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Identifying self-similarity is key to understanding and modelling a plethora of phenomena
in fluid mechanics. Unfortunately, this is not always possible to perform formally in
highly complex flows. We propose a methodology to extract the similarity variables
of a self-similar physical process directly from data, without prior knowledge of the
governing equations or boundary conditions, based on an optimisation problem and
symbolic regression. We analyse the accuracy and robustness of our method in five
problems which have been influential in fluid mechanics research: a laminar boundary
layer, Burger’s equation, a turbulent wake, a collapsing cavity and decaying turbulence.
Our analysis considers datasets acquired via both numerical and wind tunnel experiments.
The algorithm recovers the known self-similarity expressions in the first four problems
and generates new insights into single length scale theories of homogeneous turbulence.

Key words: general fluid mechanics

1. Introduction
The various constraints that describe a physical phenomenon are often reflections of
underlying symmetry principles, summarising regularities that exist independent of
specific dynamics (Gross 1996). A notable example is the constraint of momentum
conservation, which reflects a translational symmetry of the Euler–Lagrange equations
(Landau & Lifshitz 1976). Dimensional analysis, historically linked to the discovery of
scaling laws and non-dimensional numbers (Barenblatt 1996; Cantwell 2002), expresses
the principle of covariance, i.e. the symmetry of any physical law under a dilational
transformation of its units of measurement. More generally, when one considers a specific
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problem, i.e. the governing physical laws and the corresponding boundary and/or initial
conditions, multiple symmetries may be simultaneously present (e.g. spiral, reflectional,
rotational) (Pakdemirli & Yurusoy 1998; Cantwell 2002).

A type of symmetry which is of fundamental importance across various branches of
physics is that of self-similarity (Tennekes & Lumley 1972; Townsend 1976; Barenblatt
1996; Cantwell 2002). Following Townsend (1976), Barenblatt (1996), Pope (2000), we
refer to self-similar (or self-preserving) phenomena as those whose evolution remains
invariant under the group transformations of dilation (e.g. heat diffusion), translation (e.g.
travelling waves) or a combination of both (e.g. turbulent wakes). Self-similarity allows
for the reduction of an n-independent variable partial differential equation system into
a system with n − 1 similarity variables (Birkhoff 1960; Pakdemirli & Yurusoy 1998;
Cantwell 2002). The transformation from original to similarity variables is known as a
similarity transformation. Similarity transformations are particularly useful in problems
involving n = 2 independent variables because they transform a partial differential
equation into an ordinary differential equation, which is more amenable to analytical
solution (Pakdemirli & Yurusoy 1998; Cantwell 2002). Even if the governing equations are
unknown, similarity considerations allow for the grouping of the problem parameters into
similarity variables, reducing the effort required by the experimentalist when performing
parametric characterisations of a problem by orders of magnitude (Barenblatt 1996).
Additionally, the identification of similarity variables, subject to the constraints of the
governing equations, can lead to the derivation of scaling laws, which describe the
asymptotic evolution of the problem variables (Tennekes & Lumley 1972; Townsend 1976;
Beaumard et al. 2024). The identification of similarity transformations and variables has
played a prominent role in fluid mechanics research. Indeed, self-similarity is at the heart
of theoretical efforts for the modelling of laminar and turbulent boundary layers (Prandtl
1904; Townsend 1976), free shear flows (Tennekes & Lumley 1972; Townsend 1976;
George 1989; Pope 2000), cascade dynamics (Kolmogorov 1941b; Pope 2000; Vassilicos
2015; Steiros 2022a), linear and nonlinear waves (Taylor 1950a, b; Zel’Dovich & Raizer
1967; Whitham 2011), singularities (Eggers & Fontelos 2015) and high Mach number
aerofoil design (Cantwell 2002), among many others.

There are three possible strategies to identify self-similarity. First, if the differential
equations describing the problem are known and the boundary conditions are simple,
one can formally extract the flow symmetries using the theory of Lie groups (Birkhoff
1960; Cantwell 1978; Cantwell 2002). Second, if the equations are unknown one may still
invoke dimensional analysis to uncover dilational symmetries (Barenblatt 1996). Finally,
on many occasions, intuition has allowed the uncovering of self-similarity directly, via
visual inspection of the problem solution (as for example in the case of turbulent shear
flows Townsend 1976). However, this is not always sufficient to reveal the underlying
self-similarity of a phenomenon. Intuition depends on the skills of the practitioner and
is generally confined to simple problems. Dimensional analysis can only treat problems
with dimensional variables, while even then it may uncover only the ‘tip of the iceberg’ of
possible self-similar solutions, i.e. some (but far from all) of the self-similarities connected
to dilational transformations (Barenblatt 1996). Lie group theory may become unfeasible
in cases where the boundary conditions are overly complicated. Even if this is not the case,
it may reveal some but not all symmetries of the problem. A coordinate transformation may
be necessary for additional, ‘hidden’ symmetries to be revealed (Cantwell 2002; Liu &
Tegmark 2022). In other cases the governing equations may be inadequate. An example
of the above occurs in turbulent flows, where it is customary to consider the ensemble-
averaged flow equations of motion i.e. the Reynolds-averaged Navier–Stokes (RANS)
equations. Given the chaotic turbulent dynamics and complex boundary conditions, certain
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original symmetries of the Navier–Stokes equations are broken, but are still hypothesised
to be recovered in a statistical sense (Frisch 1995). However, due to the underdetermined
nature of the RANS equations (turbulence closure problem), extraction of symmetries
is challenging (Oberlack 1999, 2001; Oberlack et al. 2006; Oberlack & Rosteck 2010;
Oberlack et al. 2022).

