all 1 � i � m.
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102 I. Gogić

By [6, Exercise 4.6.39] there exist elements b1, . . . , bm ∈ A such that

ei = abi for all 1 � i � m. (2.1)

Let x ∈ A. By assumption, there exist elements z1(x), . . . , zm(x) ∈ Z(M(A)) such that
x =

∑m
k=1 zk(x)ek. Using (2.1) it follows that

x =
m∑

k=1

zk(x)ek =
m∑

k=1

zk(x)abk = a

m∑
k=1

zk(x)bk. (2.2)

Specifically, for x = a and e :=
∑m

k=1 zk(a)bk we have a = ae = e∗a. By (2.2), e∗x = x

for all x ∈ A, and hence e∗ is a left unit of A. After taking adjoints we also conclude that
e is a right unit of A. Hence, A is unital with the unit e = e∗. �

Remark 2.3. Suppose that A is a finitely centrally generated C∗-algebra with A =
spanZ(A){e1, . . . , em}, for some ei ∈ A (by Lemma 2.2, A is unital). Then, for each
J ∈ Id(A) we have A/J = spanZ(A/J){qA

J (e1), . . . , qA
J (em)} (since qA

J (Z(A)) ⊆ Z(A/J))
and, specifically, A/J is finitely centrally generated.

Theorem 2.4. Let A be a C∗-algebra. The following conditions are equivalent:

(i) A is finitely centrally generated;

(ii) A is a finite direct sum of unital homogeneous C∗-algebras.

Proof. (ii)⇒ (i). It is sufficient to prove this in the case when A is unital and homoge-
neous. Let E be a locally trivial C∗-bundle over the (compact) space ∆ := Prim(A) with
fibres isomorphic to Mn(C) such that A ∼= Γ (E). By the Serre–Swan Theorem [7, Theo-
rem I.6.18], Γ (E) is a finitely generated (projective) module over C(∆) ∼= Z(Γ (E)).

(i)⇒ (ii). By Lemma 2.2 A is unital. Suppose that

A = spanZ(A){e1, . . . , em} for some e1, . . . , em ∈ A. (2.3)

Claim 1. A is n-subhomogeneous, where n � √
m.

Indeed, if π : A → B(Hπ) is an irreducible representation of A on a Hilbert space Hπ,
then π(Z(A)) = C1H, and hence π(A) = span{π(e1), . . . , π(em)}. Since π is irreducible,
it follows that dimπ = dimHπ � √

m.

Claim 2. If J is the n-homogeneous ideal of A, then J is unital, and hence A ∼=
J ⊕ (A/J).

Let E be the locally trivial C∗-bundle over ∆ := Prim(J), with fibres Mn(C), such
that J = Γ0(E). To prove that J is unital, it is sufficient to show this in the case when J

is essential in A. Indeed, if J is not essential, then we can substitute A with B := A/J⊥,
since, by Remark 2.3, B is also finitely centrally generated and, by [8, Lemma 3.1], the
n-homogeneous ideal K of B is essential in B, and K ∼= J . Next, we note that J is of
finite type. Indeed, since J is essential in A, we have J ⊆ A ⊆ M(J). By [8, Lemma 3.2],
M(J) = Γb(E). Since E(s) = Γ0(E)(s), for each s ∈ ∆, (2.3) implies that

E(s) = span{e1(s), . . . , em(s)} for all s ∈ ∆.
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By Lemma 1.2, E is of finite type as a vector bundle, and hence, by Theorem 1.1, E

is of finite type as a C∗-bundle. Theorem 1.1 also implies that E can be extended to
a locally trivial C∗-bundle F over the Stone–Čech compactification β∆ of ∆, and that
M(J) = Γb(E) = Γ (F ). Suppose that J is not unital, from which it follows that J 
= A.
Then ∆ is not compact and hence β∆\∆ 
= ∅. Using [4, Lemma VII.8.7] and considering
the characters of the centre Z(J) ∼= C0(∆), we have

J = {a ∈ Γ (F ) : a|β∆\∆ = 0}. (2.4)

