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Abstract. We prove a natural factorization of supersolvable groups and then
we give another characterization of them in connection with the Fitting subgroup.
Applying these theorems we describe the structure of some subclasses of super-
solvable groups.
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Introduction. All groups considered in this note are finite. Recall that a group
G is called supersolvable if its every chief factor is cyclic. We say following Kegel [1]
that a subgroup of G is S-quasinormal in G if it permutes with every Sylow subgroup
of G. (G) denotes the set of prime divisors of the order of the group G. Several
authors examined the structure of a group under the assumption that some sub-
groups are well-situated in the group. They studied the influence of S-quasinorm-
ality of some subgroups of a finite group G which ensures the supersolvability of G.
In this paper we prove a natural factorization of supersolvable groups. The corollary
of this theorem is another characterization of supersolvable groups based on the
structure of the Fitting subgroup. By using these results we describe the structure of
these subclasses of supersolvable groups obtained under the assumption that some
subgroups satisfy certain conditions.

Main results. Huppert proved [2, Satz 10.3, p. 724] the following theorem. If a
finite group is the product of pairwise permutable cyclic subgroups, then it is
supersolvable. Of course the converse of this statement is not even true in the class
of nilpotent groups, since there are nonabelian groups of exponent p when p > 2. By
studying it, we find that a supersolvable group can be decomposed as a product of
cyclic subgroups of prime power order that are permutable if their orders are powers
of different primes and those belonging to the same prime satisfy certain conditions.

THEOREM 1. Let G be a group with n(G) = {p, ..., pr}. Then G is supersolvable if
and only if for all p; € n(G) there is a Sylow p;-subgroup P; and cyclic subgroups P;
(1 <l<t)of P; such that

(i) Pi=PyPy... P,
(11) P,‘] .. .P,’I <1P,',f07' alll1 <<y,
(iil) Py - Pj,=Pj, - P foralll1 <i,j<k, i#jl<I<t,1<m<t.
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Moreover, for every chief series refining a Sylow tower there exists such a factor-
ization of Sylow subgroups as given above.

For the proof we need the following result.

LEMMA 1. Let A be an abelian normal Sylow p-subgroup of a group G. Let a € A
be of order p such that (a) is normal in G and A/{a) is cyclic. Then either A is cyclic or
A = (a) x (b), where (b) is normal in G.

Proof. Assume that A4 is not cyclic. Obviously G/ A acts on A/®(A). By Masch-
ke’s Theorem A/P(A) = (aD(A)) x (bP(A)), where (bD(A)) is G/ A-invariant. As A
is abelian, A = (a)(b) holds. Since |a| = p we conclude that here |4 : (b)| = p. Also
(b) D ®(A), whence (b) is G/A-invariant. Consequently (b) < G. O

LeMMA 2. Let G be a supersolvable group. Let P be a normal Sylow p-subgroup of
G and H a p-complement. Then P = A\ - A, . .. Ay, where every A; is a cyclic subgroup
of P such that H < Ng(A;) and A1A; ... A;< P, forall 1 <i<s.

Proof. We prove our statement by induction on the order of P. The super-
solvability of G implies that there exists a subgroup A; of P of order p such that 4,
is normal in G. We can assume that 4; # P. Obviously G/A; satisfies the conditions
of our lemma. By induction on G/A; there exist cyclic subgroups D,/A4y, ..., Ds/A4;
of P/Al such that HAI/Al < NG/Al (D,/Al) and (Dz/Al) e (DA/AI) < P/Al =
Dy(Ay)...Dy(Ay), for all 2 < i <s. Thus H < Ng(D;) and, since A; < Z(P), the D;
are abelian. Applying Lemma 1 to D; and A, we can see that for all 7 there is a cyclic
subgroup 4; of D; such that D; = A; - A; and A; is normalized by H. The subgroups
A; have the required properties. O