The recent emergence of machine learning methodologies has provided a significant
boost to our ability to uncover symmetries and self-similarities (Desai, Nachman &
Thaler 2022; Yang et al. 2023; Otto et al. 2023). If self-similarity exists in a problem,
it must appear in the observables (data), and can be, in principle, discovered by data-
driven methods. For instance, a known challenge in conventional dimensional analysis
(Buckingham Pi theorem) is that it yields a non-unique set of non-dimensional variables
that governs the evolution of a physical problem (Barenblatt 1996; Cantwell 2002).
Information from data can in that case provide a constraint to Buckingham Pi, and has been
recently used to identify the most appropriate set of non-dimensional variables (Mendez &
Ordóñez 2004; Constantine, del Rosario & Iaccarino 2017; Jofre, del Rosario & Iaccarino
2020; Saha et al. 2021; Xie et al. 2022; Bakarji et al. 2022; Yuan & Lozano-Durán
2025). Other examples are cases in which conservation laws and symmetries of ordinary
differential equations (ODE) cannot be readily extracted because they are hidden, i.e. they
require a coordinate transformation before they become manifest. Machine learning can be
used to provide the necessary coordinate transformation for hidden symmetries to manifest
(Liu & Tegmark 2022; Mototake 2023). Of high relevance are also efforts to leverage the
information contained in data to reveal scale-invariant flow structures (Fukami, Goto &
Taira 2024) or close underdetermined governing equations (Duraisamy, Iaccarino & Xiao
2019), which can support the training and testing of nonlinear machine-learning techniques
(e.g. Fukami & Taira (2024), Duraisamy, Brunton & Taira (2025)).

In this work, we present a generalised methodology that can identify if similarity
variables exist and, if they do, determine their mathematical expressions directly from
data, without prior knowledge of the governing equations or boundary conditions.
Our work differs from previous efforts (e.g. Bakarji et al. 2022; Xie et al. 2022;
Yuan & Lozano-Durán 2025) in that it is not based on dimensional analysis (although
it is dimensionally consistent) and can thus identify self-similarities beyond dilational
transformations connected to dimensional problems. This is achieved by formulating a
minimisation problem to identify the similarity variables, which are then interpreted
analytically via symbolic regression. In particular, our method simultaneously searches
for the optimal nonlinear transformations of both independent variables (spatio-temporal
coordinates) and dependent variables (observables) that yield the similarity variables of
the problem and is thus different to methods aiming to identify coordinate transformations
that render hidden symmetries manifest (e.g. Liu & Tegmark 2022). The paper is structured
as follows: in § 2 and Appendix A we describe the algorithm that extracts the similarity
variables of a self-similar physical process from data. Section 3 demonstrates the potential
utility of the proposed method by applying it to five problems which have been influential
in fluid dynamics research and are exactly or approximately self-similar under different
transformation types, with data derived from both laboratory and numerical experiments.
Finally, § 4 discusses potential applications and limitations of the method and provides
concluding remarks.

2. Data-driven identification of self-similarity
Let q(s, t) be a quantity of interest governed by a set of nonlinear partial differential
equations, with s and t being the independent variables, typically associated with a spatial
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coordinate and time, respectively. In some problems (e.g. a laminar boundary layer), t
may also correspond to a spatial coordinate. Consider the set of variables ξ and q̃, which
lead to the transformation q(s, t)→ q̃(ξ, t), with ξ = ξ(s, t), where ξ may also depend
on the parameters (constants) of the problem. If q̃(ξ, t) is independent of t , i.e. there is a
function q̂(ξ) such that q̃(ξ, t)≡ q̂(ξ), then q(s, t) is said to be self-similar (Pope 2000).
In this case, the variables and the transformation are referred to as similarity variables and
similarity transformation, respectively. Assuming that we have measurements of q(s, t) at
distinct instants (stations) ti , where i = 1, . . . , nt and nt is the number of available instants
(stations), we propose a two-stage workflow for extracting the similarity transformation
directly from data, without previous knowledge of the governing equations. Because self-
similarity can be inexact or the data may include errors, the equivalence q̃(ξ, t)≡ q̂(ξ)
can be at most expected to hold approximately. In higher dimensions, s and ξ are vectors.

2.1. Step 1. Search for similarity variables
We express the similarity variables as a superposition of elementary dilation and
translation groups

ξ = α(t)s + β(s, t), q̃ = γ (t)q + δ(s, t). (2.1)

Decomposing the similarity variables in the form of distinct transformations is important
for facilitating the success of the ensuing optimisation and regression tasks, as well as
for enhancing the interpretability of the method. The search for similarity variables is
formulated as a minimisation problem

arg min
w

1
2

nt∑
i=1

nt∑
j=1

∥∥q̃(ξ, ti )− q̃(ξ, t j )
∥∥2

2, (2.2)

where w is the design variable matrix containing the discrete values of the transformation
functions α, β, γ , δ. The l2-norms, ‖ · ‖22, are computed following interpolation on the
transformed coordinates (ξ ) grid. The resolution of the ξ grid, i.e. the number of points
where the l2 norms are evaluated, can be freely chosen by the user and can be set equal to
the number of points in the input (non-transformed) data (see also Appendix B). In some
problems, solving (2.2) can lead to degenerate solutions (i.e. q̃ = 0), in which case (2.2) is
replaced by a mean-regularised cost functional, which prevents trivial optima

arg min
w

1
2

nt∑
i=1

nt∑
j=1

∥∥∥∥∥
q̃(ξ, ti )− q̃(ξ, t j )√|(q̃(ξ, ti )+ q̃(ξ, t j ))/2|

∥∥∥∥∥
2

2

. (2.3)