For each point s ∈ β∆ let πs denote the evaluation of sections of F at s, considered
as an irreducible representation of M(J) = Γ (F ). The restriction πs|A at all points of
β∆\∆ then gives a reducible representation of A. Let r be the maximal dimension of an
irreducible subrepresentation of πs|A as s runs through β∆ \ ∆, and let s0 be any point
at which this maximum is achieved. Note that r > 0. Indeed, since J 
= A there exists an
irreducible representation σ of A such that σ(J) = {0}. Then σ is unitarily equivalent to
a subrepresentation of πs|A for some s ∈ β∆. Since σ(J) = {0}, s 
∈ ∆. By local triviality
of F , there exists a compact neighbourhood K of s0 in β∆ such that F |K ∼= K ×Mn(C).
Using a fixed isomorphism we shall identify these two bundles over K. By the definition
of s0, and by the same arguments as in the first part of the proof of [8, Lemma 4.1],
there exists a compact neighbourhood H of s0 such that H ⊆ K and (after conjugation
with a unitary element of C(H, Mn(C)), if necessary) such that πs|A has the form

πs(a) =

(
σs(a) 0

0 ρs(a)

)
for all a ∈ A and s ∈ H \ ∆, (2.5)

where σs : A → Mr(C) is an irreducible representation and ρs : A → Mn−r(C) is a
representation of A (which is non-degenerate, but we will not need to use this fact). Let
U := H ∩ ∆ and let

IH := {a ∈ M(J) : a|H} = 0, AH := A/(A ∩ IH) and JH := J/(J ∩ IH).

Since H ⊆ K, AH can be identified with a C∗-subalgebra of C(H, Mn(C)) ∼= Γ (F |H) ∼=
M(J)/IH (the latter isomorphism follows from the Tietze Extension Theorem for sec-
tions of Banach bundles [4, Theorem II.14.8]). Note that by (2.4) JH is the ideal of
C(H, Mn(C)) (and of AH) consisting of all a ∈ C(H, Mn(C)) such that a|H\U = 0. Since
U is a dense and open subset of H, JH is essential in C(H, Mn(C)). Under all these
identifications, it follows from (2.5) that

a1,n|H\U = 0 for all a = (ai,j)1�i,j�n ∈ AH . (2.6)

If e(k) := qA
A∩IH

(ek) (1 � k � m), by Remark 2.3 AH is also finitely centrally generated,
with AH = spanZ(AH){e(1), . . . , e(m)}. Let (Ei,j)1�i,j�n be the standard matrix units
of Mn(C) considered as the constant elements of C(H, Mn(C)). Then for each function
f ∈ C0(U) = {g ∈ C(H) : g|H\U = 0} the element af := fE1,n lies in JH ⊆ AH , so there
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104 I. Gogić

exist the central elements zk ∈ Z(AH) (1 � k � m) such that af =
∑m

k=1 zke(k). Since
JH ⊆ AH is essential in C(H, Mn(C)), we have

Z(AH) ⊆ Z(C(H, Mn(C))) = {g1n : g ∈ C(H)}.

Hence, if zk = gk1n (gk ∈ C(H), 1 � k � m), it follows that f =
∑m

k=1 gke
(k)
1,n. By (2.6),

we have e
(k)
1,n ∈ C0(U) for all 1 � k � m. Since f ∈ C0(U) was arbitrary, it follows that

C0(U) = spanC(H){e
(1)
1,n, . . . , e

(m)
1,n } = spanC(βU){e

(1)
1,n, . . . , e

(m)
1,n }.

By Lemma 2.2, C0(U) is unital, so U is compact and hence equal to H, contradicting
the fact that s0 ∈ H \ U .

Claim 3. A is a finite direct sum of unital homogeneous C∗-algebras.
This follows directly by induction, from Claim 2 and Remark 2.3. �

We now concentrate on conditions (b) and (c) from § 1. We shall find the next auxiliary
result very useful below.

Lemma 2.5. Let A be a C∗-algebra. Let (ak), (bk) and (ek) be sequences in M(A)
such that ek ∈ M(A)h for all k ∈ N, and such that the series

∑∞
k=1 aka∗

k,
∑∞

k=1 b∗
kbk and∑∞

k=1 e2
k are norm convergent. Let t and u be the tensors in M(A) ⊗h M(A) defined by

t :=
∑∞

k=1 ek ⊗ ek and u :=
∑∞

k=1 ak ⊗ bk. If ΘA(t) = ΘA(u), then

span{q
M(A)
P (ek) : k ∈ N} ⊆ span{q

M(A)
P (bk) : k ∈ N} for all P ∈ Prim(M(A)),

where span denotes the closed linear span.

