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Abstract

Poor socket fit is the leading cause of prosthetic limb discomfort. However, currently clinicians have limited objective
data to support and improve socket design. Finite element analysis predictions might help improve the fit, but this
requires internal and external anatomymodels. While external 3D surface scans are often collected in routine clinical
computer-aided design practice, detailed internal anatomy imaging (e.g., MRI or CT) is not. We present a prototype
statistical shape model (SSM) describing the transtibial amputated residual limb, generated using a sparse dataset of
33 MRI and CT scans. To describe the maximal shape variance, training scans are size-normalized to their estimated
intact tibia length. A mean limb is calculated and principal component analysis used to extract the principal modes of
shape variation. In an illustrative use case, the model is interrogated to predict internal bone shapes given a skin
surface shape. The model attributes ~52% of shape variance to amputation height and ~17% to slender-bulbous soft
tissue profile. In cross-validation, left-out shapes influenced the mean by 0.14–0.88 mm root mean square error
(RMSE) surface deviation (median 0.42 mm), and left-out shapes were recreated with 1.82–5.75 mm RMSE
(median 3.40 mm). Linear regression between mode scores from skin-only- and full-model SSMs allowed prediction
of bone shapes from the skin with 3.56–10.9 mm RMSE (median 6.66 mm). The model showed the feasibility of
predicting bone shapes from surface scans, which addresses a key barrier to implementing simulation within clinical
practice, and enables more representative prosthetic biomechanics research.
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Impact Statement

The presented statistical shape model answers calls from the prosthetics community for residual limb shape
descriptions to support prosthesis structural testing that is representative of a broader population. The SSM
allows, for example, definition of worst-case residual limb sizes and shapes toward testing standards. Further-
more, the lack of internal anatomic imaging is one of themain barriers to implementing predictive simulations for
prosthetic “socket” interface fitting at the point of care. Reinforced with additional data, this model may enable
generation of estimated finite element analysis models for predictive prosthesis fitting, using 3D surface scan
data already collected in routine clinical care. This would enable prosthetists to assess their design choices and
predict a socket’s fit before fabrication, important improvements to a time-consuming process which comes at
high cost to healthcare providers. Finally, few researchers have access to residual limb anatomy imaging data, and
there is a cost, inconvenience, and risk associated with putting the small community of eligible participants
through CT or MRI scanning. The presented method allows sharing of representative synthetic residual limb
shape data while protecting the data contributors’ privacy, adhering to GDPR. This resource has been made
available at https://github.com/abel-research/OpenLimbTT, open access, providing researchers with limb shape
data for biomechanical analysis.

1. The need for statistical models to support prosthetic limb design

Over 5000major lower limb amputations are performed every year in theUnitedKingdom (NHSEngland
Secondary Care Analytical Team, 2024), and an estimated population of 55–60,000 uses prosthetics
services. Prosthetic limbs may enable a return to walking and other activities associated with self-care,
community engagement, education, and employment. However, the tissues in the residual limb are not
initially suited to supporting the large mechanical loads transferred across the prosthesis–limb interface,
which most commonly comprises a thermoplastic or composite “socket.” The design and fitting of the
socket are key in balancing comfort with firm, functional load transfer. The residual limb tissues’ size,
shape, and mechanical load tolerance vary considerably within and between individuals. Therefore, each
socket must be designed with a bespoke shape and choice of materials, and components for the
management of volume change and suspension (Safari and Meier, 2015). Poorly fitting and misaligned
sockets are uncomfortable and can lead to sores, ulcers, and deep tissue injury (Rogers and Khatib, 2024).

An understanding of residual limb shape and tissue composition is thus crucial to designing a well-
fitting socket. The socket design typically refers to a pattern of “rectifications,” where the socket shape
deviates strategically from that of the limb, to achieve desired load transfer through local interference at
load tolerant sites, and offloading vulnerable sites. Conventionally the socket is designed manually using
plaster casting by a highly experienced prosthetist. They must decide on the most appropriate design
approach and identify landmarks by palpating the surface of the limb. Although general design
approaches exist, there is no clear quantitative consensus between prosthetists on the exact location,
shape, or relative size of the rectifications (Dickinson et al., 2021). This results in a skill-based design
process that is near impossible to reproduce, and clinicians call for tools to allow more evidence-based
evaluation and prediction of socket fit (Safari and Meier, 2015). Computer-aided design and manufac-
turing (CAD/CAM) technologies are growing in use to create socket designs through digital modification
of a 3D surface scan, before carving a foam mold for socket fabrication. CAD/CAM requires the same
clinician experience and skill as plaster methods, but preserves a digital design record and could permit a
marked improvement to the efficacy and clinical efficiency of the design process. For example, a data-
informed design process could enable prosthetists to apply lessons learned from previous design records
(Lemaire and Johnson, 1996; Mbithi et al., 2025), or to accurately predict interface pressure, allowing a
clear indication of fit prior to fabrication (Goh et al., 2005). However, only a small proportion of these
technologies’ potential is currently being exploited (Oldfrey et al., 2024).

