
ON SUPERSOLVABILITY OF FINITE GROUPS

PIROSKA CSÖRGO}
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Abstract. We prove a natural factorization of supersolvable groups and then
we give another characterization of them in connection with the Fitting subgroup.
Applying these theorems we describe the structure of some subclasses of super-
solvable groups.
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Introduction. All groups considered in this note are finite. Recall that a group
G is called supersolvable if its every chief factor is cyclic. We say following Kegel [1]
that a subgroup of G is S-quasinormal in G if it permutes with every Sylow subgroup
of G. �ðGÞ denotes the set of prime divisors of the order of the group G. Several
authors examined the structure of a group under the assumption that some sub-
groups are well-situated in the group. They studied the influence of S-quasinorm-
ality of some subgroups of a finite group G which ensures the supersolvability of G.
In this paper we prove a natural factorization of supersolvable groups. The corollary
of this theorem is another characterization of supersolvable groups based on the
structure of the Fitting subgroup. By using these results we describe the structure of
these subclasses of supersolvable groups obtained under the assumption that some
subgroups satisfy certain conditions.

Main results. Huppert proved [2, Satz 10.3, p. 724] the following theorem. If a
finite group is the product of pairwise permutable cyclic subgroups, then it is
supersolvable. Of course the converse of this statement is not even true in the class
of nilpotent groups, since there are nonabelian groups of exponent p when p > 2. By
studying it, we find that a supersolvable group can be decomposed as a product of
cyclic subgroups of prime power order that are permutable if their orders are powers
of different primes and those belonging to the same prime satisfy certain conditions.

Theorem 1. Let G be a group with �ðGÞ ¼ fp1; . . . ; pkg. Then G is supersolvable if
and only if for all pi 2 �ðGÞ there is a Sylow pi-subgroup Pi and cyclic subgroups Pil
ð1 � l � tiÞ of Pi such that

(i) Pi ¼ Pi1Pi2 . . .Piti ,
(ii) Pi1 . . .Pil / Pi, for all 1 � l � ti,
(iii) Pil � Pjm¼ Pjm � Pil , for all 1 � i, j � k, i 6¼ j, 1 � l � ti, 1 � m � tj.
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Moreover, for every chief series refining a Sylow tower there exists such a factor-
ization of Sylow subgroups as given above.

For the proof we need the following result.

Lemma 1. Let A be an abelian normal Sylow p-subgroup of a group G. Let a 2 A
be of order p such that hai is normal in G and A=hai is cyclic. Then either A is cyclic or
A ¼ hai � hbi, where hbi is normal in G.

Proof. Assume that A is not cyclic. Obviously G=A acts on A=�ðAÞ. By Masch-
ke’s Theorem A=�ðAÞ ¼ ha�ðAÞi � hb�ðAÞi, where hb�ðAÞi is G=A-invariant. As A
is abelian, A ¼ haihbi holds. Since jaj ¼ p we conclude that here jA : hbij ¼ p. Also
hbi � �ðAÞ, whence hbi is G=A-invariant. Consequently hbi / G. &

Lemma 2. Let G be a supersolvable group. Let P be a normal Sylow p-subgroup of
G and H a p-complement. Then P ¼ A1 � A2 . . .As, where every Ai is a cyclic subgroup
of P such that H � NGðAiÞ and A1A2 . . .Ai / P, for all 1 � i � s.

Proof. We prove our statement by induction on the order of P. The super-
solvability of G implies that there exists a subgroup A1 of P of order p such that A1

is normal in G. We can assume that A1 6¼ P. Obviously G=A1 satisfies the conditions
of our lemma. By induction on G=A1 there exist cyclic subgroups D2=A1; . . . ;Ds=A1

of P=A1 such that HA1=A1 � NG=A1
ðDi=A1Þ and ðD2=A1Þ . . . ðDs=A1Þ / P=A1 ¼

D2ðA1Þ . . .DsðA1Þ, for all 2 � i � s. Thus H � NGðDiÞ and, since A1 � ZðPÞ, the Di

are abelian. Applying Lemma 1 to Di and A1, we can see that for all i there is a cyclic
subgroup Ai of Di such that Di ¼ A1 � Ai and Ai is normalized by H. The subgroups
Ai have the required properties. &

Proof of Theorem 1. First we assume the supersolvability of G. Then G possesses
an ordered Sylow tower by [2, Satz 9.1, p. 716]. Suppose p1 > p2 > . . . > pk. Then
for each pi we have a Sylow pi-subgroup Pi such that Pi � NGðPjÞ for all j < i. Using
the normality of Pi in PiPiþ1 . . .Pk we apply Lemma 2 to Pi and PiPiþ1 . . .Pk. We
get a factorization Pi ¼ Pi1 . . .Piti , where Pir is a cyclic subgroup normalized by
Piþ1 . . .Pk and Pi1 . . .Pir is normal in Pi, for all 1 � r � ti. Let 1 � i, j � k, i 6¼ j,
1 � l � ti, 1 � m � tj. Assume i < j. Then, as stated before, Pil is normalized by Pj,
whence PilPjm ¼ PjmPil holds.

