
14
Unified kinematics and dynamics

This chapter sews together some of the threads from the earlier chapters to
show the relationships between apparently disparate dynamical descriptions of
physics.

14.1 Classical Hamiltonian particle dynamics

The traditional formulation Schrödinger quantum mechanics builds on a Ham-
iltonian formulation of dynamical systems, in which the dynamics describe not
only particle coordinates q but also their momenta p. The interesting feature
of the Hamiltonian formulation, in classical mechanics, is that one deals only
with quantities which have a direct physical interpretation. The disadvantage
with the Hamiltonian approach in field theory is its lack of manifest covariance
under Lorentz transformations: time is singled out explicitly in the formulation.1

Some important features of the Hamiltonian formulation are summarized here
in order to provide an alternative view to dynamics with some different insights.

The Hamiltonian formulation begins with the definition of the momentum pi

conjugate to the particle coordinate qi . This quantity is introduced since it is
expected to have a particular physical importance. Ironically, one begins with
the Lagrangian, which is unphysical and is to be eliminated from the discus-
sion. The Lagrangian is generally considered to be a function of the particle
coordinates qi and their time derivatives or velocities q̇ i . The momentum is then
conveniently defined from the Lagrangian,

pi = ∂L

∂ q̇i
. (14.1)

1 Actually, time is singled out in a special way even in the fully covariant Lagrangian
formulation, since time plays a fundamentally different role from space as far as the dynamics
are concerned. The main objection which is often raised against the Hamiltonian formulation
is the fact that the derivation of covariant results is somewhat clumsy.
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14.1 Classical Hamiltonian particle dynamics 359

This is not the only way in which one could define a momentum, but it is
convenient to use a definition which refers only to the abstract quantities L and
q̇i in cases where the Lagrangian and its basic variables are known, but other
physical quantities are harder to identify. This extends the use of the formalism
to encompass objects which one would not normally think of as positions and
momenta. The total time derivative of the Lagrangian is

dL(q, q̇, t)

dt
= ∂L

∂qi
q̇i + ∂L

∂ q̇i
q̈ + ∂L

∂t
, (14.2)

which may be written

d

dt

{
q̇i
∂L

∂q̇i
− L

}
. (14.3)

Now, if the Lagrangian is not explicitly time-dependent, ∂L
∂t = 0, then the

quantity in the curly braces must be constant with respect to time, so, using
eqn. (14.1), we may define the Hamiltonian H by

H = const. = pq̇ − L . (14.4)

Notice that this definition involves time derivatives. When we consider the
relativistic case, timelike quantities are often accompanied by a sign from the
metric tensor, so the form of the Hamiltonian above should not be treated as
sacred.

14.1.1 Hamilton’s equations of motion

The equations of motion in terms of the new variables may be obtained in the
usual way from the action principle, but now treating qi and pi as independent
variables. Using the Lagrangian directly to obtain the action gives us

S =
∫

dt {pq̇ − L} . (14.5)

However, from earlier discussions about symmetrical derivatives, we know that
the correct action is symmetrized about the derivatives. Thus, the action is given
by

S =
∫

dt

{
1

2
(pq̇ − q ṗ)− L

}
. (14.6)

Varying this action with fixed end-points, one obtains (integrating the pq̇ term
by parts)

δS

δq(t)
= − ṗ − ∂H

∂q
= 0

δS

δp(t)
= q̇ − ∂H

∂p
. (14.7)
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360 14 Unified kinematics and dynamics

Hence, Hamilton’s two equations of motion result:

ṗ = −∂H

∂q
(14.8)

q̇ = ∂H

∂p
. (14.9)

Notice that this is a pair of equations. This is a result of our insistence on
introducing an extra variable (the momentum) into the formulation.

14.1.2 Symmetry and conservation

One nice feature of the Hamiltonian formulation is that invariances of the
equations of motion are all identifiable as a generalized translational invariance.
If the action is independent of a given coordinate

∂L

∂qn
= 0, (14.10)

then

∂L

∂q̇n
= pn = const.; (14.11)

i.e. the momentum associated with that coordinate is constant, or is conserved.
The coordinate qn is then called an ignorable coordinate.

14.1.3 Symplectic transformations

We started originally with an action principle, which treated only q(t) as a dy-
namical variable, and later introduced (artificially) the independent momentum
variable p.2 The fact that we now have twice the number of dynamical variables
seems unnecessary. This intuition is further borne out by the observation that, if
we make the substitution

q →−p (14.12)

p → q (14.13)

in eqn. (14.9), then we end up with an identical set of equations, with only
the roles of the two equations switched. This transformation represents an

2 In many textbooks, the Lagrangian formulation is presented as a function of coordinates q and
velocities q̇. Here we have bypassed this discussion by working directly with variations of the
action, where it is possible to integrate by parts and perform functional variations. This makes
the usual classical Lagrangian formalism redundant.
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14.1 Classical Hamiltonian particle dynamics 361

invariance of the Hamilton equations of motion, and hints that the positions
and momenta are really just two sides of the same coin.

Based on the above, one is motivated to look for a more general linear
transformation in which p and q are interchanged. In doing so, one must be
a little cautious, since positions and momenta clearly have different engineering
dimensions. Let us therefore introduce the quantities p̂ and q̂ , which are
re-scaled by a constant ' with dimensions of mass per unit time in order that
they have the same dimensions:

p̂ = p/
√
'

q̂ = q
√
'. (14.14)

The product of q̂ and p̂ is independent of this scale, and this implies that the
form of the equations of motion is unchanged:

˙̂p = −∂H

∂q̂
(14.15a)

˙̂q = ∂H

∂ p̂
. (14.15b)

Let us consider, then, general linear combinations of q and p and look for all
those combinations which leave the equations of motion invariant. In matrix
form, we may write such a transformation as(

q̂ ′

p̂′

)
=

(
a b
c d

)(
q̂
p̂

)
. (14.16)

The derivatives associated with the new coordinates are

∂

∂q̂ ′
= 1

2

(
1

a

∂

∂q̂
+ 1

b

∂

∂ p̂

)
∂

∂ p̂′
= 1

2

(
1

c

∂

∂q̂
+ 1

d

∂

∂ p̂

)
. (14.17)

We may now substitute these transformed coordinates into the Hamilton equa-
tions of motion (14.15) and determine the values of a, b, c, d for which the
equations of motion are preserved. From eqn. (14.15b), one obtains

a ˙̂q + b ˙̂p = 1

2

(
1

c

∂H

∂q
+ 1

d

∂H

∂p

)
. (14.18)

This equation is a linear combination of the original equation in (14.15) provided
that we identify

2ad = 1

2bc = −1. (14.19)
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362 14 Unified kinematics and dynamics

Substitution into eqn. (14.15a) confirms this. The determinant of the transfor-
mation matrix is therefore

ad − bc = 1 (14.20)

and we may write, in full generality:

U =
(

a b
c d

)
= 1√

2

(
eiθ ieiφ

ie−iφ e−iθ .

)
(14.21)

This is the most general transformation of p̂, q̂ pairs which leaves the equations
of motion invariant. The set of transformations, which leaves the Poisson
bracket invariant, forms a group known as the symplectic group sp(2,C). If
we generalize the above discussion by adding indices to the coordinates and
momenta i = 1, . . . , n, then the group becomes sp(2n,C).