Proof. Suppose that A ⊆ M(A) ⊆ A∗∗, where A∗∗ denotes the von Neumann envelope
of A. Note that (by ultraweak continuity) the equality ΘA(t) = ΘA(u) (of operators on A)
implies the equality ΘA∗∗(t) = ΘA∗∗(u) (of operators on A∗∗), and hence the equality

ΘM(A)(t) = ΘA∗∗(t)|M(A) = ΘA∗∗(u)|M(A) = ΘM(A)(u).

Therefore, we may assume that A is unital. Let P ∈ Prim(A). Since for each J ∈ Id(A)
the diagram

A ⊗h A
ΘA ��

qA
J ⊗qA

J

��

ICB(A)

QA
J

��
A/J ⊗h A/J

ΘA/J �� ICB(A/J)

commutes, where QA
J denotes the induced map ICB(A) → ICB(A/J) defined by

QA
J (T )(qA

J (x)) := qA
J (T (x)) for all T ∈ ICB(A) and x ∈ A, (2.7)

the equality ΘA(t) = ΘA(u) implies the equality ΘA/P (qA
P ⊗ qA

P (t)) = ΘA/P (qA
P ⊗ qA

P (u)).
Since A/P is primitive, by [1, Corollary 5.4.10] ΘA/P is an isometry (and hence injective),
so the latter equality implies the equality qA

P ⊗ qA
P (t) = qA

P ⊗ qA
P (u) of tensors in A/P ⊗h

https://doi.org/10.1017/S0013091509001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001114
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A/P . To simplify the notation, let Ȧ := A/P , ẋ := qA
P (x) (x ∈ A) and v̇ := qA

P ⊗ qA
P (v)

(v ∈ A ⊗h A). Put

V := span{ėk : k ∈ N} and W := span{ḃk : k ∈ N}.

To prove that V ⊆ W , it is sufficient to prove that each (bounded) linear functional on
Ȧ that annihilates W also annihilates V . So, let ϕ ∈ Ȧ∗ such that ϕ|W = 0. If we first
act on the equality

∞∑
k=1

ėk ⊗ ėk = ṫ = u̇ =
∞∑

k=1

ȧk ⊗ ḃk

with the left slice map Lϕ (see [12, § 4]) and then with the linear functional ẋ 
→ ϕ(ẋ∗),
we obtain

∞∑
k=1

|ϕ(ėk)|2 =
∞∑

k=1

ϕ(ȧ∗
k)ϕ(ḃk) = 0,

since ϕ|W = 0. It follows that ϕ(ėk) = 0 for all k ∈ N, and hence ϕ|V = 0. �

Theorem 2.6. Let A be a C∗-algebra. If A satisfies one of the conditions

(i) E(A) is of finite length, or

(ii) Im ΘA = E(A),

then A is subhomogeneous.

Proof. Since A satisfies (i) or (ii) if and only if M(A) satisfies (i) or (ii) (respectively),
we may assume that A is unital. Suppose that sup{dim A/P : P ∈ Prim(A)} = ∞, and
let (Pn) be a sequence in Prim(A) such that dimA/Pn � n, for all n ∈ N (if some
primitive quotient A/P is infinite dimensional, we may put Pn := P for all n ∈ N). For
each n ∈ N let qn := qA

Pn
and let ek,n (1 � k � n) be self-adjoint elements of norm 1 in

Ah such that the set {qn(e1,n), . . . , qn(en,n)} is linearly independent in A/Pn. Let

tn :=
n∑

k=1

ek,n ⊗ ek,n (n ∈ N) and t :=
∞∑

n=1

1
n3

n∑
k=1

ek,n ⊗ ek,n.