This step provides the discrete values of the functions α, β, γ , δ and, by extension
through (2.1), the discrete values of the similarity variables ξ and q̃ , at all nt instants.
In practice, in order to further promote the success of the optimisation task whilst
also preserving the automated character of the developed method, we propose the
implementation of step 1 in successive iterations of increased decomposition complexity
(i.e. building gradually from simple dilation (β = δ = 0) to the general decomposition
(ξ = α(t)s + β(s, t), q̃ = γ (t)q + δ(s, t))). Depending on the problem (e.g. its boundary
conditions), certain candidate transformations might be irrelevant or inadmissible (for
example, translation of radial coordinates in an axisymmetric problem). Appendix A
provides the pseudocode describing an example implementation of the method with
clarifying remarks.
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2.2. Step 2. Analytic form of the transformations
Given the knowledge of w, i.e. the values of the functions α, β, γ, δ at all instants nt , we
employ symbolic regression to extract the analytic form of the transformations. Symbolic
regression is a machine-learning technique that combines mathematical operators,
functions, constants and state variables to construct a mathematical expression ψ that best
represents a given dataset D. In this work, D refers to the discrete values of each function
(α, β, γ or δ) that were found in the first step of the workflow. Symbolic regression can
identify arbitrary expressions as it does not make any assumptions about the underlying
function. The set of variables (library) A which ψ can depend on, ψ =ψ(A), is provided
by the user, and is typically composed of the state variables and parameters of the problem.

To reduce the complexity of the regression problem, it is beneficial to take advantage
of any prior knowledge regarding the characteristics of the dataset. We enforce two
properties. The first property that is critical for discovering physical laws is that of
dimensional homogeneity: the units of the identified expression ψ(A) should match those
of the given dataset D. The second property that is relevant to this work is that scale
invariance is related to power laws (Barenblatt 1996), allowing us in certain cases to
restrict the search for expressions in the form of monomials.

This step of the algorithm can be carried out with any symbolic regression method,
giving users the flexibility to choose their preferred tool. Here, we demonstrate the
workflow with two different symbolic regression methods: the open-source library
PySR (https://astroautomata.com/PySR/), which offers high performance, flexibility,
configurability and generality (Cranmer 2023), and a custom, simple regression algorithm
for the identification of monomials. In both cases, we use an l2 loss function, with an
optional penalisation term enforcing dimensional homogeneity

arg min
ψ

‖ψ(A)−D‖22 +wD‖ [ψ(A)]− [D] ‖, (2.4)

where wD is a non-negative regularisation factor and the brackets [ ] denote the units of a
quantity in the form of a dimension vector (see Appendix A for an example). Equation (2.4)
is individually applied to each transformation function (α, β, γ or δ). This step provides
the analytic form of the similarity transformations α, β, γ , δ, and thereby of the similarity
variables ξ and q̃ , through (2.1).

3. Results

3.1. Laminar boundary layer
The> first validation example considers the well-known case of the two-dimensional,
laminar and incompressible boundary layer, where Prandtl (1904) showed that some terms
of the Navier–Stokes equations are negligible, and reduced the latter to the ‘boundary layer
equations’ (BLE). By utilising the streamfunction Ψ , the BLE can be expressed in a single
equation. Blasius (1908) noted that, for semi-infinite flat plate boundary conditions, the
BLE is symmetrical under a dilational transformation, which reduces the problem to an
ordinary differential equation for the non-dimensional streamfunction f (ỹ)=Ψ/√νU∞x ,
with ỹ = y

√
U∞/(νx). In the above, U∞ is the free-stream velocity away from the flat

plate, x and y are the streamwise and normal-to-the-wall distances, respectively, and ν
is the kinematic viscosity of the fluid. The BLE are thus reduced to the boundary value
problem

2 f ỹ ỹ ỹ + ffỹ ỹ = 0, (3.1a)
f (0)= 0, f ỹ(0)= 0, f ỹ(∞)= 1. (3.1b)
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Step 1: Search for similarity variables

Step 2: Analytic form of the transformations

arg min 12 �
nx 
�
nx

 ‖β(xi)u(α(xi)y, xi) − β(xj)u(α(xj)y, xj)‖2
2

arg min ‖ψ1(U∞,ν, x) − α(x)‖2
2 + wD‖ [ψ1] − [α]‖

α = ψ1(U∞,ν, x), β = ψ2(U∞,ν, x) ψ1 = 5.28U∞0.5018ν−0.5018x−0.4981 → ỹ ∝ yU∞0.5018ν−0.5018x−0.4981

ψ2 = 1.00U∞−0.9995ν−0.0005x0.0005 → ũ ∝ uU∞−0.9995ν−0.0005x0.0005

arg min ‖ψ2(U∞,ν, x) − β(x)‖2
2 + wD‖ [ψ2] − [β]‖

ỹ

ũ

0.050
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y 
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ỹ = αy + γ, ũ = βu + δ 

Figure 1. Data-driven identification of self-similarity in the Blasius boundary layer. (a) Streamwise velocity
field (Blasius solution). The dashed vertical lines denote the nine velocity profile sampling stations. (b) Sampled
velocity profiles. (c) Algorithmically collapsed velocity profiles. (d) Algorithmically identified scaling α of the
wall-normal coordinate y. (e) Algorithmically identified scaling β of the streamwise velocity u.

Knowledge of ũ = f ỹ (e.g. via numerical integration of the Blasius equation) allows for
the calculation of the streamwise velocity distribution u =U∞ũ at any location in the
boundary layer. Here, we derive the Blasius similarity directly from data, without prior
knowledge of the Navier–Stokes equations, Prandtl’s scaling analysis or Blasius’ similarity
arguments. Our dataset consists of u(x, y) data from a flat plate laminar boundary layer
flow (figure 1a), acquired by solving the Blasius ODE with a shooting method (Bakarji
et al. 2022). In particular, we extract velocity profiles u(y) from nine stations at different
streamwise coordinates x (figure 1b). The algorithm commences by seeking similarity
under the dilational transformations ỹ = α(x)y, ũ = β(x)u. Figure 1(c) shows that the
transformed profiles have collapsed onto a single curve. The identified transformations for
the wall-normal coordinate y and the streamwise velocity u are shown in figures 1(d) and
1(e), respectively.