Since we have now shown that p and q play virtually identical roles in the
dynamical equations, there is no longer any real need to distinguish them with
separate symbols. In symplectic notation, many authors write both coordinates
and momenta as Qi , where i = 1, . . . , 2n grouping both together as generalized
coordinates.

14.1.4 Poisson brackets

Having identified a symmetry group of the equations of motion which is general
(i.e. which follows entirely from the definition of the conjugate momentum in
terms of the Lagrangian), the next step is to ask which quantities are invariant
under this symmetry group. A quantity of particular interest is the so-called
Poisson bracket.

If we apply the group transformation to the derivative operators,(
D̂+
D̂−

)
≡ U (θ, φ)

(
∂
∂q̂
∂
∂ p̂

)
, (14.22)

then it is a straightforward algebraic matter to show that, for any two functions
of the dynamical variables A, B, the Poisson bracket, defined by

(D+X) (D−Y )− (D−X) (D+Y ) ≡ [X, Y ] p̂q̂ , (14.23)

is independent of θ and φ and is given in all bases by

[X, Y ]pq =
∂X

∂q

∂Y

∂p
− ∂Y

∂q

∂X

∂p
. (14.24)

Notice, in particular that, owing to the product of pq in the denominators, this
bracket is even independent of the re-scaling by ' in eqn. (14.14).

We shall return to the Poisson bracket to demonstrate its importance to the
variational formalism and dynamics after a closer look at symmetry transforma-
tions.
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14.1 Classical Hamiltonian particle dynamics 363

14.1.5 General canonical transformations

The linear combinations of p, q described in the previous section form a
symmetry which has its origins in the linear formulation of the Hamiltonian
method. Symplectic symmetry is not the only symmetry which might leave the
equations of motion invariant, however. More generally, we might expect the
coordinates and momenta to be changed into quite different functions of the
dynamical variables:

q → q ′(p, q, t)
p → p′(p, q, t). (14.25)

Changes of variable fit this general description, as does the time development of
p and q. We might, for example, wish to change from a Cartesian description
of physics to a polar coordinate basis, which better reflects the symmetries of
the problem. Any such change which preserves the form of the field equations
is called a canonical transformation.

It turns out that one can effect general infinitesimal transformations of
coordinates by simply adding total derivatives to the Lagrangian. This is closely
related to the discussion of continuity in section 4.1.4. Consider the following
addition

L → L + dF

dt
, (14.26)

for some arbitrary function F(q, p, t). Normally, one ignores total derivatives
in the Lagrangian, for the reasons mentioned in section 4.4.2. This is because
the action is varied, with the end-points of the variation fixed. However, if
one relaxes this requirement and allows the end-points to vary about dynamical
variables which obey the equations of motion, then these total derivatives (often
referred to as surface terms in field theory), have a special and profound
significance. Our programme and its notation are the following.

• We add the total time derivative of a function F(q, p, t) to the Lagrangian
so that

S → S +
∫

dt
dF

dt

= S + F
∣∣∣t2
t1
. (14.27)

• We vary the action and the additional term and define the quantity Gξ ,
which will play a central role in transformation theory, by

δξ F ≡ Gξ , (14.28)

so that

δS → δS + G. (14.29)
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364 14 Unified kinematics and dynamics

• We may optionally absorb the change in the variation of the action G into
the generalized coordinates by making a transformation, which we write
formally as

q → q + δq = q + Rξ δξ. (14.30)

Rξ is called the auxiliary function of the transformation, and is related to
Gξ , which is called the generator of the transformation. This transforms
the coordinates and momenta by an infinitesimal amount.

Let us now illustrate the procedure in practice. The variation of the action
may be written

δS = δ
∫

dt (pq̇ − H)+
∫

dt δ Ḟ,

=
∫

dt

((
− ṗ − ∂H

∂q

)
δq + ∂Ġ

∂q
δq + ∂Ġ

∂q
δq

)
. (14.31)

In the last line we have expanded the infinitesimal change δF = G in terms
of its components along q and p. This can always be done, regardless of what
general change G represents. We can now invoke the modified action principle
and obtain the equations of motion:

δS

δq
= 0 = − ṗ − δH

δq
+ δĠ
δq

= −( ṗ + δ ṗ)− δH

δq

δS

δp
= 0 = q̇ − δH

δp
+ δĠ
δp

= (q̇ + δq̇)− δH

δp
, (14.32)

where we have identified

δ ṗ = −∂Ġ

∂q

δq̇ = ∂Ġ

∂p
, (14.33)

or, on integrating,

δp = −∂G

∂q
= R p

a δξ
a

δq = ∂G

∂p
= Rq

a δξ
a. (14.34)

Notice that G is infinitesimal, by definition, so we may always write it in terms
of a set of infinitesimal parameters δξ , but ξ need not include q, p now since the
q, p dependence was already removed to infinitesimal order in eqn. (14.31).3

It is now possible to see why G is referred to as the generator of infinitesimal
canonical transformations.

3 The expressions are not incorrect for p, q variations, but they become trivial cases.
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14.1 Classical Hamiltonian particle dynamics 365

14.1.6 Variations of dynamical variables and Poisson brackets

One of the most important observations about variational dynamics, as far as the
extension to quantum field theory is concerned, is that variational changes in any
dynamical variable can be expressed in terms of the invariant Poisson bracket
between that variable and the generator of the variation:

δX (p, q, t) = [X,Gξ ]pq (14.35)

To see this, it is sufficient to use eqns. (14.34) in the differential expansion of
the function:

δX = ∂X

∂qi
δqi + ∂X

∂pi
δpi . (14.36)

Substituting for δqi and δpi gives eqn. (14.35). These relations are exemplified
as follows.

• Generator of time translations: Gt = −Hδt ;

δX = [X, H ]δt . (14.37)

Noting that the change in X is the dynamical evolution of the function,
but that the numerical value of t is unaltered owing to linearity and the
infinitesimal nature of the change, we have that

δX = −
(

dX

dt
− ∂X

∂t

)
dt = [X, H ]δt. (14.38)

Thus, we arrive at the equation of motion for the dynamical variable X :

dX

dt
= [X, H ]+ ∂X

∂t
. (14.39)

This result has the following corollaries:

q̇ = [q, H ]

ṗ = [p, H ]

1 = [H, t]. (14.40)

The first two equations are simply a thinly concealed version of the
Hamilton equations (14.9). The third, which is most easily obtained from
eqn. (14.37), is an expression of the time independence of the Hamilton-
ian. An object which commutes with the Hamiltonian is conserved.
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366 14 Unified kinematics and dynamics

• Generator of coordinate translations: Gq = pδq.

It is interesting to note that, if we consider the variation in the coordinate
q with respect to the generator for q itself, the result is an identity which
summarizes the completeness of our dynamical system:

δq = [q,Gq]pq

δq = [q, p]pqδq

⇒ 1 = [q, p]pq . (14.41)

In Lorentz-covariant notation, one may write

[xµ, pν] = δµν, (14.42)

where pµ = (−H/c,p). This result pervades almost all of dynamics
arising from Lagrangian/Hamiltonian systems. In the quantum theory it
is supplanted by commutation relations, which have the same significance
as the Poisson bracket, though they are not directly related.