Conversely, assume that G is a group satisfying (i), (ii), and (iii) of the Theorem.
Suppose p1 > p2 > . . . > pk. Let N ¼ P11. By hypothesis we have N / P1 and
NPil ¼ PilN, for all 2 � i � k and 1 � l � ti. By Ito’s Theorem [2, Satz 10.1, p. 722]
we get that NPil is supersolvable whence, since p1 > pi, N /NPil follows. Therefore
Pi � NGðNÞ, for all 2 � i � k. Thus we conclude N / G. Since G=N obviously inherits
the hypothesis, we have by induction that G=N is supersolvable. As N is cyclic, we
find G is supersolvable. &

M. Asaad and M. Ramadan in [3, Theorem 3.3] proved the following result.
Suppose that G is solvable and �ðGÞ ¼ 1. Then G is supersolvable if and only if
FitG is the direct product of some normal subgroups of G of prime order.

Using our factorization on supersolvable groups we generalize the Theorem
above. Not supposing �ðGÞ ¼ 1 we give another characterization of supersolvable
groups. For this aim we introduce the following concept.

328 PIROSKA CSÖRGO}
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Definition. A subgroup H of G is called weak S-quasinormal in G if, for every
p 2 �ðGÞ, there is at least one Sylow p-subgroup of G that permutes with H.

Remark. It follows from Theorem 1 that a supersolvable group is the product
of some weak S-quasinormal cyclic subgroups of prime power orders.

Theorem 2. For a group G the following statements are equivalent.
(a) G is supersolvable.
(b) G0 � FitG and FitG is the product of cyclic and weak S-quasinormal sub-

groups of G of prime power orders.
(c) There is a nilpotent normal subgroup N of G, such that G0 � N and N is the

product of cyclic and weak S-quasinormal subgroups of G of prime power orders.

Proof. (a) ¼) (b) Let G be supersolvable. Then by [2, Satz 9.1, p. 716] G0 is
nilpotent, whence FitG � G0. The supersolvability implies the existence of an
ordered Sylow tower. Let �ðGÞ ¼ fp1; . . . ; pkg with p1 > p2 . . . > pk and let
P1P2 . . .Pi (i ¼ 1; . . . ; k) be a Sylow tower of G. Clearly there exists a chief series
refining our Sylow tower such that it contains P1P2 . . .Pi�1ðPi \ FitGÞ for all
1 � i � k. Applying Theorem 1, it is easy to see that Pi \ FitG is the product of
weak S-quasinormal cyclic subgroups.

(b) ¼) (c) This is trivial, because we may choose N ¼ FitG.
(c) ¼) (a) Hypothesis (c) is obviously inherited by all quotient groups. Let G be

a group of minimal order that is not supersolvable but satisfies (c). By the minim-
ality we conclude that G has a unique minimal normal subgroup M. As G is sol-
vable, �ðGÞ ¼ 1 and M ¼ FitG. Obviously N ¼ M ¼ G0 is an elementary abelian p-
group, for some prime p, and G=N is a p0-group, so that N is the Sylow p-subgroup
of G. By the conditions N ¼ N1 �N2 � . . . �Nt with cyclic and weak S-quasinormal
subgroup Ni of G. The weak S-quasinormality implies that for every q 6¼ p there is a
Sylow q-subgroup Q such that QNi ¼ NiQ for all 1 � i � t. Since Ni is subnormal in
G, obviously Ni /NiQ. As Ni /N, we find NGðNiÞ ¼ G, whence Ni ¼ N. We have Ni

is cyclic and consequently G is supersolvable, a contradiction. &

We try to weaken these conditions to give another characterization of super-
solvable groups.

Theorem 3. Let G be a group with G0 � FitG. Then G is supersolvable if and only
if there exists a normal subgroup H of G such that G=H is supersolvable and FitH is
the product of cyclic and weak S-quasinormal subgroups of G.