The second step consists of expressing the identified transformations as functions of
the governing parameters and independent variables, i.e. a symbolic regression task. The
library of candidate variables is composed of the free-stream velocity U∞, the viscosity ν
and the streamwise coordinate of the extracted profiles x , i.e. α = α(U∞, ν, x) and β =
β(U∞, ν, x). Owing to the nature of the assumed dilational transformations, we look for
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expressions in the form of monomials, i.e. α = c1U c2∞νc3 xc4 and β = c5U c6∞νc7 xc8 , where
c1 and c5 are multiplicative constants that reflect the arbitrariness of the dilation factors
between the original and similarity variables. Dimensional homogeneity is enforced by
assuming ỹ and ũ to be dimensionless and a non-zero weighting constant wD in the
objective function (2.4). The interpreted expressions are

ỹ ∝ yU 0.5018∞ ν−0.5018x−0.4981, (3.2a)

ũ ∝ uU−0.9995∞ ν−0.0005x0.0005, (3.2b)

which are in close agreement with the theoretically derived similarity variables of
Blasius (ỹ = y

√
U∞/(νx), ũ = u/U∞). As previously noted, the identified and theoretical

scalings can vary by an arbitrary multiplicative constant (i.e. the offset in figure 1d),
depending as to whether and how the user normalises the collapsed profiles. Appendix B
shows results from a sensitivity and robustness analysis with respect to the input data,
parameters and noise.

3.2. Burgers’ equation
The second validation example considers Burgers’ equation, which is a partial differential
equation that finds wide application in fluid dynamics, nonlinear acoustics and traffic flow,
among others. It acts as a prototype for a variety of phenomena including shock wave
formation, rarefaction waves and turbulence (Zel’Dovich & Raizer 1967; Whitham 2011).
In the absence of diffusion, it is the simplest model for gas dynamics. Its mathematical
expression in one dimension, along with its initial condition is

ut + uux = 0, u(x, 0)= f (x), (3.3)

where u(x, t) is the fluid velocity and x and t the spatial and temporal coordinates,
respectively. The subscript denotes partial differentiation. Using the method of
characteristics, the solution can be expressed as u(x, t)= f (ξ)= f (x − ut)= f (x + α),
i.e. the problem described by (3.3) is invariant under a non-uniform translational
transformation. In this work, we consider a sinusoidal initial condition, u(x, 0)=
sin (2πx), with x ∈ [0, 1]. Figures 2(a) and 2(b) show the spatio-temporal evolution of
velocity and profiles extracted at seven different time instants, respectively, illustrating the
steepening of the solution as time evolves. The times shown are non-dimensionalised with
the time of shock formation tc, t∗ = t/tc = 2π t . The algorithm is provided with the data
shown with markers in figure 2(b).

Figure 2(c) shows the algorithmically collapsed velocity profiles on the transformed
coordinates (x̃, t), i.e. the output of step 1 of the algorithm, following a transformation
of the form x̃ = x + α(x, t) (simpler transformations do not succeed at collapsing the
data). Since this is an initial value problem, we only consider the distance of the profiles
with respect to the initial condition, i.e. the objective function in (2.2) is simplified to∑

i=1,...,nt
‖u(x̃, ti )− u(x, 0)‖22.

We use PySR to interpret the algorithmically computed transformation α. The library of
candidate variables is composed of the problem’s independent and dependent variables,
i.e. α= α(u, x, t), and the library of operators includes the four basic mathematical
operations (+,−,×,÷). PySR interprets the algorithmically computed transformation as
α=−ut , which is identical to the analytical similarity transformation. Close inspection
of figure 2(c) shows that the profiles are not perfectly collapsed (for example, at t∗ =
0.936). The range-normalised mean absolute error between the algorithmically computed
discrete values of the transformation and the analytical ones is 2.2 %. However, in step
2 of the workflow (symbolic regression), the algorithm attempts to fit expressions that
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Figure 2. Data-driven identification of self-similarity in Burgers’ equation. (a) Spatio-temporal evolution of
the velocity. (b) Extracted profiles at different time instants. Markers show the data given to the algorithm.
(c) Algorithmically collapsed profiles.

balance complexity and accuracy, allowing it to recover the exact analytical transformation
α =−ut .

3.3. Free turbulent flow
As a third example, we consider the statistically stationary flow past a slender bluff body
at high Reynolds numbers, which is a characteristic example of a free (i.e. unconfined)
turbulent shear flow. The term slender signifies an effectively infinite body length in one
cross-flow direction, along which the flow statistics can be considered homogeneous. Such
flows can be modelled using a boundary layer approximation, similar to the one employed
by Prandtl for laminar boundary layers, applied to the time-averaged flow (Townsend
1976), i.e.

ūx + v̄y = 0, (3.4a)

ūūx + v̄ū y = νūyy − (u′v′)y, (3.4b)

where the overbar denotes time averaging and ν is the kinematic viscosity of the fluid.
Here, u and v are the flow velocities along the streamwise x and cross-wise y directions,
which are decomposed into time-averaged (ū, v̄) and fluctuating (u′, v′) components.
The formulation leading to (3.4) introduces the Reynolds stress term u′v′ into the flow
governing equations, i.e. an additional unknown which cannot be calculated implicitly
(this is the well-known closure problem of turbulence). The identification of similarity in
this case is, therefore, not possible from the equations themselves, unless an assumption
is made regarding the relation of the unknown Reynolds stress terms to the mean
velocity distribution (i.e. turbulence modelling). However, it is customary to hypothesise
that the turbulent BLE accept self-similar solutions far from initial conditions, a fact
also supported by experimental observations (Townsend 1976; Cantwell 2002). This
approximate self-similarity is the origin behind various scaling laws for the evolution of
free shear flows, widely used in many applications of the energy and transportation sectors,
such as wind farm planning (Bempedelis & Steiros 2022) and jet engine noise prediction
(Tam 2019). Returning to the particular example of the slender bluff body wake, we may
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Figure 3. Data-driven identification of self-similarity in the wake of a porous plate. (a) Schematic of the
experimental apparatus showing the flume, porous plate and PIV configuration. (b) Mean streamwise velocity
profiles at different locations downstream of the plate. (c) Algorithmically collapsed velocity profiles.