14.1.7 Derivation of generators from the action

Starting from the correctly symmetrized action in eqn. (14.6), the generator of
infinitesimal canonical transformations for a variable ξ is obtained from the
surface contribution to the variation, with respect to ξ .4 For example,

δq S =
∫

dt

(
− ṗ − ∂H

∂q

)
δq + 1

2
pδq

= 0+ 1

2
Gq, (14.43)

where we have used the field equation to set the value of the integral in the first
line to zero, and we identify

Gq = pδq. (14.44)

Similarly,

δp S =
∫

dt

(
q̇ − ∂H

∂p

)
δp − 1

2
qδp

= 1

2
G p, (14.45)

4 The constants of proportionality are rather inconsistent in this Hamiltonian formulation. If
one begins with the action defined in terms of the Lagrangian, the general rule is: for actions
which are linear in the time derivatives, the surface contribution is one-half the corresponding
generator; for actions which are quadratic in the time derivatives, the generator is all of the
surface contribution.
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14.1 Classical Hamiltonian particle dynamics 367

hence

G p = −qδp. (14.46)

For time variations,

δt S = −Hδt

= Gt . (14.47)

The generators are identified, with numerical values determined by convention.
The factors of one-half are introduced here in order to eliminate irrelevant
constants from the Poisson bracket. This is of no consequence, as mentioned
in the next section; it is mainly for aesthetic purposes.

Suppose we write the action in the form

S =
∫
{pdq − Hdt} , (14.48)

where we have cancelled an infinitesimal time differential in the first term. It is
now straightforward to see that

∂S

∂t
+ H = 0. (14.49)

This is the Hamilton–Jacobi equation of classical mechanics. From the action
principle, one may see that this results from boundary activity, by applying a
general boundary disturbance F :

S → S +
∫
(dx) ∂µF. (14.50)

δF = G is the generator of infinitesimal canonical transformations, and

∂G

∂q
=

∫
dσµ Ra

µδξa. (14.51)

Notice from eqn. (11.43) that∫
dσµGµ =

∫
dσµ(!µδq − θµνδxν), (14.52)

which is to be compared with

δS = pδq − Hdt. (14.53)

Moreover, from this we have the Hamilton–Jacobi equation (see eqn. (11.78)),

δS

δx0
= −1

c

∫
dσµ θµ0 = −H

c
(14.54)

or
δS

δt
+ H = 0. (14.55)
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368 14 Unified kinematics and dynamics

14.1.8 Conjugate variables and dynamical completeness

The commutator functions we have evaluated above are summarized by

[qA, pB]pq = δAB

[t, H ]pq = 1. (14.56)

These equations are a formal expression of the completeness of the set of
variables we have chosen to parametrize the dynamical equations. Not every
variational equation necessarily has coordinates and momenta, but every set of
conservative dynamical equations has pairs of conjugate variables which play
the roles of p and q. If one is in possession of a complete set of such variables
(i.e. a set which spans all of phase space), then an arbitrary state of the dynamical
system can be represented in terms of those variables, and it can be characterized
as being canonical.

Ignorable coordinates imply that the dimension of phase space is effectively
reduced, so there is no contradiction in the presence of symmetries.

Given the definition of the Poisson bracket in eqn. (14.24), the value of
[q, p]pq = 1 is unique. But we could easily have defined the derivative
differently up to a constant, so that we had obtained

[qA, pB]′pq = α δAB . (14.57)

What is important is not the value of the right hand side of this expression, but
the fact that it is constant for all conjugate pairs. In any closed, conservative sys-
tem, the Hamiltonian time relation is also constant, but again the normalization
could easily be altered by an arbitrary constant. These are features which are
basic to the geometry of phase space, and they carry over to the quantum theory
for commutators. There it is natural to choose a different value for the constant
and a different but equivalent definition of completeness.

14.1.9 The Jacobi identity and group algebra

The anti-symmetrical property of the Poisson bracket alone is responsible for
the canonical group structure which it generates and the completeness argument
above. This may be seen from an algebraic identity known as the Jacobi identity.
Suppose that we use the bracket [A, B] to represent any object which has the
property

[A, B] = −[B, A]. (14.58)

The Poisson bracket and the commutator both have this property. It may be seen,
by writing out the combinations explicitly, that

[A, [B,C]]+ [B, [C, A]]+ [C, [A, B]] = 0. (14.59)
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14.2 Classical Lagrangian field dynamics 369

This result does not depend on whether A, B,C commute. This equation is
known as the Jacobi identity. It is closely related to the Bianchi identity in
eqn. (2.27).

Any objects which satisfy this identity also satisfy a Lie algebra. This is easily
seen if we identify a symbol

TA(B) ≡ [A, B]. (14.60)

Then, re-writing eqn. (14.59) so that all the C elements are to the right,

[A, [B,C]]− [B, [A,C]]− [[A, B],C] = 0, (14.61)

we have

TATB(C)− TB TA(C) = T[A,B](C), (14.62)

or

[TA, TB] = T[A,B](C). (14.63)

14.2 Classical Lagrangian field dynamics

14.2.1 Spacetime continuum

In the traditional classical mechanics, one parametrizes a system by the coordi-
nates and momenta of pointlike particles. In order to discuss continuous matter
or elementary systems, we move to field theory and allow a smooth dependence
on the x coordinate.

In field theory, one no longer speaks of discrete objects with positions or
trajectories (world-lines) q(t) or x(τ ). Rather x, t take on the roles of a ruler or
measuring rod, which is positioned and oriented by the elements of the Galilean
or Lorentz symmetry groups. Schwinger expresses this by saying that space and
time play the role of an abstract measurement apparatus [119], which means
that x is no longer q(t), the position of an existing particle. It is simply a point
along some ruler, or coordinate system, which is used to measure position. The
position might be occupied by a particle or by something else; then again, it
might not be.

14.2.2 Poisson brackets of fields

The Poisson bracket is not really usable in field theory, but it is instructive to
examine its definition as an invariant object. We begin with the relativistic scalar
field as the prototype.

The Poisson bracket of two functions X and Y may be written in one of two
ways. Since the dynamical variables in continuum field theory are now φA(x)
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370 14 Unified kinematics and dynamics

and !A(x), one obvious definition is the direct transcription of the classical
particle result for the canonical field variables, with only an additional integral
over all space owing to the functional dependence on x. By analogy with Poisson
brackets in particle mechanics, the bracketed quantities are evaluated at equal
times.

[X, Y ]φ! =
∫

dσx

(
∂X

∂φA(x)

∂Y

∂!A(x)
− ∂Y

∂φA(x)

∂X

∂!A(x)

)
. (14.64)

With this definition we have

[φ(x),!(x ′)]φ!
∣∣∣
t=t ′

= δ(x, x′)∫
dσ [φ(x),!(x ′)]φ!

∣∣∣
t=t ′

= 1; (14.65)

thus, the familiar structure is reproduced. It should be noted, however, that
the interpretation of these results is totally different to that for classical particle
mechanics. Classically, qA(t) is the position of the Ath particle as a function
of time. φA(x) on the other hand refers to the Ath species of scalar field
(representing some unknown particle symmetry, or different discrete states,
but there is no inference about localized particles at a definite position and
particular time). To think of φ(x),!(x) as an infinite-dimensional phase space
(independent variables at every new value of x) is not a directly useful concept.
The above form conceals a number of additional subtleties, which are best
resolved by abandoning the Hamiltonian variables in favour of a pure description
in terms of the field and its Green functions.