Proof. (1) Assume that G is supersolvable. We may choose H ¼ FitG. Using our
Theorem 2, we conclude that H satisfies the conditions.

(2) Let G be a group of minimal order that is not supersolvable, but has got a
normal subgroup H with the required properties. We now aim to show that
�ðGÞ ¼ 1. Assume �ðGÞ 6¼ 1. Since FitG � G0, G is solvable, whence FitG 6¼ �ðGÞ.
Clearly FitG \H ¼ FitH. If �ðGÞ \H ¼ FitG \H, using again FitG � G0, we
conclude that H�ðGÞ=�ðGÞ is abelian and H�ðGÞ=�ðGÞ \ FitG=�ðGÞ ¼ 1. We have
H�ðGÞ=�ðGÞ / G=�ðGÞ and further FitðG=�ðGÞÞ ¼ FitG=�ðGÞ. As G is solvable,
CG=�ðGÞðFitðG=�ðGÞÞÞ � FitðG=�ðGÞÞ. It follows that H � �ðGÞ, whence G=�ðGÞ is
supersolvable. Using Huppert’s Theorem [2, Satz VI.8.6] we get that G is super-
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solvable, contradicting the minimality of G. Thus �ðGÞ \H 6¼ FitG \H ¼ FitH.
Obviously G=�ðGÞ satisfies the conditions of our theorem. The minimality of G
yields the supersolvability of G=�ðGÞ. Using again Huppert’s Theorem we find that
G is supersolvable, a contradiction. Thus �ðGÞ ¼ 1.

The supersolvability of G=H implies the existence of the following chain:
FitG \H ¼ FitH ¼ F0 / F1 / . . . / Fk ¼ FitG such that Fi / G and Fi=Fi�1 is of prime
order for all 1 � i � k. Assume Fi=Fi�1 is of order p. Let H be a Hall subgroup of G
with �ðHÞ ¼ �ðGÞ n fpg. ThenH acts on Fi and Fi�1. UsingMaschke’s Theorem we get
Fi ¼ Fi�1 � hbii andH � NGðhbiiÞ so that hbii is weak S-quasinormal inG. As we have
FitG \H is the product of cyclic weak S-quasinormal subgroups of G, we conclude
that FitG is the product of cyclic weak S-quasinormal subgroups of G. Applying
our Theorem 2 we find that G is supersolvable. This is the final contradiction. &

For the study of the structure of some subclasses of supersolvable groups we
prove the following result.

Theorem 4. Let G be a supersolvable group and U a normal p-subgroup of G with
p 6¼ 2. Then every minimal subgroup of U is normal in U and S-quasinormal in G if and
only if there is a chain 1 ¼ U0 /U1 / . . . /Uk ¼ U with Ui / G, jUi=Ui�1j ¼ p for
every 1 � i � k and �1ðUÞ ¼ Ul � ZðUÞ, for some 1 � l � k. Moreover, for every
g 2 G with ðjgj; pÞ ¼ 1, there exists a natural number tg with 1 � tg � p� 1 such that

ag ¼ atg , where a is an arbitrary element of D ¼
i¼1
�
k
ðUi=Ui�1Þ.

Proof. Assume that every minimal subgroup of U is normal in U and S-quasi-
normal in G. Then these minimal subgroups are clearly in ZðUÞ; that is
�1ðUÞ � ZðUÞ. By the supersolvability ofG there is a chain 1 ¼ U0 /U1 / . . . /Uk ¼ U
such thatUi / G andUi=Ui�1 is of order p, for all 1 � i � k. MoreoverUl ¼ �1ðUÞ, for
some 1 � l � k. Let g 2 G with g 6¼ 1, ðjgj; pÞ ¼ 1 and u 2 �1ðUÞ, u 6¼ 1. As hui is sub-
normal in G, and g is the product of elements of prime power orders, the S-quasi-
normality implies g 2 NGðhuiÞ. Thus we have u

g ¼ utg , for some natural number tg with
1 � tg � p� 1. Let v 2 �1ðUÞ, 1 6¼ v 6¼ u. Similarly vg ¼ vl where 1 � l � p� 1. Since
ðuvÞg ¼ ðuvÞk, for some natural number 1 � k � p� 1, using �1ðUÞ � ZðUÞ we find
k ¼ tg ¼ l. Thus wg ¼ wtg , for all w 2 �1ðUÞ. Apply our factorization Theorem 1 to
Uhgi and to the chief series 1 ¼ U0 /U1 / . . . /Uk ¼ U /Uhgi. Then for every
i � i � k there exists ai 2 Ui such that Ui�1haii ¼ Ui and g 2 NGðhaiiÞ. Suppose
jaij ¼ pmi and ai