consider the time-averaged velocity deficit ζ(x, y)=U∞ − ū(x, y) that the body produces
far (i.e. tens of characteristic body lengths) downstream. In the above, U∞ is the constant
free-stream velocity. The flow statistics are homogeneous along the spanwise direction z.
Wake self-similarity is then known to assume the form (Townsend 1976; Pope 2000)

ζ(x, y)= ζ̃ (ξ)(U∞ − ūcntr(x)), with ξ = y

y1/2(x)
, (3.5)

where ūcntr = ū(x, 0) denotes the centreline velocity and y1/2(x) is the wake half-width
defined such that ū(x,±y1/2)= 0.5(U∞ + ucntr). We attempt to extract the self-similar
relation (3.5) directly from experimental data. To this end, we measured the turbulent wake
of a plate of 53 % porosity immersed in a water flume normal to the flow (see figure 3a)
at a Reynolds number based on the free-stream velocity and plate width Re≈ 6000. The
velocity fields at various positions downstream of the plate were measured using Particle
Image Velocimetry (PIV) (Phantom 4MP camera at 50 Hz acquisition frequency) as shown
in figure 3(a). Each mean streamwise velocity profile was then calculated by averaging
3000 vector fields. More information regarding the experimental procedure can be found
in Bekoglu et al. (2024, 2025). We consider the mean velocities at five stations in the wake
of the plate (figure 3b). Figure 3(c) shows the collapse that is obtained via the proposed
method, assuming transformations of the form ỹ = α(x)y and ũ = β(x)ū + γ (x) (simpler
transformations cannot collapse the data). The identified transformations are regressed as
functions of the characteristic scales and variables of the problem using PySR, with α =
α(x, yw, y1/2) (with yw(x) defined as ū(x,±yw)= 0.99U∞), β = β(U∞, ūcntr, x, ν) and
γ = γ (U∞, ūcntr, x, ν). The library of operators consists of the four basic mathematical
operations (+,−,×,÷). The interpreted similarity transformations are

ỹ = αy = 1.0605
y1/2(x)

y, (3.6a)

ũ(x, ỹ)= βū + γ = 1
U∞ − ūcntr

ū − ūcntr

U∞ − ūcntr
= 1− ζ̃ , (3.6b)

which match (ignoring the arbitrary multiplicative constant) the self-similar expressions
for turbulent wakes found in the literature (Tennekes & Lumley 1972; Townsend 1976;
Pope 2000). Besides our own experiments, we also test our method by using experimental
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data available in the literature (Cimbala, Nagib & Roshko 1988), and again retrieve the
self-similarity relations for turbulent wakes (see Appendix C).

3.4. Cavity collapse
The bursting of bubbles at the sea’s surface plays a crucial role in the exchanges between
oceans and the atmosphere, thereby being important for climate and weather (Deike 2022).
When a bubble bursts at the sea’s surface, aerosol is produced via two mechanisms: the
rupture of the bubble’s cap film, and the formation of a vertical jet that breaks into droplets
following cavity collapse (Deike 2022). The jet and aerosol properties are a consequence
of the nonlinear fluid dynamics near the points where the topology changes (Eggers 1997;
Eggers & Fontelos 2015). In the case of a collapsing cavity, several studies have found that,
near the collapse of the travelling capillary waves at the axis of symmetry, the liquid–gas
interface evolves in a self-similar manner, enabling the derivation of scaling laws for the
bubble and jet dynamics (Keller & Miksis 1983; Zeff et al. 2000; Duchemin et al. 2002;
Ghabache et al. 2014; Gañán-Calvo 2017; Deike et al. 2018).

We simulate the collapse of a cavity (Bo= ρgR2
0/γ = 10−3, La = ργ R0/μ

2 = 2500)
by solving the two-phase incompressible axisymmetric Navier–Stokes equations using
Basilisk (www.basilisk.fr), an open-source flow solver that has been previously used
in computational studies of bursting bubbles (Lai, Eggers & Deike 2018; Berny et al.
2020; Sanjay, Lohse & Jalaal 2021). In the above, ρ and μ are the liquid density and
viscosity, respectively, γ is the interfacial tension, R0 is the initial bubble radius and
g is the gravitational acceleration. The evolution of the liquid–gas interface is shown
in figures 4(a)–4(d). We extract profiles of the interface h(r, t) as it approaches the
axis of symmetry, at t∗ = (t0 − t)/tc = [10, 9, 8, 7, 6], where tc is the characteristic time
of the horizontal capillary wave (Lai et al. 2018), and t0 is the moment where the
capillary waves meet at the axis of symmetry, r = 0. The extracted profiles are shown in
figure 4(e). Duchemin et al. (2002) and Lai et al. (2018) observed that, in this time window,
the interface approximately follows the (t0 − t)2/3 scaling of inviscid theory (Keller &
Miksis 1983). The algorithm successfully collapses the extracted profiles into a single
curve (figure 4f ) for transformations of the form r̃ = α(t)r for the radial coordinate and
h̃ = β(t)h + γ (t) for the liquid–gas interface. By regressing the identified transformations
α, β and γ as power-law functions of the non-dimensional time t∗ (figure 4g–4i), we
retrieve the expressions

r̃ = c1r t−0.61∗ , (3.7a)

h̃ = c2ht−0.69∗ − c3h0t−0.66∗ , (3.7b)

which are close (ignoring the arbitrary multiplicative constants c1, c2 and c3) to the
theoretically derived ones (Keller & Miksis 1983; Zeff et al. 2000; Duchemin et al. 2002;
Ghabache et al. 2014; Lai et al. 2018).