It is now possible to define the Poisson bracket using the fields and Green
functions, ignoring the Hamiltonian idea of conjugate momentum. In this
language, we may write the invariant Poisson bracket in terms of a directional
functional derivative, for any two functions X and Y .

[X, Y ]φ ≡ DX Y −DY X, (14.66)

where

DX Y ≡
∫
(dx)

δY

δA(x)
lim
ξ→0

δXφ
A(x), (14.67)

and

δXφA(x) =
∫
(dx ′)Gr

AB(x, x ′)δX B(x
′). (14.68)

Since we are looking at Lorentz-invariant quantities, there are several possible
choices of causal boundary conditions, and we must define the causal nature of
the variations. The natural approach is to use a retarded variation by introducing
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14.2 Classical Lagrangian field dynamics 371

the retarded Green function explicitly in order to connect the source δX B to the
response δXφ. In terms of the small parameter ξ , we may write δX B = X ,Bξ , or

δXφA(x) =
∫
(dx ′)Gr

AB(x, x ′)X ,Bξ. (14.69)

Using this in eqn. (14.66), we obtain, in condensed notation,

[X, Y ]φ = X ,A G AB
r Y,B − Y,A G AB

r X ,B, (14.70)

or, in uncondensed notation,

[X, Y ]φ =
∫
(dx)(dx ′)

(
δX

δA(x)
G AB

r (x, x ′)
δY

δB(x ′)

− δY

δA(x)
G AB

r (x ′, x)
δX

δB(x ′)

)
. (14.71)

Now, using eqns. (5.74) and (5.71), we note that

2 G̃ AB(x, x ′) = G AB
r (x, x ′)− G B A

r (x ′, x), (14.72)

so, re-labelling indices in the second term of eqn. (14.71), we have (condensed)

[X, Y ]φ = 2Y,AG̃ AB X ,B (14.73)

or (uncondensed)

[X, Y ]φ = 2
∫
(dx)(dx ′)

δY

δφA(x)
(x)G̃ AB(x, x ′)

δX

δφB(x ′)
. (14.74)

The connection between this expression and the operational definition in terms
of Hamiltonian variables in eqn. (14.64) is not entirely obvious from this
expression, but we hand-wave the reasonableness of the new expression by
stretching formalism. From eqn. (5.73), one can write formally

G̃ AB(x, x ′)
∣∣∣
t=t ′

= δABδ(x, x′)
1

∂0
(14.75)

and thus, hand-wavingly, at equal times,

δ

δφA
G̃ AB

δ

δφA
∼ δ

δφA

δ

δ(∂0φA)
∼ δ

δφA

δ

δ!A
. (14.76)

Although we have diverged from a covariant expression in eqn. (14.74) by
singling out a spacelike hyper-surface in eqn. (14.76), this occurs in a natural
way as a result of the retarded boundary conditions implicit in the causal
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variations. Manifest covariance of notation cannot alter the fact that time plays
a special role in dynamical systems. Clearly, one has

[φ(x),!(x ′)]φ
∣∣∣
t=t ′

=
∫
(dy)(dy′)

δφ(x)

δφA(y)
G̃ AB(y, y′)

δ(∂0φ(x ′))
δφB(y′)

=
∫
(dy)(dy′)

δφ(x)

δφA(y)
− ∂̃0G AB(y, y′)

δφ(x ′)
δφB(y′)

= δ(x, x). (14.77)

The Poisson bracket is only unique if the variables are observable, i.e. if they
are invariant quantities.

14.3 Classical statistical mechanics

Statistical mechanics provides a natural point of departure from particle me-
chanics. Although tethered to classical particle notions in the form of canonical
Hamiltonian relations, it seeks to take the limit N → ∞ of infinite numbers
of discrete particles. It thereby moves towards a continuum representation of
matter, which is a step towards field theory. To understand field theory fully,
it is necessary to acknowledge a few of its roots in statistical mechanics. By
definition, statistical mechanics is about many-particle systems.

14.3.1 Ensembles and ergodicity

An ensemble is formally a collection of ‘identical’ systems. The systems in
an ensemble are identical in the sense that they contain the same dynamical
variables and properties, not in the sense that each system is an exact image
of every other with identical values for all its variables (that would be a
useless concept). The concept of ensembles is useful for discussing the random
or (more correctly) unpredictable development of systems under sufficiently
similar conditions. An ensemble is a model for the possible ways in which one
system might develop, taking into account a random or unpredictable element.
If one takes a snapshot of systems in an ensemble at any time, the outcome could
have happened in any of the systems, and may indeed happen in the future in
any or all of them if they were allowed to run for a sufficient period of time.
Ensembles are used to discuss the process of averaging over possible outcomes.

The ergodic hypothesis claims that the time average of a system is the same as
an ensemble average in the limit of large times and large numbers of ensembles.
In the limit of infinite time and ensembles, this hypothesis can be proven. The
implication is that it does not matter how we choose to define the average
properties of a complex (statistical) system, the same results will always be
obtained. The ergodic hypothesis is therefore compatible with the continuum
hypothesis, but can be expected to fail when one deals with measurably finite
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times or countably finite ensembles. Much of statistical mechanics and much of
quantum theory assumes the truth of this hypothesis.

14.3.2 Expectation values and correlations

Macroscopic observables are the expectation values of variables, averaged over
time, or over many similar particle systems (an ensemble). The expectation
value of a dynamical variable X (q, p) is defined by the ensemble average. For
N particles in a fixed volume V , one has

〈X〉pq = X(t) =
∫

dN q dN p ρ(q, p, t) X (q, p, t)∫
dN q dN p ρ(q, p, t)

, (14.78)

where ρ is the density of states in phase space in the fixed volume V . This is
sometimes written

〈X〉pq = Tr(ρ X) (14.79)

The integral in eqn. (14.78) is interpreted as an ensemble average because it
integrates over every possible position and momentum for the particles. All
possible outcomes are taken into account because the integral averages over all
possible outcomes for the system, which is like averaging over a number of
systems in which one (by the rules of chance) expects every possibility to occur
randomly.

Suppose one defines the generating or partition functional Z pq[J (t)] by

Z pq[J (t)] =
∫

dN q dN p ρ(q, p, t) e−
∫

JX X dt ′, (14.80)

and the ‘transformation function’ by

Wpq[J (t)] = − ln Z pq[X (t)], (14.81)

then the average value of X can be expressed as a functional derivative in the
following way:

〈X (t)〉 = −δW [J (t)]

δ J (t)
. (14.82)

Similarly, the correlation function is

〈X (t)X (t ′)〉 = δ2W [J (t)]

δ J (t)δ J (t ′)
. (14.83)

Notice how this is essentially the Feynman Green function, providing a link
between statistical physics and mechanics through this symmetrical Green
function.
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14.3.3 Liouville’s theorem

An important theorem in statistical mechanics clarifies the definition of time
evolution in many-particle systems, where it is impractical to follow the trajec-
tory of every particle. This theorem applies to closed, conservative systems.