Proof of Theorem 1. First we assume the supersolvability of G. Then G possesses
an ordered Sylow tower by [2, Satz 9.1, p. 716]. Suppose p; > p2 > ... > px. Then
for each p; we have a Sylow p;-subgroup P; such that P; < Ng(P;) for all j < i. Using
the normality of P; in P;P;y ... P, we apply Lemma 2 to P; and P;P;y; ... P;,. We
get a factorization P; = P; ... P, , where P; is a cyclic subgroup normalized by
Piyy...Prand P; ... P; is normal in P,forall l <r<t. Letl <i,j<k,i#],
1 <l<t,1 <m<t. Assume i <j. Then, as stated before, P; is normalized by P;,
whence P;, P;, = P;, P; holds.

Conversely, assume that G is a group satisfying (i), (ii), and (iii) of the Theorem.
Suppose p; > pr > ... > pr. Let N= Py;. By hypothesis we have N < P; and
NP;, = P;N, forall2 <i<kand 1 </<t. ByIto’s Theorem [2, Satz 10.1, p. 722]
we get that NP;, is supersolvable whence, since p; > p;, N < NP; follows. Therefore
P; < Ng(N), for all 2 < i < k. Thus we conclude N < G. Since G/N obviously inherits
the hypothesis, we have by induction that G/N is supersolvable. As N is cyclic, we
find G is supersolvable. O

M. Asaad and M. Ramadan in [3, Theorem 3.3] proved the following result.
Suppose that G is solvable and ®(G) = 1. Then G is supersolvable if and only if
Fit G is the direct product of some normal subgroups of G of prime order.

Using our factorization on supersolvable groups we generalize the Theorem
above. Not supposing ®(G) = 1 we give another characterization of supersolvable
groups. For this aim we introduce the following concept.
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DEFINITION. A subgroup H of G is called weak S-quasinormal in G if, for every
p € 7(G), there is at least one Sylow p-subgroup of G that permutes with H.

REMARK. It follows from Theorem 1 that a supersolvable group is the product
of some weak S-quasinormal cyclic subgroups of prime power orders.

THEOREM 2. For a group G the following statements are equivalent.

(a) G is supersolvable.

(b) G’ < FitG and FitG is the product of cyclic and weak S-quasinormal sub-
groups of G of prime power orders.

(¢) There is a nilpotent normal subgroup N of G, such that G’ < N and N is the
product of cyclic and weak S-quasinormal subgroups of G of prime power orders.

Proof. (a) = (b) Let G be supersolvable. Then by [2, Satz 9.1, p. 716] G’ is
nilpotent, whence FitG > G’. The supersolvability implies the existence of an
ordered Sylow tower. Let n(G)={pi,...,px} With p; >pr...> p;r and let
PiPy...P; (i=1,...,k) be a Sylow tower of G. Clearly there exists a chief series
refining our Sylow tower such that it contains P P,...P,_;(P;NFitG) for all
1 <i < k. Applying Theorem 1, it is easy to see that P, N FitG is the product of
weak S-quasinormal cyclic subgroups.

(b) = (c) This is trivial, because we may choose N = FitG.

(c) = (a) Hypothesis (c) is obviously inherited by all quotient groups. Let G be
a group of minimal order that is not supersolvable but satisfies (c). By the minim-
ality we conclude that G has a unique minimal normal subgroup M. As G is sol-
vable, ®(G) = 1 and M = FitG. Obviously N = M = G’ is an elementary abelian p-
group, for some prime p, and G/N is a p’-group, so that N is the Sylow p-subgroup
of G. By the conditions N = Ny - N, -...- N; with cyclic and weak S-quasinormal
subgroup N; of G. The weak S-quasinormality implies that for every ¢ # p there is a
Sylow g-subgroup Q such that QN; = N;Q for all 1 < i < . Since N; is subnormal in
G, obviously N; <« N;Q. As N; < N, we find Ng(N;) = G, whence N; = N. We have N;
is cyclic and consequently G is supersolvable, a contradiction. O

We try to weaken these conditions to give another characterization of super-
solvable groups.