3.5. Decaying turbulence
We consider the case of homogeneous decaying turbulence, experimentally realised by
passing a stream of fluid through a uniformly spaced grid inside a wind tunnel (figure 5a).
We analyse measurements of velocity time series, obtained via hot-wire anemometry at
seven positions downstream of the grid (the details of the experimental campaign can
be found in Steiros 2022a). The measured turbulence is fully developed, approximately
homogeneous and yields the −5/3 law for the energy spectrum at intermediately sized
eddies, as predicted by Kolmogorov’s K41 framework (Kolmogorov 1941a,b,c).
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Figure 4. Data-driven identification of self-similarity in a collapsing cavity. Three-dimensional visualisation

of the liquid–gas interface at (a) t/τ = 0, (b) t/τ = 0.25 and (c) t/τ = 0.5, where τ =
√
ρR3

0/γ is the inertio-
capillary time scale. (d) Liquid–gas interface time evolution, t/τ = (0, 0.05, . . . , 0.5). (e) Interface profiles
near cavity collapse. ( f ) Algorithmically collapsed interface profiles near cavity collapse. (g–i) Identified
transformations α, β and γ . Comparison with theoretical scaling laws.

The theoretical derivation of the −5/3 law assumes that, at sufficiently high Reynolds
numbers, an intermediate self-similar region forms in the cascade, which is independent
of large- and small-scale effects (Batchelor 1953; Frisch 1995; Pope 2000). However, the
above description is part of a more complex flow picture, as the widely studied paradigm
of grid turbulence sufficiently far from initial conditions shows. The turbulence cascade in
that case is generally accepted to be characterised by two self-similarities, both present at
the same time and at different eddy sizes: One at large scales where viscosity is negligible
(Steiros 2022a; Lundgren 2003), and one at small scales where non-equilibrium effects are
negligible (Pope 2000; Lundgren 2003). The energy spectrum thus accepts the following
general expression (Pope 2000):

E11(κ, x)= ε(x)2/3κ−5/3 f (κL)g(κη) , (3.8)

where x , κ , E11(κ, x) and ε(x) represent the distance from the grid, wavenumber, energy
spectrum and dissipation rate, respectively. Here, L and η are the integral and Kolmogorov
scales, characteristic of the large- and small-scale self-similarities, respectively. To
retrieve the −5/3 law, E11(k, x)= ε(x)2/3κ−5/3, one needs to be asymptotically far from
large scales (i.e. κL→∞) and far from small scales (κη→ 0) at the same time, as in that
case K41 assures that both f and g tend to unity. It is of interest to see how our algorithm
fares in this two-scale problem.
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Figure 5. Data-driven identification of self-similarity in decaying turbulence. (a) Schematic of the
experimental set-up. (b) Experimentally measured power spectral densities. The dashed vertical line delineates
the range of the spectrum that is used. (c) Measured spectrum normalised by the inertial scales. (d) Measured
spectrum normalised by the Kolmogorov scales. (e) Measured spectrum normalised by the algorithmically
identified expression (3.9).

Figure 5(b) plots the measured power spectral densities versus the wavenumbers at
different measurement stations. Figure 5(c,d) shows the collapse of the power spectral
densities using large- and small-scale similarity variables, respectively. Using a library
that consists of (L , η) for the x axis and (ε, L , η, k) for the y axis, symbolic regression
of the algorithmically identified dilational transformations (κ̃ = α(x)κ , Ẽ11 = β(x)E11)
yields the following expressions, plotted in figure 5(e):

κ̃ ∝ κL0.368η0.632, Ẽ11 ∝ E11ε
0.695L0.709η−1.015k−2.042. (3.9)

As expected, the algorithm cannot derive the two-scale similarity expression (3.8), as
the assumed dilational transformations effectively reduce it to a single-scale algorithm.
Further insight may be obtained by using the dissipation scaling ε ∝ k3/2/L , where k
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is the turbulence kinetic energy, which is known to characterise homogeneous decaying
turbulence far from initial conditions (Steiros 2022a,b; Vassilicos 2015). Expression (3.9)
then becomes

κ̃ ∝ κL0.368η0.632, Ẽ11 ∝ E11ε
−0.667(L0.391η0.609)−5/3

. (3.10)

Inspection of the above expression reveals that our algorithm has, seemingly, collapsed the
totality of the cascade dynamics based on a single empirical length scale, l ≈ L0.38η0.62,
which is a combination of L and η. There have been several attempts to develop single
length scale theories of turbulence, derived by assuming self-similarity of the turbulence
statistics, i.e. see von Karman & Howarth (1938) and Sedov (2018), and the later theories
of Barenblatt & Gavrilov (1974) and George (1992). The last two studies predict the
Taylor microscale as the appropriate similarity variable, in close agreement with our data-
driven methodology. In homogeneous decaying turbulence the Taylor microscale becomes
λ= L1/3η2/3 (Pope 2000), which is close to our empirically derived length scale.

It might be tempting to interpret our empirical results as being in support of a single-
scale picture for homogeneous turbulence, contrary to the commonly accepted view of
turbulence as an intrinsically multi-length scale phenomenon (Batchelor 1953; Tennekes &
Lumley 1972; Townsend 1976; Pope 2000). However, the results shown in figure 5 (and in
most studies of homogeneous decaying turbulence) consider the far region of a turbulence
grid where the integral length Reynolds number evolution is relatively slow, leading to
a similarly slow evolution of L/η (Vassilicos 2015). As a result, our data show that
all length scales in question (integral, Kolmogorov, Taylor) produce a (visually) ‘good-
enough’ collapse, as shown in figure 5(c–e), and inspection of any of these graphs might
give the impression of a single length scale self-similar evolution.