A given point in phase space represents a specific state of a many-particle
system. The density ρ of points in phase space can itself be thought of as a
dynamical variable which deforms with time in such a way that the number
of points in an infinitesimal volume element is constant. The overall density
of points is constant in time since the number of particles is constant and the
volume is a constant, by assumption:

dρ

dt
= 0, (14.84)

or, equivalently,

∂ρ

∂t
+ [ρ, H ]pq = 0. (14.85)

This last form is an expression of how the local density at a fixed point (q, p) in
phase space (a fixed state) varies in time. When a dynamical system is in static
equilibrium, the density of states at any point must be a constant, thus

[ρ, H ]pq = 0. (14.86)

In a classical Hamiltonian time development, regions of phase space tend to
spread out, distributing themselves over the whole of phase space (this is the
essence of ergodicity); Liouville’s theorem tells us that they do so in such a way
as to occupy the same total volume when the system is in statistical equilibrium.

Another way of looking at this is in terms of the distribution function for the
field. If the number of states does not change, as is the case for a free field, then

d

dt
f (p, x) = 0. (14.87)

By the chain-rule we may write[
∂

∂t
+

(
∂xi

∂t

)
∂i +

(
∂pi

∂t

)
∂

∂pi

]
f (p, x) = 0. (14.88)

The rate of change of momentum is just the force. In a charged particle field
(plasma) this is the Lorentz force Fi = q Ei + εi jkv

j Bk .

14.3.4 Averaged dynamical variations

Since the expectation value is a simple product-weighted average, Liouville’s
theorem tells us that the time variation of expectation values is simply the
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expectation value of the time variation, i.e. these two operations commute
because the time derivative of ρ is zero:

d

dt
〈X〉pq = d

dt
Tr(ρ X)

= Tr
dρ

dt
X + Trρ

dX

dt

= Trρ
dX

dt

=
〈

dX

dt

〉
pq

. (14.89)

This may also be written as

d

dt
〈X〉pq =

〈
∂X

∂t
+ [X, H ]

〉
pq

, (14.90)

or, more generally for variations, as

〈δξ X〉pq = 〈[X,Gξ ]〉pq . (14.91)

Again, the similarity to the mechanical theory is striking.

14.4 Quantum mechanics

The discovery of de Broglie waves in electron diffraction experiments by
Davisson and Germer (1927) and Thomson (1928) effectively undermined
the status of particle coordinates as a fundamental dynamical variable in the
quantum theory. The wavelike nature of light and matter cannot be reconciled
with discrete labels qA(t) at the microscopic level. A probabilistic element was
necessary to explain quantum mechanics. This is true even of single particles; it
is not merely a continuum feature in the limit of large numbers of particles, such
as one encounters in statistical mechanics. Instead it was necessary to find a new,
more fundamental, description of matter in which both the wavelike properties
and impulsive particle properties could be unified. Such a description is only
possible by a more careful study of the role played by invariance groups.

Because of the cumbersome nature of the Poisson bracket for continuum
theory, continuum theories are not generally described with Poisson algebras.
Instead, an equivalent algebra arises naturally from the de Broglie relation
pµ = h̄kµ: namely commutator algebras. The important properties one wishes
to preserve are the anti-symmetry of the conjugate pair algebra, which leads to
the canonical invariances.

In classical mechanics, q(t) does not transform like a vector under the action
of symmetry groups, dynamical or otherwise. A more direct route to the
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development of the system is obtained by introducing an eigenvector basis in
group space which does transform like a vector and which employs operators to
extract the dynamical information.

14.4.1 Non-relativistic quantum mechanics in terms of groups and operators

Schrödinger’s formulation of quantum mechanics is postulated by starting with
the Galilean energy conservation relation

E = p2

2m
+ V (14.92)

and making the operator replacements E → ih̄∂t and p → −ih̄∇. The
solution of this equation, together with the interpretation of the wavefunction
and a specification of boundary conditions, is quantum mechanics. It is
interesting nonetheless to examine quantum mechanics as a dynamical system
in order to identify its relationship to classical mechanics. The main physical
assumptions of quantum mechanics are the de Broglie relation pµ = h̄kµ
and the interpretation of the wavefunction as a probability amplitude for a
given measurement. The remainder is a purely group theoretical framework
for exploiting the underlying symmetries and structure.

From a group theoretical viewpoint, quantum mechanics is simpler than
classical mechanics, and has a more natural formulation. The use of Poisson
brackets to describe field theory is not practical, however. Such a formulation
would require intimate knowledge of Green functions and boundary conditions,
and would involve complicated functional equations. To some degree, this is
the territory of quantum field theory, which is beyond the scope of this work. In
the usual approach, canonical invariances are made possible by the introduction
of a vector space description of the dynamics. It is based upon the algebra of
observables and the method of eigenvalues.

The wavefunction or field Since a particle position cannot be a wave (a particle
is by definition a localized object), and neither can its momentum, it is postulated
that the wavelike nature of quantum propagation is embodied in a function
of state for the particle system called the wavefunction and that all physical
properties (called observables) can be extracted from this function by Hermitian
operators. The wavefunction ψ(x, t) is postulated to be a vector in an abstract
multi-dimensional Hilbert space, whose magnitude and direction contains all the
information about the particle, in much the same way that phase space plays the
same role for classical particle trajectories.

The fact that the wavefunction is a vector is very convenient from the point
of view of the dynamics (see section 8.1.3), since it means that the generators of
invariance groups can operate directly on them by multiplication. This leads to a
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Table 14.1. Dynamical formulations.

Classical Schrödinger Heisenberg

q(t) x̂ψ(x, t) x̂(t)ψ(x)

p(t) p̂ψ(x, t) p̂(t)ψ(x)

closer connection with the group theory that explains so much of the dynamics.
It means that any change in the system, characterized by a group transformation
U , can be expressed in the operational form

ψ ′ = U ψ. (14.93)

This is much simpler than the pair of equations in (14.34). It is, in fact, more
closely related to eqn. (14.35) because of the group structure in eqn. (14.63), as
we shall see below.

Operator-valued position and momentum q(t) and p(t) may be effectively
supplanted as the dynamical variables by the wavefunction. To represent
the position and momentum of particles, one makes a correspondence with
operators according to one of two equivalent prescriptions (table 14.1). The
choice depends on whether one wishes to place the time development of the
system in the definition of the operators, or whether it should be placed in
the wavefunction, along with all the other dynamical parameters. These two
descriptions are equivalent to one another in virtue of the group combination
law. We shall mainly use the Schrödinger representation here since this is more
in tune with the group theoretical ideology of symmetries and generators.