THEOREM 3. Let G be a group with G' < FitG. Then G is supersolvable if and only
if there exists a normal subgroup H of G such that G/H is supersolvable and Fit H is
the product of cyclic and weak S-quasinormal subgroups of G.

Proof. (1) Assume that G is supersolvable. We may choose H = Fit G. Using our
Theorem 2, we conclude that H satisfies the conditions.

(2) Let G be a group of minimal order that is not supersolvable, but has got a
normal subgroup H with the required properties. We now aim to show that
®(G) = 1. Assume P(G) # 1. Since FitG > G, G is solvable, whence Fit G # ®(G).
Clearly FitGNH =FitH. If ®(G)N H =FitGN H, using again FitG > G', we
conclude that H®(G)/P(G) is abelian and HO(G)/d(G) N Fit G/P(G) = 1. We have
HP(G)/P(G) < G/P(G) and further Fit(G/®(G)) = FitG/®(G). As G is solvable,
Ce0(6)(Fit(G/®(G))) < Fit(G/®(G)). It follows that H < ®(G), whence G/d(G) is
supersolvable. Using Huppert’s Theorem [2, Satz VI.8.6] we get that G is super-
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solvable, contradicting the minimality of G. Thus ®(G)N H # FitGN H = FitH.
Obviously G/®(G) satisfies the conditions of our theorem. The minimality of G
yields the supersolvability of G/®(G). Using again Huppert’s Theorem we find that
G is supersolvable, a contradiction. Thus ®(G) = 1.

The supersolvability of G/H implies the existence of the following chain:
FitGNH =FitH = Fy< F) «...< F; = FitG such that F; <« G and F;/F;_, is of prime
order for all 1 <i < k. Assume F;/F;_; is of order p. Let H be a Hall subgroup of G
with n(H) = 7(G) \ {p}. Then H acts on F; and F;_;. Using Maschke’s Theorem we get
F; = F;_ x (b;) and H < Ng({b;)) so that {b;) is weak S-quasinormal in G. As we have
Fit G N H is the product of cyclic weak S-quasinormal subgroups of G, we conclude
that Fit G is the product of cyclic weak S-quasinormal subgroups of G. Applying
our Theorem 2 we find that G is supersolvable. This is the final contradiction.  []

For the study of the structure of some subclasses of supersolvable groups we
prove the following result.

THEOREM 4. Let G be a supersolvable group and U a normal p-subgroup of G with
p # 2. Then every minimal subgroup of U is normal in U and S-quasinormal in G if and
only if there is a chain 1 =Uy<U;<...< Uy =U with U;<G, |U;/U_1| =p for
every 1 <i<k and Q,(U)= U; < Z(U), for some 1 <I[<k. Moreover, for every
g € G with (|gl, p) = 1, there exists a natural number tg with 1 < t, < p — 1 such that

a® = a's, where a is an arbitrary element of D = ifl(U,-/ Ui_y).

Proof. Assume that every minimal subgroup of U is normal in U and S-quasi-
normal in G. Then these minimal subgroups are clearly in Z(U); that is
Q1 (U) < Z(U). By the supersolvability of G thereisachainl = Uy < U, «...< Uy =U
such that U; <« G and U;/U,_; is of order p, forall 1 < i < k. Moreover U; = Q,(U), for
somel </<k.Letge Gwithg#1,(|gl,p) =1andu € Q;(U), u # 1. As (u) is sub-
normal in G, and g is the product of elements of prime power orders, the S-quasi-
normality implies g € Ng({u)). Thus we have u¢ = s, for some natural number 7, with
1 <t,<p—1.LetveQU),1 #v+#u. Similarly v¢ = »/ where 1 </ < p — 1. Since
(uv)? = (uv)¥, for some natural number 1 < k < p — 1, using (V) < Z(U) we find
k=1, =1 Thus w$ = w', for all w € Q;(U). Apply our factorization Theorem 1 to
U(g) and to the chief series 1 =Uy<U;<...<«Uy = U< U(g). Then for every
i <i<k there exists a; € U; such that U,_j{a;) = U; and g € Ng({a;)). Suppose
la;| = p™ and af =a;, for some natural number 1 <¢ <p™ —1. Since
(a?" )¢ = (@) we conclude ¢; = t, (p). Moreover @ = @* is true forall 1 <i <k
and a; € U;/U;_;. Consequently a® = a's follows for an arbitrary element a of

k
D = X (Ui/Ui-).