Moving from the clinic to the research domain, related efforts to improve socket designwith prediction
have developed finite element analysis (FEA) methods to predict residual limb–socket interface stresses,
and the resulting residual limb tissue strains, enabling parametric socket design analysis (Dickinson et al.,
2017). However, building an FE model of the residuum socket system requires patient-specific
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information, primarily the residual limb tissues’ shape, tissue composition, material properties, and the
dynamic mechanical loading. Although CAD/CAM methods provide accurate external shape data,
volumetric imaging data are required to capture the internal anatomic details generally included in FE
models (Ramasamy et al., 2018; Steer et al., 2021). Internal tissues are conventionally imaged in 3D using
MRI or CTscans, however, these are not conducted as part of routine prosthetic care due to cost, time, and
CT’s radiation dose. The same barriers exist in prosthetics biomechanics research, where shape data
availability is restricted, and often limited to the more routinely collected external surface scans.

Statistical shape models (SSM) (Stegmann and Gomez, 2002) may offer solutions to the barriers
against access to medical imaging data for FEA and prosthetic socket design analysis. When applied to
medical imaging, SSMs allow a stochastic description of the anatomy within a given population by
extracting patterns of shape variance in a sample of training data. This analysis enables the dimensionality
of the population’s characteristics to be reduced to a limited number of important modes of variation
(Audenaert et al., 2019). If an SSM is made using an appropriate quantity and diversity of training data, a
variety of use cases become available. SSMs are frequently employed in orthopedics and biomechanics to
classify anatomy (Worsley et al., 2015) or disease (Ambellan et al., 2019), to identify potential risk factors
contributing to fractures (Grassi et al., 2021), and to predict missing data from partial information (Woods
et al., 2017) such as estimating 3Dmodels from 2D x-ray images (Blanc et al., 2012). A limited number of
studies have also predicted skeletal geometry from exterior surface shapes using this approach (Keller
et al., 2022; Shetty et al., 2023). A statistical residual limb shape model would potentially address the
abovementioned data limitations, offering a means to support biomechanical simulation and prosthetic
device design where there is a lack of complete anatomic data (Saxby et al., 2020), such as predicting
internal anatomy given an exterior surface scan. Prior applications in lower limb prosthetics have used
SSM to study variations in proximal tibia shape (Hafner et al., 2000), and combined the method with
linear discriminant analysis for objective residual limb shape classification into clinically relevant groups
according to shape (Worsley et al., 2015). Costa et al. used SSM to capture variations in socket shape
(Costa et al., 2021) and hypothesized that such a tool could provide on-demand socket design insights,
whereas Dickinson et al. (2021) performed statistical shape analysis on both residual limbs and their
corresponding sockets, identifying key trends in the choice of design approaches used by expert
prosthetists. Steer et al. (2020) proposed a method of predictive prosthetic socket design by creating
multiple FE models of transtibial residual limbs using SSM to offer a solution to the model generation
workload, computational expense, and training barriers to performing conventional FEA in a clinical
setting. However, these studies have considered only the external shape of the residual limb from
CAD/CAM 3D scan data or approximated the internal geometry by scaling the bone models from a
single MRI dataset. Most recently, the American Orthotic and Prosthetic Association (AOPA) Socket
Guidance Work group has identified a need for descriptions of the shape and composition of residual
limbs in the generation ofmock limbmodels to aid structural testing of prosthetic sockets (Gariboldi et al.,
2023). Therefore, the research and clinical communities have communicated a need, and a variety of use
cases, for accessible data on the external and internal anatomy of the amputated residual limb, a gap which
this article aims to address.

This study therefore presents a first statistical shape model of the transtibial residual limb from volume
medical imaging data (i.e., MRI and CT) that includes both the exterior surface and the internal bony
anatomy, and assesses its ability to allow prediction of internal bony anatomy from the exterior surface
alone. This comprises methodological novelty relevant to sparse, partial datasets arising from the
compounded effects of both anatomical and surgical variation which affect amputation and prosthetics.

2. Creating a population model from sparse, incomplete anatomic data

2.1. Subject data and ethics

Secondary data analysis ethical approval was granted by the University of Southampton’s Ethics
Committee (ERGO II 65748A2). Subject data consisted of MRI or CT scans of 43 people with residual
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limbs from transtibial amputations using five different sources, collected in previously published
research, and/or provided to the authors under data sharing agreements (Steer, 2019; Bramley, 2020;
Edgar et al., 2020;Mendis, 2021; Ding et al., 2023; Finco et al., 2023). The participants covered a range of
amputation causes, age, and time since amputation (Table 1). Six scans were excluded due to failing to
satisfy at least one of the following inclusion criteria, such that the model would describe a cohesive
population and consistent anatomical features:

• Amputation through the tibial diaphysis, that is, excluding e.g. Symes amputation.
• The limb and scan must have the typical residual skeletal anatomy for a transtibial amputation, that
is, distal femur, patella, proximal tibia, and proximal fibula should be present.

• Standard surgical amputation technique must have been used for the amputation, without additional
reconstruction, that is, excluding bone-bridging or capping or implants for prosthesis suspension.

Four more scans were excluded from the dataset after producing a preliminary model which identified
very substantial imaging artefacts, as explained next.

2.2. Residual limb processing

2.2.1. Mesh generation and alignment
The raw MRI and CT DICOM image sets representing transverse slices were segmented to provide
corresponding surface meshes of the skin and residual tibia, residual fibula, patella, and distal femur
bones, in .stl format (ScanIP Version 2018.12; Synopsys, Inc., Mountain View, USA).