As explained in section 11.1, it is the operators themselves, for dimensional
reasons, which are the positions and momenta, not the operators multiplying
the fields. The observable values which correspond to the classical quantities
are extracted from this function by considering the eigenvalues of the operators.
Since the wavefunction ψ(x) can always be written as a linear combination
of the complete set of eigenvectors E(x) belonging to any operator on Hilbert
space, with constants λa ,

ψ(x) =
∑

a

λa Ea(x), (14.94)

there is always a well defined eigenvalue problem which can convert a Hermitian
operator into a real eigenvalue.
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Commutation relations Since the field Poisson bracket is unhelpful, we look for
a representation of position and momentum which distills the important property
in eqn. (14.57) from the classical canonical theory and injects it into the quantum
theory. One sees that, on choosing the following algebraic representation of the
underlying Galilean symmetry group for the wavefunction5

ψ(x) =
∑

k

akei(k·x−ωt), (14.95)

a simple representation of the operators x̂ and p̂ may be constructed from

x̂ = x

p̂ = −ih̄∇. (14.96)

These operators live on the vector space of the Galilean group (i.e. real space),
so it is natural to use their operator property directly in forming a canonical
algebra. They are complete, as may be verified by computing the straightforward
commutator

[x̂, p̂] = x̂p̂− p̂x̂ = ih̄. (14.97)

This clearly satisfies eqn. (14.57). Thus, with this representation of position
and momentum, based directly on the underlying symmetry of spacetime, there
is no need to introduce an abstract phase space in order to construct a set
of vectors spanning the dynamics. The representations of the Galilean group
suffice. The only contribution from empirical quantum theory is the expression
of the wavenumber k and the frequency ω in terms of the de Broglie relation. In
fact, this cancels from eqn. (14.97).

Dirac notation: bases In Dirac notation, Hilbert space vectors are usually
written using angle brackets (|x〉, |ψ〉). To avoid confusing this notation with
that for expectation values, used earlier, we shall use another fairly common
notation, |x), |ψ), here. The components of such a vector are defined with
respect to a particular basis. Adjoint vectors are written (x |, (ψ |, and so on.

The scalar product of two such vectors is independent of the basis, and is
written

(ψ1|ψ2) =
∫

dσψ†
1 (x)ψ2(x)

=
∫
(dp)ψ†

1 (p)ψ2(p). (14.98)

In Dirac notation one considers the functional dependence of wavefunctions to
be the basis in which they are defined. Thus, ψ(x) is likened to the components

5 Note that the representations of the Galilean group are simply the Fourier expansion.
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Table 14.2. Matrix elements and operator bases.

Ô (x ′|Ô|x) (p′|Ô|p)
p̂ −ih̄∇ δ (x, x′) p δ(p,p′)
x̂ xδ(x, x′) −ih̄ ∂

∂pδ(p,p
′)

of the general function ψ in an x basis. Similarly, the Fourier transform ψ(p)
is thought of as the components of ψ in a p basis. As in regular geometry, the
components of a vector are obtained by taking the scalar product of the vector
with a basis vector. In Dirac notation, the wavefunction and its Fourier transform
are therefore written as

ψ(x) = (x |ψ)
ψ(p) = (p|ψ), (14.99)

as a projection of the vector onto the basis vectors. The basis vectors |x) and
|p) form a complete set of eigenstates of their respective operators, satisfying
the completeness relation

(x, x′) = δ(x, x′). (14.100)

Similarly, a matrix, or operator is also defined by an outer product according to
what basis, or type of variable, it operates on. The identity operator in a basis x
is

Î =
∫

dσx |x)(x |, (14.101)

and similarly, in an arbitrary basis ξ , one has

Î =
∫

dσξ |ξ)(ξ |. (14.102)

See table 14.2. This makes the scalar product basis-independent:

(ψ1|ψ2) =
∫

dσx (ψ1|x)(x |ψ2), (14.103)

as well as the expectation value of Ô with respect to the state |ψ):

(ψ |Ô|ψ) =
∫

dσx dσx ′ (ψ |x ′)(x ′|Ô|x)(x |ψ), (14.104)
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Transformation function The scalar product (ψ1|ψ2) represents an overlap of
one state of the system with another; thus, the implication is that transitions
or transformations from one state to another can take place between these two
states. (ψ2(x2)|ψ1(x1)) is often called the transformation function. It represents
the probability amplitude of a transition from ψ1(x1) to ψ2(x2). The quantity

A = (ψ ′|Ô|ψ) (14.105)

is not an expectation value, since it refers to two separate states; rather, it is to be
interpreted as another transition amplitude, perturbed by the operation Ô , since

Ô|ψ) = |ψ ′′). (14.106)

Thus

A = (ψ ′|ψ ′′), (14.107)

which is just another transition function. The transformation function plays
a central role in Schwinger’s action principle for quantum mechanics, and is
closely related to the path integral formulation.

Operator variations and unitary transformations In order to define a variational
theory of quantum mechanics, meaning must be assigned to the variation of
an operator. An operator has no meaning without a set of vectors on which
to operate, so the notion of an operator variation must be tied to changes in
the states on which it operates. States change when they are multiplied by the
elements of a transformation group U :

|ψ)→ U |ψ). (14.108)

Similarly, the adjoint transforms by

(ψ | → (ψ |U †. (14.109)

The invariance of the scalar product (ψ |ψ) implies that U must be a unitary
transformation, satisfying

U † = U−1. (14.110)

Consider an infinitesimal unitary transformation with generator G such that U =
exp(−iG/h̄).

|ψ)→ e−iG/h̄|ψ) = (1− iG/h̄)|ψ). (14.111)

The change in an expectation value due to an operator variation X̂ → X̂ + δ X̂ ,

(ψ |X̂ + δ X̂ |ψ) = (ψ |eiG/h̄ X̂e−i/h̄G |ψ)
= (ψ |(1+ iG/h̄)X̂(1− iG/h̄)|ψ), (14.112)
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or, equating δ X̂ to the first infinitesimal order on the right hand side,

δ X̂ = 1

ih̄
[X̂ ,G]. (14.113)

Eqn. (14.113) may be taken as the definition of operator variations, affected
by unitary transformations. It can be compared with eqn. (14.35) for the
canonical variations. It is this definition which permits an action principle to
be constructed for quantum mechanics. From eqn. (14.113), one can define the
expectation value

ih̄ 〈δX〉 = 〈ξ |[X,G]|ξ〉, (14.114)

and, by a now familiar argument for the time variation Gt = −Hδt ,

d

dt
〈X〉 =

〈
∂X

∂t
+ 1

ih̄
[X, H ]

〉
, (14.115)

where the expectation value is interpreted with respect to a basis ξ in Hilbert
space:

〈. . .〉 =
∫

dξ (ξ | . . . |ξ). (14.116)

This relation can be compared with eqn. (14.90) from classical statistical
mechanics.

It is straightforward to verify Hamilton’s equations for the operators by taking

Ĥ = − h̄2

2m
∇2 + V, (14.117)

so that

˙̂p = 1

ih̄
[p̂, Ĥ ] = −∇ Ĥ

˙̂q = 1

ih̄
[q̂, Ĥ ] = ih̄

[
−∇

2

2m
x̂

]
= −ih̄

∇
m
= p̂

m
= ∂ Ĥ

∂p̂
. (14.118)

The last step here is formal, since the derivation with respect to an operator
is really a distribution or Green function, which includes a specification of
boundary conditions. In this case, the only possibility is for causal, retarded,
boundary conditions, and thus the expression is unambiguous.

Statistical interpretation By comparing quantum expectation values, or scalar
products, with statistical mechanics, it is possible to see that the states referred
to in quantum mechanics must have a probabilistic interpretation. This follows
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directly from the canonical structure and from the analogy between the quantum
state function and the density operator in eqn. (14.78).

If it were not already clear from phenomenology, it should now be clear from
eqn. (14.37) that the quantum theory has the form of a statistical theory. Thus,
the wavefunction can be regarded as a probabilistic object, and the waves which
give rise to quantum interference are ‘probability waves’.