Assume conversely that G has got a chain with the required properties. As
Q1(U) < Z(U), every minimal subgroup of U is normal in U. Let g € G with g # 1,
(lgl, p) = 1. Applying Lemma 2 to Q;(U){g), we get Q,(U) = (b)) x ... x {(b;) with
g € Ng((b;)) for all i. Using the hypothesis b;* = b;"s follows, whence »¢ = b’ holds
for every b € Q;(U). It easily follows from this fact that every minimal subgroup of
U is S-quasinormal in G. O

In [4, Theorem 1] M. Asaad and the author have shown the following result. Let
F be a saturated formation containing the class of supersolvable groups. Suppose
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that G is a group with a normal subgroup H such that G/H € F. If every subgroup
of Fit H of prime order or order 4 is S-quasinormal in G, then G € F. A corollary of
this theorem [4, Corollary 4] is the following result. If G is solvable and every sub-
group of FitG of prime order or order 4 is S-quasinormal in G, then G is super-
solvable. Examining the structure of this subclass of supersolvable groups we obtain
the following result.

THEOREM 5. Let G be a solvable group. Then every subgroup of FitG of prime
order or order 4 is S-quasinormal in G if and only if G = M(N x K), where M is a
nilpotent normal subgroup of odd order, N is a nilpotent subgroup, K is a nilpotent Hall
subgroup such that MN (N x K) =1, FitGN N =1 and every minimal subgroup of
M is normal in M and S-quasinormal in G.

Thus we can apply our Theorem 4 to the Sylow subgroups of M, and we get a
complete characterization.
For the proof we need the following results.

LEmMA 3. Let U be a 2-group in a group G, a € Ng(U) with (la|,2) =1 and a
normalizes every minimal subgroup of U and every cyclic subgroup of order 4. Then
ac Cg(U)

Proof. Let h be an element of U of order 4. By the conditions either #* =/ or
h* = 3. If h* = b3, then @ € Cg(h). Since a is of odd order, we conclude a € Cg(h).
Consequently a € Cg(2,(U)), which yields a € Cg(U). OJ

LEMMA 4. Let P be a normal p-subgroup of a solvable group G with an odd prime
p. Suppose every minimal subgroup of P is S-quasinormal in G. One of the following
holds:

(1) every minimal subgroup of P is normal in P,

(2) Q < Cg(P) for every Sylow g-subgroup Q of G with q # p.

Proof. Assume there exists an element x( of P such that |xg| = p and (xp) is not
normal in P. The solvability of G implies the existence of a Hall subgroup H with
w(H) = n(G) \ {p}. As P is normal in G, (x() is subnormal in G. From the S-quasi-
normality of (xo) we easily conclude that H < Ng({xo)). Let H; be the normal clo-
sure of H in G. Obviously H; < Ng({x0)). As (xp) is not normal in G, we find that
H{NP=Py# P. Using P<H P and H| < H P we have that the elements of H fix
the elements of P/Py by conjugation. Applying Glauberman’s Theorem [5] we get
that there exists v € P\ Py such that H < Cg(v). Clearly the elements of H normalize
every minimal subgroup of P. Applying [4, Lemma 4] H < Cg(P) holds. Let Q be a
Sylow g-subgroup of G with ¢ # p. As Q < H* for some z € G and P is normal in G,
our statement follows. .