The MRI and CT scans were taken with the patient supine with the posterior aspect of their residual
limb supported. While this gives an approximately standardized pose, the orientation still varied between
limbs. By aligning the training datasets, variations in relative position and orientation can be removed
such that the SSM is able to describe more detailed anatomic shape variation. Due to differences in
remaining anatomy and intersubject variation in knee joint alignment, the alignment of the proximal
residual tibias was prioritized.

Table 1. Details of the included individuals

Age, years; median (range) 54 (25–81)
Time since amputation, years; median (range) 4.1 (1–35)a

Sex 4F 29M
Amputation side 18 Left, 15 rightb

Amputation cause 9 Trauma
3 Vascular disease
2 Chronic pain
19 Not recordedc

Ethnicity 12 White European/US
9 Latino
5 Native American
1 African American
6 Not recorded

Height, m; median (range) 1.76 (1.53–1.89)
BMI, kg/m2; median (range) 27.5 (16.7–53.0)a

Note. Four of the obtained datasets were excluded after building a preliminary SSM and their details are left out of this table.
aFor NMDID datasets (Edgar et al., 2020; Finco et al., 2023), weight and time since amputation were not provided.
bTwo participants had bilateral amputations and only their right residual limb was used in the model.
cNMDID did not report reasons for amputation, however, of these 18 individuals three had a listed Type I diabetes diagnosis, and 10 Type II diabetes, so
the vascular disease cause is likely to be an under-estimate.
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First, each limb was aligned with respect to a global coordinate system (CS) defined by the
International Society of Biomechanics convention (xz plane = transverse, yz = coronal, xy = sagittal)
(Wu et al., 2005) using the ampscan open-source shape analysis toolbox (Steer et al., 2020). The
alignment procedure was as follows (Figure 1):

• left-sided shapes were mirrored so that all subjects were the same side,
• shapes were then translated so that their tibia mesh vertex centroids lay at the origin,
• shapes were rotated to align their tibia mesh principal axes of inertia, estimated using PCA, with the
global coordinate axes,

• finally, datasets were rotated about the vertical axis so that the posterior extents of the knee condyles
lay along a medial–lateral axis.

Second, an iterative closest point (ICP) rigid registration algorithm was used to adjust each dataset’s
alignment with respect to the tibia, to maximize intersubject alignment, followed where necessary with
small manual adjustments by an experienced human observer. After alignment, a trim was applied in the
transverse plane at a level one patella height above the most proximal extent of the patella, to include a
consistent degree of geometry above the knee relevant to supracondylar socket designs.

2.2.2. Size normalization
SSMs are often created using size-normalized training data, to separate size and shape variance. However,
due to variations arising from surgery, each of the training shapes’ residual limb length represents a
different proportion of the intact limb, so a simple scaling factor is not sufficient to ensure the mapping of
corresponding anatomical features (Lam et al., 2016). For example, a taller individual with a relatively
high amputation may have a longer residual limb than a shorter individual with much more intact
anatomy. Therefore, this study size normalized the training shapes to the full tibia length, T as the unit

Figure 1. Coronal and sagittal views of the first 10 subjects’ training data (full and bones only) meshes
before (top) and after the alignment and trimming were performed (bottom).
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size. Thiswas taken from the contralateral limb imageswhere available, or estimated from the individual’s
height, H (mm), and their age, A (years), using a regression formula (Eq. 1) (Trotter and Gleser, 1952):

Tmale =
H�786:2þ0:6α

2:52
,

T female =
H�615:3þ0:6α

2:90

(1)

where α is defined in

α= 0 if A≤ 30
A�30ð Þif A> 30:

n
(2)

Following size normalization a visual check of alignment was made

2.2.3. Registration
Mesh registration is necessary for point-to-point comparison between each of the SSM’s training shapes
so that they are represented using a corresponding set of vertices, allowing their shape variance to be
extracted. A “baseline” shape was chosen and each of its mesh bodies mapped onto the surface of the
corresponding “target” data subject bodies using Amberg and Romdhani’s (Amberg et al., 2007) nonrigid
ICP algorithm in the trimesh package (Dawson-Haggerty, 2019). This algorithm was selected as it is less
sensitive to outliers and missing data than conventional elastic matching methods. This deforms the
baseline toward the target incrementally, permitting accurate registration of anatomy present in both
datasets, and appropriately distributed mesh vertices in cases where the anatomy in the baseline mesh is
not present on the target dataset. Figure 2 depicts an example of the key steps applied to one of the skin
meshes, including over scaling the baseline to the target to ensure registration of the model’s open
proximal boundary.

2.3. Statistical analysis

Principal component analysis (PCA) is considered the standard approach used for creating statistical
shape models (Stegmann and Gomez, 2002). PCA objectively identifies patterns of shape variance
(modes) in a set of training data. This analysis enables the dimensionality of the population’s character-
istics to be reduced by selecting a limited number of important modes of variation, that is, principal
components (PCs) (Audenaert et al., 2019). PCA describes how each training dataset compares to the
population mean shape, described by a “score” in each mode of variation. Two statistical limb shape
models were produced by PCA, representing the skin and bone surfaces (“full model,” μ) and the skin
surface only (“skin model,” μs), using the scikit-learn toolbox (Abraham et al., 2014). The procedure was
an extension to method which was previously reported for analyzing the residual limb’s external shape
(Dickinson et al., 2021).