The basis-independence of the quantum expectation value is analogous to the
ergodicity property of classical mechanics: it implies that it is not important
what variable one chooses to average over. A ‘dynamically complete’ average
will lead to the same result.

The formalism of quantum theory makes no statements about wave–particle
duality and no confusion arises with regard to this concept. Quantum mechanics
must be regarded as a straightforward generalization of classical canonical
mechanics, which admits a greater freedom of expression in terms of group
theory and invariances.

Classical correspondence Although sometimes stated misleadingly, the corre-
spondence between the Poisson bracket in classical mechanics and the commu-
tator in quantum mechanics is not such that one recovers the Poisson bracket
formulation from the classical limit of the commutator. They are completely
independent, since they refer to different spaces. While the commutator function
exists in the classical limit h̄ → 0, the wavefunction does not, since k → ∞
and ω→∞. Thus, the basis vectors cease to exist.

The true correspondence with classical physics is through expectation values
of quantum operators, since these are independent of the operator basis. The
classical theory is through the equations(

ψ

∣∣∣− h̄2

2m
∇2 + V = ih̄

∂

∂t

∣∣∣ψ)
→ p2

2m
+ V = E, (14.119)

and 〈
dp̂
dt

〉
= d〈p̂〉

dt

= −i

h̄
〈[p̂, H ]〉

= −i

h̄
(p̂V (x)− V (x)p̂)

= −i

h̄
(−ih̄∇V (x))

= −∇V (x)), (14.120)

which is Newton’s law.
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14.4.2 Quantum mechanical action principle

Schwinger has shown that the complete unitary, dynamical structure of quantum
mechanics can be derived from a quantum action principle, based on operator
variations. The quantum action principle is directly analogous to its classical
counterpart. We shall return to this quantum action principle in chapter 15
since it plays a central role in modern quantum field theory. For now, the
action principle will not be proven; instead we summarize the main results. The
algebraic similarities to the classical action principle are quite remarkable.

The central object in the quantum theory is the transformation function or
transition amplitude (ψ |ψ ′). The quantum action principle states that the action
is a generating functional, which induces changes in the transformation function,

δ(ψ(t2)|ψ(t1)) = 1

ih̄
(ψ(t2)|δ Ŝ12|ψ(t1)), (14.121)

where Ŝ is the action operator, which is constructed from the classical action by
replacing each dynamical object by its operator counterpart:

Ŝ12 =
∫ t2

t1

dt

(
1

2
(p̂ ˙̂q− q̂ ˙̂p)− Ĥ

)
. (14.122)

In this simple case, the ordering of the operators is unambiguous. The
variation in the action contains contributions only from within the time values
corresponding to the end-points of the transformation function for causality.

If one now introduces the identity I = |x)× (x | into the transformation func-
tion and substitutes the real-space representations of the operators, eqn. (14.121)
becomes

δ(ψ(t2)|ψ(t1)) =
1

ih̄
δ

∫ t2

t1

(dx)ψ†(x)

[
1

2
(−ih̄∇ẋ+ ih̄ẋ∇)+ h̄2

2m
∇2 − V

]
ψ(x),

(14.123)

which is equal to

δ(ψ(t2)|ψ(t1)) =

1

ih̄
δ

∫ t2

t1

(dx) ψ†(x)

[
− ih̄

2

(→
∂t −

←
∂t

)
+ h̄2

2m
∇2 − V

]
ψ(x). (14.124)

δ refers only to the contents of the square brackets. This expression may
be compared with the action for the Schrödinger field in eqn. (17.4). For
the purposes of computing the variation, the form in eqn. (14.122) is most
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convenient. In fact, it is easy to see that – given that the variation of an operator
is well defined – the results are exactly analogous to the classical case.

If the end-points of the variation satisfy fixed boundary conditions, then

δ(ψ(t2)|ψ(t1)) = 0, (14.125)

since the field is constrained to admit no unitary transformations there, thus
the right hand side of eqn. (14.121) is also zero. This, in turn, implies that the
variation of the action operator vanishes, and this leads to the operator equations
of motion, analogous to Hamilton’s equations:

δx̂ Ŝ =
∫

dt

(
−˙̂p− ∂ Ĥ

∂x

)
δx, (14.126)

whence

˙̂p = −∂ Ĥ

∂x
. (14.127)

Similarly, the variation with respect to the momentum operator leads to

˙̂x = ∂ Ĥ

∂p
, (14.128)

whose consistency was verified in eqns. (14.118). This tells us that quantum
mechanics, with commutators in place of Poisson brackets and differential
operators acting on a Hilbert space, forms a well defined Hamiltonian system.
Eqn. (14.124) shows that this is compatible with Schrödinger field theory. The
final piece of the puzzle is to generalize the variations of the action to include
non-fixed end-points, in a way analogous to that in section 14.1.7. Then, using
the equations of motion to set the bulk terms to zero, one has

δ(ψ(t2)|ψ(t1)) = 1

ih̄
(ψ(t2)|G2 − G1|ψ(t1)), (14.129)

which shows that the extended variation merely induces an infinitesimal unitary
transformation at the end-points of the variation. This variation is in accord with
eqn. (14.113), and one may verify that

δx̂ = 1

ih̄
[x̂,Gx]

= 1

ih̄
[x̂, p̂δx̂], (14.130)

which immediately gives the fundamental commutation relations

[x̂, p̂] = ih̄. (14.131)
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14.4 Quantum mechanics 385

This final piece of the puzzle verifies that the operator variational principle
is self-consistent for quantum mechanics. In fact, it can be generalized to
other operators too, as we shall see in chapter 15, when we consider the fully
quantized theory of fields.

14.4.3 Relativistic quantum mechanics

A Lorentz-invariant theory of quantum mechanics may be obtained by repeating
the previous construction for the non-relativistic theory, replacing the non-
relativistic energy relation in eqn. (14.92) with

E2 = p2c2 + m2c4. (14.132)

One writes

(−Ê2 + p̂2c2 + m2c4)φ(x) = 0, (14.133)

where Ê = ih̄∂t and p̂ = −ih̄∇, and we call the field φ(x) to distinguish it from
the non-relativistic field. This leads us directly to the Klein–Gordon equation

(−h̄2c2 + m2c4)φ = 0. (14.134)

However, all is not straightforward. The interpretation of this equation is full of
subtleties, which leads inexorably to a full quantum field theory. To begin with
its quadratic nature implies that it has solutions of both arbitrarily large positive
and negative energy (see section 5.1.3). This further implies that the conserved
quantities normally used to define probability measures can also be negative; this
is difficult to interpret. Ultimately, the assumptions of quantum field theory save
the relativistic formulation. Leaning on these, relativistic quantum mechanics
survives as an approximation to the more complete quantum field theory under
conditions of ‘sufficient stability’.6

State vectors and wavefunctions In non-relativistic quantum mechanics it was
easy to choose state vectors satisfying the Schrödinger equation because of the
simple form of the conserved quantities arising from the linear time derivative
(see eqn. (12.39)). The structural symmetry of the natural inner product:

(ψ1, ψ2) =
∫

dσ ψ†
1ψ2, (14.135)

means that the state vectors |ψ1) and the adjoint (ψ1| were simply Hermitian
conjugates of one another. In the case of the Klein–Gordon equation, matters
are more complicated. The corresponding invariant inner product is

(φ1, φ2) = −ih̄c2
∫

dσ φ∗1
↔
∂0 φ2 (14.136)

6 To make this woolly statement precise, one needs to address issues in the language of quantum
field theory or renormalization group, which we shall only touch on in chapter 15.
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386 14 Unified kinematics and dynamics

the symmetry of which is made less obvious by the time derivative, and one is
now faced with both positive and negative energy solutions. These two sets of
solutions decouple, however. If one splits the field into its positive and negative
energy parts,

φ(x) = φ(+)(x)+ φ(−)(x), (14.137)

then one has, for a real scalar field,

(φ(x), φ(x)) = (φ(+)(x), φ(+)(x))+ (φ(−)(x), φ(−)(x))
= 0; (14.138)

i.e.