g ¼ ai
ti , for some natural number 1 � ti � pmi � 1. Since

ðai
pmi�1

Þ
g
¼ ðap

mi�1

Þ
tg we conclude ti � tg ðpÞ. Moreover �aagi ¼ �aa

tg
i is true for all 1 � i � k

and �aai 2 Ui=Ui�1. Consequently ag ¼ atg follows for an arbitrary element a of

D ¼
i¼1
�
k
ðUi=Ui�1Þ.

Assume conversely that G has got a chain with the required properties. As
�1ðUÞ � ZðUÞ, every minimal subgroup of U is normal in U. Let g 2 G with g 6¼ 1,
ðjgj; pÞ ¼ 1. Applying Lemma 2 to �1ðUÞhgi, we get �1ðUÞ ¼ hb1i � . . .� hbli with
g 2 NGðhbiiÞ for all i. Using the hypothesis bi

g
¼ bi

tg follows, whence bg ¼ btg holds
for every b 2 �1ðUÞ. It easily follows from this fact that every minimal subgroup of
U is S-quasinormal in G. &

In [4, Theorem 1] M. Asaad and the author have shown the following result. Let
F be a saturated formation containing the class of supersolvable groups. Suppose
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that G is a group with a normal subgroup H such that G=H 2 F . If every subgroup
of FitH of prime order or order 4 is S-quasinormal in G, then G 2 F . A corollary of
this theorem [4, Corollary 4] is the following result. If G is solvable and every sub-
group of FitG of prime order or order 4 is S-quasinormal in G, then G is super-
solvable. Examining the structure of this subclass of supersolvable groups we obtain
the following result.

Theorem 5. Let G be a solvable group. Then every subgroup of FitG of prime
order or order 4 is S-quasinormal in G if and only if G ¼ MðN� K Þ, where M is a
nilpotent normal subgroup of odd order, N is a nilpotent subgroup, K is a nilpotent Hall
subgroup such that M \ ðN� K Þ ¼ 1, FitG \N ¼ 1 and every minimal subgroup of
M is normal in M and S-quasinormal in G.

Thus we can apply our Theorem 4 to the Sylow subgroups of M, and we get a
complete characterization.

For the proof we need the following results.

Lemma 3. Let U be a 2-group in a group G, a 2 NGðUÞ with ðjaj; 2Þ ¼ 1 and a
normalizes every minimal subgroup of U and every cyclic subgroup of order 4. Then
a 2 CGðUÞ.

Proof. Let h be an element of U of order 4. By the conditions either ha ¼ h or
ha ¼ h3. If ha ¼ h3, then a2 2 CGðhÞ. Since a is of odd order, we conclude a 2 CGðhÞ.
Consequently a 2 CGð�2ðUÞÞ, which yields a 2 CGðUÞ. &

Lemma 4. Let P be a normal p-subgroup of a solvable group G with an odd prime
p. Suppose every minimal subgroup of P is S-quasinormal in G. One of the following
holds:

(1) every minimal subgroup of P is normal in P,
(2) Q � CGðPÞ for every Sylow q-subgroup Q of G with q 6¼ p.

Proof. Assume there exists an element x0 of P such that jx0j ¼ p and hx0i is not
normal in P. The solvability of G implies the existence of a Hall subgroup H with
�ðHÞ ¼ �ðGÞ n fpg. As P is normal in G, hx0i is subnormal in G. From the S-quasi-
normality of hx0i we easily conclude that H � NGðhx0iÞ. Let H1 be the normal clo-
sure of H in G. Obviously H1 � NGðhx0iÞ. As hx0i is not normal in G, we find that
H1 \ P ¼ P0 6¼ P. Using P /H1P and H1 /H1P we have that the elements of H fix
the elements of P=P0 by conjugation. Applying Glauberman’s Theorem [5] we get
that there exists v 2 P n P0 such that H � CGðvÞ. Clearly the elements of H normalize
every minimal subgroup of P. Applying [4, Lemma 4] H � CGðPÞ holds. Let Q be a
Sylow q-subgroup of G with q 6¼ p. As Q � Hz for some z 2 G and P is normal in G,
our statement follows. &.