Figure 2. The main steps in registration (original, aligned, scaled, and registered meshes, from left to
right).
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First, the mesh vertices xi for each i of the n training individuals were each represented as a column
vector, Eq. (3), where m represents the number of vertices in the baseline mesh and x, y, and z; are the
vertex coordinates,

xi = x1,y1,z1,…,xm,ym,zm½ �T : (3)

A column vector representing the mean limb shape was then calculated using, Eq. (4),

�x=
1
n

Xn
i = 1

xi, (4)

where n represents the number of limbs in the training dataset, giving Eq. (5),

�x= ½�x1,�y1,�z1,…,�xm,�ym,�zm�T ; (5)

and the meshes were mean centered according to Eq. (6),

xi mc = xi��x: (6)

PCA by singular value decomposition (SVD) was then performed. This enabled each limb shape to be
described by Eq. (7), where Aj represents the eigenvectors corresponding to the each of the c modes of
population shape variation,

xi = �xþ
Xc

j = 1

Ajλji: (7)

and λj is a vector of weighting coefficients or “mode scores,” associated with the eigenvectors to describe
each training dataset shape’s deviation from mean, with λj being represented by Eq. (8),

λj = λj1,…,λjn½ �: (8)

The approximated 95% range of population variation was plotted by generating synthetic shapes (η) with
weighting coefficients defined using the training dataset’s 2.5th and 97.5th percentile mode scores for
each mode j in turn using Eqs. (9 and 10), allowing visual interpretation of the shape variance contained
within the mode,

ηj0:025 =Aλj:025þ�x, (9)

ηj0:975 =Aλj:975þ�x: (10)

During model generation, all training shapes’mode scores were inspected. Four shapes were observed to
have very distorted soft tissues associated with positioning in the MRI or CT scanner, identified by
outlying influence in both extremes of leave-one-out cross-validation tests, so they were set aside leaving
a training dataset of 33.

2.4. Statistical shape model performance and validity testing

2.4.1. Compactness: how many modes of variability does the model require?
As PCA is a dimensionality reduction technique, the compactness describes the ability of the SSM to
represent the population variation with a minimal subset of modes (Pearson, 1901). Compactness was
assessed by reconstructing each training individual (i) with progressively increasing number of modes (j)
and calculating the root mean square error (RMSE or εj) of vertex surface deviation between the
reconstruction (exij) and the original data (xi), such that Eq. (11) represents each reconstruction
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~xi0 = x

~xi1 = xþA1λ1i
~xi2 = xþA1λ1i þA2λ

⋮
~xic = xþA1λ1i þA2λ2i⋯þAcλci

(11)

and Eq. (12) represents the error

εn0 = xi�~xi0
εn1 = xi�~xi1

⋮
εnc = xi�~xic

(12)

2.4.2. Generality by cross-validation: howmuch does leaving training shapes out affect the mean and extreme
mode shapes?
Generality assesses whether a model can accurately describe similar shapes that have not been included in
the training set, and the effect of noise in the training data (Lam et al., 2016). Generality is commonly
determined using leave-one-out (LOO) cross-validation testing allowing identification of the model’s
accuracy given the available training data, or whether that available training dataset size is sufficient for
some acceptable error level. This is measured by assessing the influence of leaving out each shape (i) on the
mean and extrememode shapes. Each shape was left out, one at a time, and a new �xi and μi were generated.
The influence of each shape can be evaluated by calculating root mean squared errors (RMSEs) between
mean shapes and mode extremes generated from the full SSM (μi) and SSMs with each shape left out.

2.4.3. Generality by recreation: how accurately can the model describe left-out shapes?
Generality was further assessed by evaluating howwell the SSMcan describe a new data set not used in its
creation by using each LOO-SSMmodel from the cross-validation test to recreate the left-out shape. The
left-out shape’s mode scores λ (m × 1 column vector) were estimated by solving the least squares matrix
problem. Conventionally this takes the form Ax= b, though we are prioritizing nomenclature convention
used in SSM studies, in Eq. (13),

Aλ= x, (13)

where A is the m × c matrix representing the principal components (Aj) and x is the m × 1 column vector
representing the left-out shape’s vertex coordinates, see Eq. (2). Note c, the number of modes (PCs), will
be one less in the LOO-SSMs than in the full SSM because the number of modes that can be determined is
equal to n�1. AsA is not a square matrix it is not invertible, therefore, theMoore–Penrose pseudoinverse
was computed to solve Eq. (13) (Generalized Inverses, 2003), using NumPy’s linear algebra submodule.

2.5. Example use case: Shape prediction from partial data

A common use of SSMs is prediction of a shape given only partial data. An application of the present
model might be to predict the internal geometry from the external shape. Two methods were compared.

First, a similar pseudoinverse method to that used earlier for model recreation was tested. For this
purpose, a consistent partial shape, the skin, and consistentmissing data, the bones, were used. Thismeans
that point-to-point correspondence between the partial shape and the SSM was known. This method is
also known as Gappy POD (proper orthogonal decomposition) (Bui-Thanh et al., 2004). In place of
Eq. (13), Eq. (14) provides,

Asλ= xs, (14)

where As is the subset of A that only contains the first s rows that act on the skin nodes, and xs is the SSM
skinmesh registered to the partial shape. Employing the earlier method, mode scores can be estimated and
then used with the complete principal components to predict a complete shape.
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An alternative method employing linear regression was also tested (Figure 3). Training dataset mode
scores calculated from each leave-one-out skin only model were collected alongside the corresponding
mode scores from each leave-one-out full model, and a linear regression between each pair ofmode scores
was formulated using scikit-learn (Abraham et al., 2014), such that the full mode scores were the
dependent variable. The recreation method, provided in “Generality by recreation,” was used upon
the skin-only leave-one-out model to estimate mode scores and thus recreate each left out shape’s skin.