(φ(+)(x), φ(+)(x)) = −(φ(−)(x), φ(−)(x))
(φ(+)(x), φ(−)(x)) = 0. (14.139)

or, more generally,

(φA, φB) = −(φB, φA)
∗. (14.140)

By analogy with the non-relativistic case, we wish to view this scalar product
as the definition of a vector space with vectors |φ) and adjoint vectors (φ|, such
that

(φ1|φ2) = (φ1, φ2), (14.141)

i.e. the inner product on the vector space is identified with the conserved quantity
for the field. The φA satisfy the Klein–Gordon equation:

φ(x) =
∫

dn+1k

(2π)n+1
eikxφ(k)δ(p2c2 + m2c4)

=
∫

dnk

(2π)n
1

2k0c2h̄2 eikx(φ(p0,p)+ φ(−p0,p))

=
∫

dVkeikx(φ(+)(p)+ φ(−)(p)). (14.142)

What makes the relativistic situation different is the fact that the energy
constraint surface is quadratic in k0. The volume measure on momentum space
is constrained by this energy relation. This is the so-called mass shell. On the
manifold of only positive energy solutions, the volume measure is

Vk =
∫

dn+1k

(2π)n+1
δ(p2c2 + m2c4)θ(k0)

=
∫

dnk

(2π)n
1

2k0c2h̄2

dVk = dnk

(2π)n
1

2k0c2h̄2 . (14.143)
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Thus, if we examine complete sets of position and momentum eigenfunctions
on this constraint manifold, we find that the normalization of momentum
eigenfunctions is dictated by this constraint:

(x, x′) ≡ δ(x, x′)
=

∫
dnk

(2π)n
eik̂·(x−x′)

= 2k0h̄2c2
∫

dVkeik̂·(x−x′). (14.144)

From this expression, it follows that

(k̂|x) =
√

2k0h̄2c2 eik̂·(x) (14.145)

(k̂|k̂′) =
∫

dσ(k̂|x)(x|k̂′) = 2k0h̄2c2 δ(k̂− k̂′). (14.146)

Thus the one-particle positive energy wavefunction is

ψ ≡ φ1(x) = (x, φ) =
∫

dVk(x|k̂)(k̂|φ)

= N
∫

dVk

√
2k0h̄2c2 eik̂·x. (14.147)

Compare this with the re-scaling in eqn. (13.7). It is normalized such that

(ψ,ψ) = (φ1|φ1) = 1

= N 2
∫

dVkdVk′φ
∗
1(k) (2k0h̄2c2) φ1(k)δ(k̂− k̂′)

= N 2
∫

dn+1k

(2π)n+1
|φ1(k)|2. (14.148)

The normalization factor, N , is fixed, at least in principle, by this relation,
perhaps through box normalization. This inner product is unambiguously
positive, owing to the restriction to only positive energies. An example is the
one-particle wavefunction in 3+ 1 dimensions:

ψ = φ1(x) = N
∫

d3k

(2π)3
eik̂·x√

2k0h̄2c2

= const.
(m

x

) 5
4

H (1)
5
4
(imx), (14.149)

where H (1)
5
4
(x) is a Hankel (Bessel) function. What is significant here is that

the one-particle wavefunction is not localized like a delta function. Indeed, it
would be impossible to construct a delta function from purely positive energy
functions. Rather, it extends in space, decaying over a distance of order h̄/mc2.
See also section 11.2.
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388 14 Unified kinematics and dynamics

14.5 Canonically complete theories

The operational view of classical, statistical and quantum mechanics, which
has been lain out above, could seem sterile from a physical perspective. In
presenting it as a formal system of canonical equations, one eschews phe-
nomenology entirely and uses only elementary notions based on symmetry. That
such an approach is possible is surely an important insight. Mechanics should
be regarded for what it is: a description of dynamics in terms of algebraic rules
determined from necessary symmetries. Given the mathematical structure, more
physical or philosophical discussions can follow of their own accord.

The Hamiltonian dynamical formulation can, for the most part, be circum-
vented completely by direct use of the action formalism in chapter 4. Again, we
use a version of the action principle in which we allow infinitesimal canonical
changes at the end-points of dynamical variations.

The quantum theory, being linear, is essentially a theory of small disturbances.
The imprint left on the action by variation with respect to some variable is that
variable’s conjugate quantity. The conjugate quantity is said to be the generator
of the variation of disturbance. If one varies the action with respect to a set of
parameters ξ i , and the action is invariant under changes of these parameters, the
variation must be zero. Manipulating the symbols in the action and separating
out the variation δξ to first order, one can write the infinitesimal variation in the
form

δξ S =
∫

dσµ G iδξ
i = 0, (14.150)

where dσµ represents a spacelike hyper-surface. The quantity Gi is the
generator of the symmetry in ξ i . It is also called the variable conjugate to ξ i .
Notice that an external source Jext, such that

S → S +
∫
(dx) Jextφ (14.151)

acts as a generator for the field, throughout the spacetime volume

δS → 0+
∫
(dx) Jextδφ, (14.152)

since the dynamical variation of the regular action vanishes. This observation
has prompted Schwinger to develop the quantum theory of fields almost entirely
with the aid of ‘sources’ or generators for the different dynamical and symmet-
rical entities [119] (see table 14.3).

In this chapter, we have compared the way in which classical and quantum
mechanics are derivable from action principles and obey canonical completeness
relations, in the form of Poisson brackets or commutators. This is no accident.
Since the action principle always generates a conjugate momentum, as exhibited
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Table 14.3. Some canonical transformations.

Ti δξ i Symmetry

∫
dσµθµν δxν Lorentz invariance∫
dσµTµν δxν conformal invariance

p δx translational invariance
H δt time translation invariance
! δq, δφ, δψ spacetime/canonical
Jext δφ, δψ field canonical/unitary

by eqns. (4.62) and (4.66), one could define a canonical theory to be one which
follows from an action principle. Thus, the action principle is always a good
starting point for constructing a dynamical model of nature. To complete our
picture of dynamics, it is necessary to resolve some of the problems which haunt
the fringes of the classical relativistic theory. To do this, one must extend the
dynamical content of the theory even more to allow the fields themselves to
form a dynamical basis. As we saw in section 14.2.2, this was impractical using
the Poisson bracket, so instead one looks for a commutator relation to generate
infinitesimal variations. This completes the consistency of the formalism for
relativistic fields.
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