If Tn := ΘA(tn) ∈ E(A) (n ∈ N) and T := ΘA(t), we claim that �(Tn) = n, for all
n ∈ N, and that T 
∈ E(A). Suppose that for some n we have Tn = ΘA(u), where
u =

∑d
k=1 ak ⊗ bk ∈ A ⊗ A with d < n. By Lemma 2.5, we have

span{qn(e1,n), . . . , qn(en,n)} ⊆ span{qn(b1), . . . , qn(bd)},

which is impossible, since the set {qn(e1,n), . . . , qn(en,n)} is linearly independent. Simi-
larly, suppose that T ∈ E(A) and that T = ΘA(u) for some u =

∑d
k=1 ak ⊗ bk ∈ A ⊗ A.

If r > d, Lemma 2.5 implies that

V := span{qr(ek,n) : n, k ∈ N} ⊆ span{qr(b1), . . . , qr(bd)},

which contradicts the fact that dimV � r > d. �
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We shall now look closely at what happens in the homogeneous case. To do this, we
restrict ourselves to σ-unital algebras. We state the main result.

Theorem 2.7. Let A be a σ-unital n-homogeneous C∗-algebra. The following condi-
tions are equivalent:

(i) A is of finite type;

(ii) E(A) is of finite length;

(iii) ImΘA = E(A).

The ‘difficult part’ of Theorem 2.7 is to prove that (ii)⇒ (i). The main idea is to show
that sup{�(T ) : T ∈ E(A)} is closely related to the type of the underlying (vector) bundle
E, where the type of E is a constant defined as follows.

Definition 2.8. Let E be a vector bundle over the base space ∆. If E is of finite type,
then the smallest number m ∈ N for which there exists a finite open covering {Ui}1�i�m

of ∆ such that each restriction bundle E|Ui is trivial is called the type of E and is denoted
by type(E). If E is not of finite type, we define type(E) := ∞.

Lemma 2.9. If m, n ∈ N and we suppose that S1, . . . , Sm are some sets such that
|Si| = n and Si 
= Sj , for all 1 � i, j � m, i 
= j, then

|S1 ∪ · · · ∪ Sm| � n

e
n
√

m.

Proof. Let S := S1 ∪ · · · ∪ Sm and k := |S|. By the hypothesis of the lemma, S has
at least m different subsets of cardinality n, hence m �

(
k
n

)
. Since(

k

n

)
�

(
ke

n

)n

(see [2]), we have
k � n

e
n
√

m.

�

Lemma 2.10. Let E be a vector bundle of constant rank n over a locally compact
Hausdorff space ∆. Suppose that S is a subset of Γb(E) such that

span{a(s) : a ∈ S} = E(s) for all s ∈ ∆. (2.8)

Then
|S| � n

e
n
√

type(E).

Proof. If E is not of finite type, the claim follows directly from Lemma 1.2. Suppose
that m := type(E) < ∞. Obviously, |S| � n, so if m = 1 the proof is trivial. Suppose
that m > 1 and let s1 ∈ ∆ be an arbitrary point. By (2.8), there exists a subset S1 ⊆ S
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such that |S1| = n and span{a(s1) : a ∈ S1} = E(s1). By the continuity of the sections
in S, the set

U1 := {s ∈ ∆: span{a(s) : a ∈ S1} = E(s)}

is an open neighbourhood of s1. Note that ∆ \ U1 
= ∅. Indeed, if S1 = {aj1 , . . . , ajn},
then the map φ1 : U1 × Cn → E defined by

φ1(s, λ1, . . . , λn) :=
n∑

i=1

λiaji
(s)

is a local trivialization of E (i.e. φ1 is an isomorphism of vector bundles U1 × Cn and
E|U1). Hence, if U1 = ∆, it would follow that E is trivial, so m = 1. Choose an arbitrary
point s2 ∈ ∆ \ U1. By (2.8), there exists a subset S2 ⊆ S such that |S2| = n and
span{a(s2) : a ∈ S2} = E(s2), and let

U2 := {s ∈ ∆: span{a(s) : a ∈ S2} = E(s)}.

Again, U2 is an open neighbourhood of s2. Since s2 
∈ U1, S1 
= S2. If m > 2, by induction
we would find a sequence S1, . . . ,Sm of m distinct subsets of S such that |Si| = n for all
1 � i � m. Lemma 2.9 now implies that

|S| � |S1 ∪ · · · ∪ Sm| � n

e
n
√

m.