Figure 3. Flowchart of steps in linear regression prediction method.
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The corresponding leave-one-out regression was then fitted to the skin-only mode score estimates to
predict mode score values for the full model’s description of the left-out shape. Using these predicted
scores, a predicted shape was generated using Eq. (8) and plotted. This was then aligned with the actual
left-out shape and the RMSE calculated. In addition to mean centering and scaling, the PCA used scikit-
learn’s “whitened” components scores to minimize linear correlation across features.

The prediction accuracy was calculated with both methods as the RMSE between the actual and
predicted shapes for (i) the bones, (ii) the skin, and (iii) the whole limb. TheRMSEwas calculatedwith the
normalized data and expressed in mm by rescaling back to the actual size. Differences in accuracy
between the prediction methods were assessed for statistical significance with a nonparametric Wilcoxon
signed rank test, for paired data.

3. Statistical shape model, validation, and use case for internal anatomy prediction

3.1. Modes of variation

The participants’ known or estimated full tibia lengths indicated that the training shapes represented a
median 36% of the intact anatomy. The proportionally shortest and longest limbs preserved 18% and 60%
of the intact tibia length, respectively (Appendix 1). After size normalization, the average locations of
vertices in the aligned, registered training shape meshes were calculated to produce the population mean
shape (Figure 4). The PCA calculation provides the proportion of population variance attributed to each
mode of shape variation (Figure 5) and indicates that 69%of the population variancewas containedwithin
the first 2 modes and 95% within 10 modes, implying that these are most important for describing or
classifying gross shape.

The shapes of these nine primary independent modes of limb variation were plotted to permit
inspection of the variance they represent (Figure 6). The variations predominantly manifested as
amputation height in Mode 1 which encompasses 52.2% of the population variance, and slenderness/
soft tissue bulk in Mode 2, including 16.7% of the variance. As discussed later, these external shape
variations are consistent with previous SSMs. However, this model provides first quantitative insights
into how the internal and external anatomic shape variation is related. For example, Mode 3 (8.2% of
variance) represents the relative scale of the bones within the soft tissue, and along with modes 5 (3.1%)
and 6 (2.6%) includes varying distal soft tissue coverage over the distal tibia bony prominence, a notable
site of particular soft tissue vulnerability and relevance in socket design. These modes illustrate how a
relatively shorter residual bone allows the posterior soft tissue more freedom to deform posteriorly and
medially. The model also shows variance which might be associated with scanning; Mode 4, 7.2% of the
population variance, describes knee flexion, and Modes 5 (3.1) and 8 (1.3%) describe posterior and

Figure 4. Mean of residual limb training shapes.
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medial variation in soft tissue distribution which might be associated with soft tissue deformation under
the body’s self-weight and contact with the scanner bed, respectively, in the calf and thigh.

3.2. Validity tests

Compactness testing (Figure 7) demonstrated that by employing the initial 10 modes which encompass
95%of the variance, all training shapes could be reconstructedwith an RMSEbelow 5mm. In context, the
training shapes were a median of 14mmRMSE (range 4–30mm) from the mean shape, indicated by their
reconstruction without using any SSM modes. In cross-validation testing (Table 2), the mean and 2.5th
and 97.5th percentile extreme shapes in each mode were generated for each of the LOO-SSMs and
compared to the corresponding shapes obtained from the full SSM. Leaving out training shapes had little
influence on the mean, at 0.14–0.88 mm RMSE surface deviation (median 0.42 mm). The RMSEs
associated with leaving out individual shapes were also small for the extreme shapes in Modes 1 and
2 (medians of 0.36–0.70 mm, and interquartile ranges [IQR] of 0.66–1.06 mm, respectively), however,
given the limited training dataset size, individual shapes could disproportionately affect single modes.
This is evidenced by two outliers in Mode 1, represented by training datasets 10 and 20, which were
considerably longer than the rest (Table A1); leaving each of them out influenced the long-length extreme
shape by 8.29 and 8.97 mm, respectively, but did not substantially influence the short length extreme.

3.3. Prediction of bones from residual limb surface

The model’s ability to predict each residual limb’s bony anatomy from its external surface was evaluated
and compared to the model recreation (Figure 8). Four shapes are presented to illustrate relatively good
and poor examples of the model’s predictive capabilities. Participant IDs 1 and 2 (Figure 8, rows 1 and 2)
are both near the population mean in Mode 1. Both methods predicted the soft tissue shape well, and
displayed some inaccuracies, particularly with respect to predicting individual bony anatomy character-
istics. For example, ID1 has a relatively short residual fibula, and ID2 has a quite lateralized fibula and
femur. The PI method showed higher error in predicting soft tissue coverage over notable bony
prominences such as the fibula head and distal tibia, which is potentially problematic for its use in socket
design or analysis. The linear regression (LR) method produced more accurate bone shapes and slightly
lower error in all the locations listed earlier. Subject ID8 is included as an example which was predicted