To better appreciate the single or multi-length scale nature of the turbulence cascade,
we need data for which the integral length scale Reynolds number varies drastically. To
achieve this, we analyse the periodic box Direct Numerical Simulation (DNS) data of
decaying turbulence taken from Goto & Vassilicos (2016) (the details of the simulations
can be found in the reference). Similar to the grid case, our goal is to collapse energy
spectra taken at different decay times t̂ (see figure 6a). Here, however, we consider datasets
from two simulations which are identical in every aspect, apart from their size (N = 10243

and N = 20483) and the kinematic viscosity of the fluid, i.e. the Reynolds number of
the flow varies drastically between the two cases, making the collapse of the curves less
arbitrary.

Figure 6(a) presents the dimensional energy spectra from the two simulations, whereas
figures 6(b) and 6(c) show the same data with the axes rescaled according to inertial and
Kolmogorov similarity variables, respectively. The collapse of the large (small) scales is
adequate only when the axes are normalised using the integral (Kolmogorov) scales, in
agreement with a multi-scale view of the cascade. However, data from the same simulation
size retain a ‘good-enough’ collapse independent of the choice of normalisation length,
similar to our grid measurements, a fact which, if viewed in isolation, might give a
false impression of a single length scale process. Figure 6(d) shows the algorithmically
identified collapse of the data, that is, using the empirical transformations

κ̃ ∝ κL0.342η0.658, (3.11a)

Ẽ11 ∝ E11ε
−0.655L−0.561η−1.094k−0.017 ≈ E11ε

−0.667(L0.344η0.656)−5/3
. (3.11b)

The algorithm again identifies, approximately, the Taylor microscale (λ= L1/3η2/3) as
the appropriate length for the collapse of the turbulence dynamics, but this time it cannot
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Figure 6. Data-driven identification of self-similarity in decaying turbulence, using the DNS data of Goto &
Vassilicos (2016). (a) Power spectral densities. (b) Spectrum normalised by the inertial scales. (c) Spectrum
normalised by the Kolmogorov scales. (d) Spectrum normalised by the algorithmically identified expression
(3.11).

be claimed that the Taylor scale collapses both the large- and small-scale dynamics – only
that it is an (algorithmically) optimal compromise when a single length scale collapse is
enforced. We conjecture that the reason behind this could be explained from Lundgren’s
two-scale turbulence theory which is based on the technique of matched asymptotic
expansions (Lundgren 2002, 2003). The repercussions of this theory are discussed in
Obligado & Vassilicos (2019), Meldi & Vassilicos (2021): in particular, it is suggested
that the Taylor microscale is the length scale at which the cascade dynamics is optimally
distanced from both non-equilibrium effects (large scales) and dissipative effects (small
scales) at the same time (in a matched asymptotic manner). The algorithmically identified
collapse (figure 6d) produces best results in the intermediate, inertial range of the cascade
where both above effects tend to become negligible. Based on this argument, the algorithm
identifies the Taylor microscale scale because it is the optimal compromise of the two
governing scales (inertial, Kolmogorov) of the cascade.

4. Discussion and conclusion
We have presented a methodology for identifying similarity variables from data, in the
absence of governing equations. Given measurements of a quantity of interest, the method
computes the discrete values of the similarity transformations that best collapse the data
and expresses their analytic form via symbolic regression. The self-similarity that we
identify is the optimal fit of the data, and is not derived from the governing partial
differential equations and the boundary conditions of the specific problem.

The proposed method differs from dimensionless learning approaches that aim to
reduce the dimensionality of parameter spaces via identification of dimensionless groups
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(Xie et al. 2022; Bakarji et al. 2022; Yuan & Lozano-Durán 2025) because our focus is
on discovering the similarity transformations that enable the collapse of entire solution
profiles. Our approach is not restricted to dilational similarity transformations, and is
capable of identifying more general, non-uniform relationships between variables, as
demonstrated in the Burgers equation example. This flexibility broadens the range of
problems for which similarity solutions can be uncovered. In practical terms, this approach
also reduces the degree of prior knowledge required to reveal self-similar behaviour. For
example, in the turbulent wake case, methods based on dimensional analysis would require
the characteristic velocity difference to be provided as input in order to reveal the self-
similarity. On the other hand, our method can uncover it autonomously. More generally,
step 1 of the proposed framework can be used to detect self-similar behaviour whilst being
effectively agnostic to the underlying physics, i.e. without requiring prior specification of
the relevant variables or parameters. In the symbolic regression step (step 2), the user must
supply the candidate parameters to obtain explicit analytic expressions, but the ability to
first reveal the existence of self-similarity without specifying inputs may be particularly
appealing for exploratory studies or complex systems. On the other hand, for cases of pure
dilational self-similarity, methods based on dimensional analysis are expected to be more
efficient. A note of caution: the computation of the l2 norms in (2.2) is performed over
the common support of the transformed profiles. If the supports differ significantly, the
optimisation may become challenging. Although this issue did not arise in this work, we
acknowledge it as a point that might need to be addressed in future work.

The capabilities of the method were demonstrated in five fluid mechanical problems,
which are known or assumed to accept similarity solutions, based on data from
both numerical and laboratory experiments. In four problems, the transformations
identified by the method were in agreement to the analytically or empirically derived
similarity transformations, whilst circumventing the need for scaling analysis or similarity
arguments. In the fifth problem (turbulence cascade) our method identified an empirical
length scale as the optimal similarity length of the cascade, which was close to the
Taylor microscale. Further investigation revealed that this result cannot be treated as being
unequivocally in support of single length scale theories of turbulence (von Karman &
Howarth 1938; Barenblatt & Gavrilov 1974; George 1992; Sedov 2018), but rather
expresses the role of the Taylor microscale as an intermediate scale between the integral
and Kolmogorov scales, at which non-equilibrium and dissipative effects are optimally
spaced (Meldi & Vassilicos 2021).