Proof of Theorem 5. Suppose every subgroup of FitG of order prime or 4 is
S-quasinormal in G. It follows from [4, Corollary 4] that G is supersolvable, whence
G0 is nilpotent and G0 � FitG. Using [2, Satz 3.10 p. 271] G ¼ HFitG for some nil-
potent subgroup H. If P is an arbitrary Sylow subgroup of FitG, denote by P� the
unique Sylow subgroup of the subgroup HP containing P. Denote by S the set of
those Sylow subgroups P of FitG for whichHP is nilpotent. Define S�

¼ fP�=P 2 Sg.
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Suppose P1
�;P2

� 2 S
�. From the above we can easily conclude that P1

� � CGðP2
�Þ.

Let K be the direct product of the elements of S�. We have FitG ¼ M� ðK \ FitGÞ
and H ¼ N� ðH \ K Þ, for some nilpotent subgroup N and a nilpotent Hall sub-
group M. Let B be the Sylow 2-subgroup of FitG and h an arbitrary element of odd
order of H. By the conditions, using Lemma 3, h 2 CGðBÞ holds, whence BH is nil-
potent; consequentlyM is of odd order. We have NK ¼ N� K,M / G, NM / G, and
so we find G ¼ MðN� K Þ. Assume Q is a Sylow subgroup for an odd prime of FitG
with H \Q 6¼ 1. Obviously H ¼ ðH \Q�Þ � T for some Hall subgroup T of H.
Hence T � CGðH \QÞ and T � NGðQÞ. By using our hypothesis and applying [4,
Lemma 4] we get T � CGðQÞ. Thus in this case Q� 2 S

�, that is Q� � K. This fact
implies M \N ¼ 1 and M \ ðN� K Þ ¼ 1. Let R be an arbitrary Sylow subgroup of
M. By our Lemma 4 every minimal subgroup of R is normal in R and consequently
in M too, and is S-quasinormal in G. Obviously FitG \N ¼ 1.

Assume conversely G ¼ MðN� K Þ has the required properties. Clearly
M � FitG � MK. Let D be a subgroup of FitG of prime order or order 4. Suppos-
ing D � M, D is S-quasinormal in G. If D � K, using the structure of G, it is easy to
see the S-quasinormality of D in G. &

Asaad, Ramadan and Shaalan proved the following result [6, Corollary 4.3]. If
G is a solvable group and every maximal subgroup of any Sylow subgroup of FitG
is S-quasinormal in G, then G is supersolvable.

The study of the structure of this subclass of supersolvable groups has led to the
following result.

Theorem 6. Let G be a solvable group. Then every maximal subgroup of a Sylow
subgroup of FitG is S-quasinormal in G if and only if, for every Sylow p-subgroup P of
FitG and for every element g of G with ðjgj; pÞ ¼ 1, there exists a natural number tg
such that 1 � tg � p� 1 and �aag ¼ �aatg is true, for all �aa 2 P=P \�ðGÞ.

Proof. Assume every maximal subgroup of any Sylow subgroup of FitG is
S-quasinormal in G. Then, by [6, Corollary 4.3], G is supersolvable. Let P be an
arbitrary Sylow p-subgroup of FitG and g 2 G with ðjgj; pÞ ¼ 1. Applying our
Lemma 2 to P and Phgi, we find P ¼ A1 . . .Ak, where Ai is a cyclic subgroup of P,
normalized by hgi and A1A2 . . .Ai / P, for all 1 � i � k. We have �ðPÞ � �ðGÞ and
P=P \�ðGÞ is an elementary abelian p-group. Consequently P=P \�ðGÞ ¼
~PP ¼ ~AA1 � . . .� ~AAk, where ~AAi ¼ Ai=Ai \�ðGÞ and ~AAi ¼ h �aiaii. Obviously for every
1 � i � k there exists 1 � ti � p� 1 such that �aagi ¼ �aiai

ti . It will suffice to show that
ti ¼ t1, for all 1 < i � k. Suppose tl 6¼ tm, for some 1 � l;m � k, l 6¼ m. Let ~AA be the
product of every such ~AAi, where i is different from l and m. Let ~BB ¼ h �aal �aami. Clearly
~AA ~BB is a maximal subgroup in ~PP. It follows from the conditions that g acts on ~PP= ~AA ~BB.
As ~PP ¼ ~AA ~BB � ~AAl ¼ ~AA ~BB � ~AAm and �aagl ¼ �aatll and �aagm ¼ �aatmm , we find tl ¼ tm, a contra-
diction. Putting tg ¼ t1, this part of our Theorem follows.

The converse of this theorem is trivial. &
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