�

Lemma 2.11. Let E be a locally trivial vector bundle of constant rank over a locally
compact σ-compact Hausdorff space ∆. The following conditions are equivalent:

(i) type(E) < ∞;

(ii) sup{type(E|K) : K ⊆ ∆, Kcompact} < ∞.

Proof. (i)⇒ (ii). This is trivial.

(ii)⇒ (i). Suppose that type(E) = ∞. By [10, Lemma 2.4], there exists a countable
open cover (Ui) of ∆ such that each Ū i is compact, and Ū i ∩ Ū j = ∅ for all |i−j| > 1. By
compactness of Ū i and by local triviality of E, the restriction bundles E|Ui are of finite
type. Suppose that there exists N ∈ N such that type(E|Ūi) � N for all i ∈ N. Put

V1 :=
∞⊎

i=1

U2i−1 and V2 :=
∞⊎

i=1

U2i,

where
⊎

denotes the disjoint union. Since type(E|Ui) � type(E|Ūi) � N , for all i ∈ N,
and since all the sets in the corresponding union are disjoint, we have type(E|V1) � N

and type(E|V2) � N . Since V1 ∪ V2 = ∆, it follows that

type(E) � type(E|V1) + type(E|V2) � 2N,

which contradicts the fact that type(E) = ∞. �
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Proof of Theorem 2.7. Let E be a locally trivial C∗-bundle over ∆ := Prim(A)
with fibres isomorphic to Mn(C) such that A = Γ0(E). Since A is σ-unital, note that ∆
is σ-compact.

(i)⇒ (ii). By Theorem 1.1, M(A) is also n-homogeneous, so Theorem 2.4 implies that
it is finitely centrally generated. Suppose that M(A) = spanZ(M(A)){e1, . . . , em}, where
e1, . . . , em ∈ M(A). Let T ∈ E(A), T = ΘA(t) for some

t =
d∑

k=1

ak ⊗ bk ∈ M(A) ⊗ M(A).

If

ak =
m∑

i=1

zk,iei and bk =
m∑

i=1

wk,iei

for some zk,i, wk,i ∈ Z(M(A)), then

T =
d∑

k=1

ΘA

(( m∑
i=1

zk,iei

)
⊗

( m∑
i=1

wk,iei

))

=
d∑

k=1

m∑
i,j=1

zk,iwk,jΘA(ei ⊗ ej)

= ΘA

( m∑
i,j=1

ui,jei ⊗ ej

)

= ΘA

( m∑
j=1

( m∑
i=1

ui,jei

)
⊗ ej

)
,

where ui,j :=
∑d

k=1 zk,iwk,j . Hence, �(T ) � m.

(i)⇒ (iii). Assuming that (i) holds, it follows from [8, Theorem 1.1] that E(A) =
ICB(A) (note that separability is not needed for this part of [8, Theorem 1.1]). Condi-
tion (iii) is then immediate.

(ii)⇒ (i). Suppose that E is not of finite type. By Theorem 1.1, E is not of finite type
as a vector bundle. For m ∈ N let dm := �(n2/e) n2√

m�. By Lemma 2.11, there exists a
compact subset Km ⊆ ∆ such that type(E|Km) � m. Let

Jm := {a ∈ Γ0(E) : a|Km = 0} and Am := A/Jm.

Using the Tietze Extension Theorem for sections of Banach bundles [4, Theorem II.14.8],
we may identify Am = Γ (E|Km

). Since Km is compact, by Lemma 1.2 there exist a finite
number of self-adjoint sections e1, . . . , erm

∈ Γ (E|Km
)h such that

span{e1(s), . . . , erm(s) : s ∈ ∆} = E(s) for all s ∈ Km.
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If t :=
∑rm

k=1 ek ⊗ ek and Ṫm := ΘAm
(t), then Lemma 2.5 implies that if Ṫm =

ΘAm
(
∑d

k=1 ak ⊗ bk) is another representation of Ṫm, then we also have

span{b1(s), . . . , bd(s) : s ∈ ∆} = E(s) for all s ∈ Km.