Figure 5. Individual and cumulative variance represented by each mode of the full statistical shape
model.
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Figure 6. SSMmode shapes as described by 2.5th (blue) to 97.5th percentile (red) estimated variance range
from in the training dataset. These permit the principalmodes of residual limb shape variance to be inspected.

e39-12 Fiona Sunderland et al.

https://doi.org/10.1017/dce.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10019


poorly by both methods (Figure 8, row 3) as it features unique bony characteristics which were far from
the population mean and not indicated by the external soft tissue shape: the very short fibula and the
relatively short tibia compared to the full limb length, represented as high tissue thickness at the limb’s
distal end. The other mainweakness in prediction is demonstrated by Subject 10 (Figure 8, row 4)who has
a considerably longer residuum (60% of intact tibia) compared to the rest of the training dataset. This is
difficult to predict because it features anatomy not present in the remainder of the training data. Relative to
the recreation, the PI method performs particularly well especially in the prediction of distal soft tissue
coverage, however, both methods are limited by the model’s inability to describe the longer limb shape
and very slender distal bony anatomy.

Table 2. Variation of the leave-one-out statistical shape model (LOO-SSM) for mean and first two
mode shapes compared to the full SSM

Shape
Median RMSE

(mm)
IQR RMSE

(mm)
Min RMSE

(mm)
Max RMSE

(mm)

Mean 0.42 0.26 0.14 0.88
Mode 1: 97.5% (long) 0.70 0.74 0.09 8.97
Mode 1: 2.5% (short) 0.36 0.66 0.03 1.99
Mode 2: 97.5% (bulbous) 0.61 1.06 0.06 3.92
Mode 2: 2.5% (slender) 0.61 0.84 0.15 2.38

Note. Normalized data rescaled back to actual size for expression in mm. RMSE: root mean squared error; IQR: interquartile range.

Figure 7. Compactness: range of RMSE between each subject’s actual shape and its reconstruction from
the SSM using a reduced number of modes. Normalized data rescaled back to actual size for expression

in mm.
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Quantifying the overall errors for predicting the full shapes (Figure 9), both the linear regression and
pseduoinverse methods give a similar spread of values (LR: median 4.97 mm, IQR 1.94 mm; PI:
median 5.42 mm, IQR 1.50 mm), but the LR method outperforms the PI method overall (p = .012, effect
size =�0.4). This trend became stronger considering the bone prediction alone, approaching the RMSE
values for recreation (LR: median 6.66 mm, IQR 2.60 mm; PI: median 8.58 mm, IQR 2.84 mm; p < .001,
effect size = �0.8). Since recreation shows the model’s accuracy in describing the dataset given full

Figure 8. Four example subjects’ original (red) compared to recreated (blue) shapes, and shapes
predicted using pseudoinverse (PI) and linear regression (LR) methods alongside error measurements
(mm). Normalized data rescaled to actual size forexpression inmm;% in row headers refers to proportion

of intact tibia remaining.
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information, it can be considered as the lower achievable bound for prediction error values (all:
median 3.40 mm, IQR 0.99 mm; bones: median 3.46 mm, IQR 1.21 mm). Similarly, looking at the distal
tissue thickness (Figure 10), LR predictions fall closer to the actual values than the PI predictions on
average, but this did not reach significance (p = 0.272, effect size = 0.2).

4. Discussion

4.1. Observations from the SSM and corroboration

The presented residual limb SSM offers novel insights into internal anatomic variation and how it
associates with surface anatomy. While the absence of comparable models means this may not be
corroborated fully, it can be compared to existing models that only considered the external limb surface.
The newmodel showed similar overall external shape variance to a residual limb surface SSM previously
published by this group (Dickinson et al., 2021), in which the dominant shape variance was overall size
and soft tissue bulk in Modes 1 and 2, respectively. These dimensions are key to the selection of
appropriate socket design strategies. The previous, surface model’s first mode contains variations in
residuum size overall and length arising from amputation height, whereas the new model distinguished
more clearly between these different sources of variance, especially on the sagittal view (Figure 6,
Mode 1), and this advantage may arise from having size normalized the training data. Shape reconstruc-
tion errors were similar to the previously published study’s residual limb external SSM for the a training
dataset size of 33, and that study indicated that approximately 40 training datasets brought the error below
1mm. This is presented as an acceptable target error level because itmatches typical consistencymeasures
in socket design (Convery et al., 2003) and residual limb shape capture by plaster casting or 3D scanning
(Dickinson et al., 2022).

Comparison between the present and previousmodels also reveals interesting observations with regard
to the diversity of the training data. The previous model included a mode shape describing coronal plane