Proof of Theorem 5. Suppose every subgroup of FitG of order prime or 4 is
S-quasinormal in G. It follows from [4, Corollary 4] that G is supersolvable, whence
G’ is nilpotent and G’ < Fit G. Using [2, Satz 3.10 p. 271] G = HFit G for some nil-
potent subgroup H. If P is an arbitrary Sylow subgroup of Fit G, denote by P* the
unique Sylow subgroup of the subgroup HP containing P. Denote by S the set of
those Sylow subgroups P of Fit G for which HP is nilpotent. Define S* = {P*/P € S}.
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Suppose P*, P,* € §*. From the above we can easily conclude that P1* < Cg(Py").
Let K be the direct product of the elements of S*. We have FitG = M x (KN Fit G)
and H= N x (HN K), for some nilpotent subgroup N and a nilpotent Hall sub-
group M. Let B be the Sylow 2-subgroup of Fit G and / an arbitrary element of odd
order of H. By the conditions, using Lemma 3, & € Cg(B) holds, whence BH is nil-
potent; consequently M is of odd order. We have NK = N x K, M <G, NM <« G, and
so we find G = M(N x K). Assume Q is a Sylow subgroup for an odd prime of FitG
with HN Q # 1. Obviously H = (HN Q*) x T for some Hall subgroup 7 of H.
Hence T < Cq(HN Q) and T < Ng(Q). By using our hypothesis and applying [4,
Lemma 4] we get T < Cs(Q). Thus in this case 0* € §*, that is Q* < K. This fact
implies MNN=1and MN(N x K)=1. Let R be an arbitrary Sylow subgroup of
M. By our Lemma 4 every minimal subgroup of R is normal in R and consequently
in M too, and is S-quasinormal in G. Obviously FitGN N = 1.

Assume conversely G = M(N x K) has the required properties. Clearly
M < FitG < MK. Let D be a subgroup of Fit G of prime order or order 4. Suppos-
ing D < M, D is S-quasinormal in G. If D < K, using the structure of G, it is easy to
see the S-quasinormality of D in G. O

Asaad, Ramadan and Shaalan proved the following result [6, Corollary 4.3]. If
G is a solvable group and every maximal subgroup of any Sylow subgroup of Fit G
is S-quasinormal in G, then G is supersolvable.

The study of the structure of this subclass of supersolvable groups has led to the
following result.

THEOREM 6. Let G be a solvable group. Then every maximal subgroup of a Sylow
subgroup of Fit G is S-quasinormal in G if and only if, for every Sylow p-subgroup P of
Fit G and for every element g of G with (|gl|, p) =1, there exists a natural number t,
such that 1 < t, <p—1and a® = a' is true, for all a € P/P N ®(G).

Proof. Assume every maximal subgroup of any Sylow subgroup of FitG is
S-quasinormal in G. Then, by [6, Corollary 4.3], G is supersolvable. Let P be an
arbitrary Sylow p-subgroup of FitG and g e G with (|g|,p) = 1. Applying our
Lemma 2 to P and P(g), we find P = A4, ... Ay, where 4; is a cyclic subgroup of P,
normalized by (g) and A14,...4;< P, for all 1 <i < k. We have ®(P) < ®(G) and
P/PN®(G) is an elementary abelian p-group. Consequently P/PN ®(G) =
P=A, x...x A, where A; = A;/4; N ®(G) and A; = (a). Obviously for every
1 <i <k there exists 1 <#; < p—1 such that & = 4. It will suffice to show that
ti=ty, forall 1 < i< k. Suppose t,;étm,forsome 1 <lm<k,[#m. Let A be the
product of every such A, where i is different from / and m. Let B = (aja,,). Clearly
ABi is a maximal subgroup in P. 1t follows from the conditions that g acts on P/AB.
As P=AB-A,= AB- 4,, and ai =a) and a8, =a'y, we find #; = t,, a contra-
diction. Putting ¢, = f;, this part of our Theorem follows.

The converse of this theorem is trivial. O
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