Therefore, by Lemma 2.10 we have �(Ṫm) � dm. Finally, if Tm ∈ E(A) is any lift of Ṫm

(that is, if Tm ∈ E(A) such that Ṫm = QA
Jm

(Tm), where QA
Jm

is the map as in (2.7)),
then obviously �(Tm) � �(Ṫm) � dm. Since limm→∞ dm = ∞, it follows that E(A) is not
of finite length.

(iii)⇒ (i). Suppose that E is not of finite type. Since ∆ is σ-compact, there exists a
sequence (ek) of self-adjoint sections in A = Γ0(E) such that

span{ek(s) : k ∈ N} = E(s) for all s ∈ ∆. (2.9)

Let

t :=
∞∑

k=1

1
k2 ek ⊗ ek ∈ A ⊗h A.

Suppose that T := ΘA(t) ∈ E(A) and let u =
∑d

k=1 ak ⊗ bk ∈ M(A) ⊗ M(A) such that
T = ΘA(u). By [8, Lemma 3.2], we have M(A) = Γb(E). Since, by Theorem 1.1, E is
not of finite type as a vector bundle, Lemma 1.2 implies that there exists a point s0 ∈ ∆
such that

span{b1(s0), . . . , bd(s0)} � E(s0). (2.10)

But Lemma 2.5 implies that

span{ek(s0) : k ∈ N} ⊆ span{b1(s0), . . . , bd(s0)};

which contradicts (2.9) and (2.10). �

Remark 2.12. Let A be a σ-unital C∗-algebra and let J ∈ Id(A). By the noncommu-
tative Tietze Extension Theorem [13, Theorem 2.3.9], the extension (qA

J )β : M(A) →
M(A/J) of qA

J is also surjective. It follows that the induced contraction (qA
J )β ⊗

(qA
J )β : M(A)⊗h M(A) → M(A/J)⊗h M(A/J) is also surjective, and hence QA

J (E(A)) =
E(A/J) and QA

J (Im ΘA) = Im ΘA/J , where QA
J is the map as in (2.7). Hence, if

Im ΘA = E(A), then Im ΘA/J = E(A/J), and if E(A) is of finite length, so is E(A/J).

Corollary 2.13. Let A be a separable C∗-algebra. If A satisfies one of the conditions

(i) E(A) is of finite length,

(ii) Im ΘA = E(A),

then A is subhomogeneous of finite type.

Proof. By Theorem 2.6, A is subhomogeneous. Let 0 = J0 ⊆ J1 ⊆ · · · ⊆ Jp = A be
the standard composition series of A [9, 6.2.5]. We have to show that each homogeneous
quotient Ji/Ji−1 is of finite type. Using induction, Remark 2.12 and Theorem 2.7 it is
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sufficient to prove this in the case when p = 2. Let J := J1. Again, Remark 2.12 and
Theorem 2.7 imply that A/J is of finite type. To prove that J is also of finite type, it is
sufficient to prove this in the case when J is essential in A. Indeed, if J is not essential,
then we can substitute A with B := A/J⊥, since by [8, Lemma 3.1] the n-homogeneous
ideal K of B is essential in B and K ∼= J . Suppose that J is not of finite type. By
the proof of Theorem 2.7, there exists a sequence of tensors (tm) in J ⊗ J and a tensor
t ∈ J ⊗h J such that �(Ṫm) → ∞ as m → ∞ and Ṫ 
∈ E(J), where Ṫm := ΘJ(tm)
and Ṫ := ΘJ(t). Let Tm := ΘA(tm) and T := ΘA(t). Since J is essential in A, we have
M(A) ⊆ M(J), and hence �(Tm) � �(Ṫm) → ∞ as m → ∞ and T 
∈ E(A). �

Remark 2.14. We also note that the class of (separable) C∗-algebras that satisfies
one of the conditions of the previous corollary is larger than the class of a finite direct
sum of (separable) homogeneous C∗-algebras of finite type. For example, let A be the
C∗-algebra from [5, Example 6.1], which consists of all elements a ∈ C([0,∞], M2(C))
such that

a(n) =

(
λn(a) 0

0 λn+1(a)

)
(n ∈ N)

for some convergent sequence (λn(a)) of complex numbers. It is proved in [5, Lemma 6.6]
that E(A) is closed in (completely bounded-) norm, and hence that ImΘA = E(A).
Analysing the same proof, one can also see that E(A) is of finite length.
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