Figure 9. RMSE of the recreated and predicted shapes compared to the actual shape. Normalized data
rescaled back to actual size for expression in mm.
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distal bulbousness which correlated with time since amputation (Dickinson et al., 2021) and was
attributed to edema which occurs commonly after amputation surgery. This often subsides in the
following months, and can delay socket fitting. Such variance was not observed in this study’s model,
likely because all the training data came from people with at least 1-year established amputations, unlike
the previous study which included some people who were very soon after amputation. Instead, the latter
modes in this study’s model describe internal geometry variance which could not be observed in
previously published residual limb or socket SSMs. For example, variance in patella position was
observed in several of the first 10 modes (Figure 6) as the training data prioritized aligning the tibia,
and this will have relevance to socket design with regard to the shape of the proximal brim. Similarly,
Modes 2, 4, 5, and some subsequent modes (Figure 6) show positional and length variation of the fibulae
compared to the tibiae, and variation in distal soft tissue coverage. Both of these factors have an important
influence on socket design to avoid loading vulnerable tissues over these potential bony prominences,
which demonstrates the practical value of the novelmodel. Errors in tibia shape descriptionwere similar to
those reported in a similar, small sample-sized, tibia-only SSM, but greatest in tibia length prediction
which was outside the scope of that study (Hafner et al., 2000).With regard to the stated example use case
of predicting bony anatomy from surface scans, this model demonstrated similar predictive accuracy to
previous models which attempted to predict the whole skeleton given full body external shape geometry,
at 3.6 mm RMSE (Shetty et al., 2023), and typical bony prominence landmark positional errors of 5–
15 mm (Keller et al., 2022). Accuracy may be increased by expanding the model’s training dataset, but
because bony anatomy is not linked simply to limb surface shape, alternative probabilistic methods may
be required to provide further improvements. An acceptable level of prediction error for bone shape is
more difficult to define, with regard to the model’s use in support of prosthetic socket design. Regions of
low soft tissue coverage thickness over bony prominences might typically be of particular concern,

Figure 10. Range of distal tissue thickness error (measured as most distal point of the tibia to most distal
point of the skin compared to the original shape) for the recreated and predicted shapes. Normalized data

rescaled back to actual size for expression in mm.
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however, their influence in this use case is limited since socket designmethods intentionally avoid loading
these vulnerable sites. However, in a clinical context, the model’s soft tissue thickness predictive
capability could be improved using, for example, a small number of discrete linear ultrasound measure-
ments.

This SSM also identifies some variance associated with the scanning position of the limb. Mode
4 contained variation in knee flexion pose, and other modes, most notably Modes 5 and 8, contained a
varying degree of flattened posterior soft tissue artefacts associatedwith support to the calf and thigh as the
participants lay supine. These modes were retained in the model because they were not influenced by
particular outlying training shapes, and might be useful for correcting such variation.

A particular challenge associated with this SSM arose from its representation of partial anatomy, which
required a novel approach to size normalization. However, absolute size is also important to clinical
considerations. For example, the generally agreed shortest useful residual limb is defined anatomically: it
needs to include the tibial tubercle so that knee extension is preserved (Carvalho et al., 2012). The surgical
community recommends against transtibial amputation with less than about 3 cm of residual tibia (Pant
and Younge, 2003), though this is unlikely to provide adequate load transfer in a socket. Clinical
prosthetics guidance states at least 8 cm of tibia is required below the knee joint for socket use
(Congdon, 2011), and propose the ideal length is 12.5–17.5 cm (Mollano, 2013), with some guidelines
offering a proportional measure, at 2.5 cm residuum length per 30 cm of body height (Ertl, n.d.). Similarly,
while longer residual limbs are preferred to preserve function and optimize gait rehabilitation (Majumdar
et al., 2008), sufficient space is needed for prosthetic ankle–foot units which have build heights that can
vary between 12 and 30 cm (Gabert et al., 2020), and this may make a very low amputation level
impractical. Additionally, long transtibial amputation may not be advised due to poor blood supply to the
distal end and insufficient soft tissue for closure. While various descriptions of what constitutes a “short”
residual limb versus “medium” and “large” are used, both in% and cm, there is often awide range between
these definitions when applied with “long” often being anything from 50% to Symes level, a through-
ankle technique that was excluded from this study. Especially when trying to navigate anatomical features
such as muscle and nerves, there may bemany amputation levels that are either impossible or impractical.
Therefore, in extending this study to include individuals who do not lie on continuous spectra of variance,
it may be necessary to use different sampling techniques or SSM dimensionality reduction methods.

Principal component analysis is considered the standard approach used for creating statistical shape
models (Stegmann and Delgado Gomez, 2002). Barratt et al. created SSMs of the femur and pelvis using
PCA, but discussed how independent component analysis (ICA) may have improved accuracy, particu-
larly as it does not assumeGaussian distribution of data and can identify local variations independent from
global shape (Barratt et al., 2008). However, ICA does not provide a unique set of modes, nor are they
ordered by the described variation, making it unsuitable in this case. Ballester et al. proposed principal
factor analysis (PFA) as an alternative to PCA. PFA models covariance between data rather than the total
variance and can be easier to interpret (Ballester et al., 2005), however, PCAwas selected for this study
because it is better suited for predicting data.

4.2. Limitations

The primary limitation of this model is the relatively small sample size. The general trends of variance
were similar to the nearest comparable models available, which feature skin-only or prosthetic socket
shapes. The substantial influence exerted by individual shapes indicate that the training dataset size is not
sufficient to identify with confidence the extremes of shape variance in the general population. However,
leaving out individual training shapes did not materially change the shape variations described by the first
10 principal modes which contained 95% of shape variation— and of the highest variance Modes, Mode
1 always represented length andMode 2 always represented slender to bulbous soft tissue profile—which
implies that themodel can be trusted to describe the broader population trends. Quantitatively, themodel’s
limited generality is observedwhere training shapes 10 and 20 substantially influenced theMode 1 longest
extreme shape (Figure 7, Table 2). With a small dataset it is difficult to confidently describe a value as an
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outlier. However, we also do not know whether the data are continuous between this and the next closest
subject, or whether indeed the population variance is continuous between any shapes. One example of
discontinuous variance could arise from different surgical techniques, whose choice includes factors such
as the extent of injury or disease, reason for amputation, and surgeon’s specialty (Sebekos et al., 2023).
The training shapes all come from high-income countries (UK, Germany, Australia and USA), three of
which have universal health care that rank closely for quality (Schneider et al., 2021), and use similar
surgical guidelines. However, training shapes 10 and 20 represent 60% and 51% of the full tibia,
respectively, whereas the rest represented 18–46%, and alongside the amputation height guidance
described earlier, this may indicate that an alternative amputation method was used and individual 10 lies
within a different distribution with respect to amputation height or residual limb length. Other sources of
discontinuous variance might arise from gender, with the training dataset primarily male, and from
ethnocultural dimensions. There is some diversity within the training population, who are all from high-
income countries, but black/African American and Asian ethnicities are under-represented and not
described, respectively. Bony anatomy and soft tissue composition vary between ethnic groups and many
geographic factors such as causes of amputation, surgical techniques, and lifestyle differences will affect
the residual limb anatomy (Zengin et al., 2016; Yuan et al., 2023). The extent of variation between ethnic
groups may dictate whether a model can be constructed which describes multiple ethnicities or ecogeo-
graphic groupings, or if separate models are required to avoid data bias.

4.3. Conclusions

This study presents a novel statistical shape model (SSM) describing a population of transtibial residual
limbs derived from a sparse dataset of MRI and CTscans derived from five previously published cohorts.
The model demonstrates the potential to predict internal bone shapes from external skin surface scans.

Approximately 52% of residual limb shape variance was attributed to amputation height, with soft
tissue profile contributing a further 17%, and these observations are in line with the nearest equivalent
statistical shapemodels which considered the limb surface only. In cross-validation, leave-one-out testing
influenced the model’s mean shape by between 0.14 and 0.88 mm RMSE surface deviation, and mode
extreme shapes were accurate to below 9.00 mm for outlying training datasets, and 0.70 mm on average.
Left-out shapes were recreated with RMSE from 1.8 to 5.7 mm.

Predicting bone shapes from skin surface scans provides value since limb surface scanning is part of
routine clinical practice, but volume imaging is not. The current model demonstrates an average 6.7 mm
(range 3.6–10.9 mm) RMSE of bone prediction, comprising both shape and position error, which may be
improved by expanding the training dataset and incorporating probabilistic methods. We share both the
model and methodology for processing data to include in it, with the aim of generating wider community
action to expand this OpenLimbTT model. The development of such a residual limb statistical shape
modelwhich includes bone geometry holds potential for advancing prosthetic biomechanics research, and
for facilitating the use of simulation to support evidence-based prosthetic socket design in the clinic.
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Appendix 1: Participant data

Cite this article: Sunderland F, Sobey A, Bramley J, Steer J, Al-Dirini R, Metcalf C, Toderita D, Bull A, Ding Z, Henson D, the
OpenLimb Group, Worsley P and Dickinson A (2025). OpenLimbTT, a transtibial residual limb shape model for prosthetics
simulation and design: creating a statistical anatomic model using sparse data. Data-Centric Engineering, 6, e39. doi:10.1017/
dce.2025.10019

Table A1. Description of training dataset participants and estimation of their residual tibia proportion

Subject Source
Age

(years) Height (m)

Estimated full
tibia length

(mm)

Measured
residual tibia
length (mm)

Residual tibia
proportion

1 F UK 1 46 1.68 370 130 0.35
2 M UK 1 53 1.73 380 147 0.39
3 M UK 1 36 1.88 436 156 0.36
4 M UK 1 62 1.88 440 111 0.25
5 M UK 1 25 1.65 343 122 0.36
6 M UK 1 30 1.65 343 126 0.37
7 M UK 1 54 1.80 410 75 0.18
8 M Germany 65 1.70 371 85 0.23
9 M Germany 67 1.69 368 102 0.28
10 M Aus 64 1.63** 343 204 0.60
11 M USA 66 1.68 376 88 0.23
12 M USA 42 1.87* 429 196 0.45
13 M USA 68 1.89 466 173 0.37
14 M USA 79 1.83 419 150 0.36
15 M USA 56 1.75 394 124 0.32
16 M USA 66 1.74 409 108 0.27
17 M USA 79 1.78 399 170 0.43
18 F USA 59 1.61 352 142 0.40
19 M USA 77 1.8 379 110 0.29
20 M USA 39 1.8 415 213 0.51
21 M USA 54 1.75 379 141 0.37
22 M USA 81 1.7 374 108 0.29
23 M USA 44 1.88 404 126 0.31
24 M USA 48 1.75 387 152 0.39
25 M USA 48 1.75 387 126 0.33
26 M USA 58 1.78 400 146 0.37
27 F USA 54 1.53 313 93 0.30
28 F USA 68 1.55 329 77 0.24
29 M UK 2 32 1.82 364 128 0.35
30 M UK 2 32 1.76 352 162 0.46
31 M UK 2 37 1.85 364 121 0.33
32 M UK 2 33 1.77 320 143 0.45
33 M UK 2 34 1.81 353 146 0.42
Median
(range)

54
(25–81)

1.76
(1.53–1.89)

378
(313–466)

130
(77–213)

0.36
(0.18–0.60)

Note.Heights of some participants were not given, sowere estimated using either *the contralateral tibiawhere available and intact, or **corresponding
tibial landmarks of other participants.
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