The results illustrate ways that the proposed algorithm can be used for the identification
of similarity and scaling laws in situations where rigorous mathematical analysis is
challenging. This includes a wide range of applications in fluid physics but also in other
processes such as quasicrystal shape and growth (Kamiya et al. 2018), stellar collapse
(Yahil 1983), single protein dynamics (Hu et al. 2016) and others. Other directions for
future work include using the method to detect symmetry breaking, distinguish similarity
across multiple scales and identify the onset or breakdown of self-similarity.
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Algorithm 1 Data-driven similarity inference: implementation example

1: Gather a set of nt observations q(s)
s ∈Rns×nt , q ∈Rns×nt

2: Break the generalised similarity variable decomposition down to a set of admissible/relevant
candidate transformations
e.g., pure dilation for s (β = 0), and pure (δ= 0) or generalised dilation (δ= δ(t)) for q. The generalised decomposition is ξ = α(t)s + β(s, t) and

q̃ = γ (t)q + δ(s, t).

3: // Step 1: Search for similarity variables
4: for each combination ∈ set of candidate transformations do
5: Initialise design variable matrix w

Dimensions of w depend on the nature of the candidate transformations. In the case of pure dilation for both s and q, w ∈Rnt×2, with the first

column corresponding tos and the second column to q (i.e., containing the discrete values of α and γ , respectively).

6: // Optimisation problem
7: for iter= 1 to stopping criterion do
8: Apply transformations to observations

ξ = s� (col1(w))
ᵀ, q̃ = q � (col2(w))

ᵀ
9: Interpolate q̃ on common ξ

Resolution of interpolation grid may vary.

10: Compute objective function (OF) (2.2) or (2.3)
11: Update w to minimise the OF
12: end for
13: if OF
 1 then
14: wopt←w

15: Exit step 1: similarity variables found. Potentially identified self-similarity.
16: end if
17: end for
18: // Step 2: analytic form of the transformations
19: Normalise transformations and variables found in step 1 (optional)
20: for each transformation component (i.e. column j of wopt) do
21: Define the nv variables A∈Rnv×1 that the component can be a function of
22: Construct a matrix AD containing the values of A at all locations

In the example above, AD ∈Rnv×nt

23: // Symbolic regression task
24: Find expression ψ(A) that minimises

‖ψ(AD)− col j (wopt)‖22 +wD‖[ψ(A)] − [col j (wopt)]‖
The brackets [ ] denote the physical dimensions of a quantity in the form of a dimension vector, i.e., a vector containing the powers of its basic

dimensions. For example, velocity has an associated dimension vector in the MLT (Mass, length, time) system [u] = (0, 1,−1). Note that the

term which enforces dimensional homogeneity is optional and only relevant when the quantity of interest is dimensional.

25: end for
26: return w, ψ(A)

Data availability statement. The code and input data required to reproduce the work reported in
the manuscript are available in the GitHub repository https://github.com/nbeb/extracting_self-similarity_
from_data. The grid turbulence data are available upon request.

Author contributions. N.B., L.M. and K.S. designed research; N.B. and K.S. performed research; N.B.
analysed data; and N.B. and K.S. wrote the paper.

Appendix A. Data-driven similarity inference: implementation example
A pseudocode exemplifying the implementation of the proposed method for the case of
a quantity of interest q(s, t) is provided in Algorithm 1. Clarifications or examples are
shown in smaller font size below each pseudocode line. More implementation examples

1020 A11-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
65

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://github.com/nbeb/extracting_self-similarity_from_data
https://github.com/nbeb/extracting_self-similarity_from_data
https://doi.org/10.1017/jfm.2025.10656


Journal of Fluid Mechanics

can be found in the code and input data that reproduce the problems considered in the pa-
per. These are available in the GitHub repository https://github.com/nbeb/extracting_self-
similarity_from_data.

Appendix B. Sensitivity and robustness
In this section, we present results from a sensitivity analysis with respect to the (i) number
of provided profiles (stations), (ii) number of points at each station, (iii) number of points
where the l2 norms of (2.2) are evaluated (i.e. discretisation of the transformed coordinates
grid) and (iv) noise in the input data, for the Blasius boundary layer problem.

(i) Number of provided stations: in the example detailed in § 3, the algorithm is provided
with velocity profiles at 9 different streamwise stations. Table 1 shows the identified
scalings when fewer stations at regular or irregular spacings are considered. The
algorithm shows robust performance across all tested cases.

(ii) Number of points at each station (Nmeas): in the example detailed in § 3, the velocity
profiles at each streamwise station consist of 100 points. Table 2 shows the identified
scalings when fewer points are available (50 and 20, respectively). The algorithm
shows robust performance across all tested cases. A slight increase in the y scaling
error is observed as the number of available points decreases.

(iii) Number of points in the transformed coordinates grid (Nξ−points): as discussed in
§ 2, the l2-norms in (2.2) are computed following interpolation on the transformed
coordinates (ξ ) grid. In the example detailed in § 3, Nξ−points is set equal to the
number of points in the input data Nmeas. Table 3 shows the identified scalings when
this ratio changes. The algorithm shows robust performance across all tested cases.

(iv) Lastly, we consider the robustness of the algorithm to noise. To this end, we add
zero-mean Gaussian noise to the data, with standard deviation proportional to the
local velocity magnitude, scaled by a relative noise level ε. The identified scalings
for three different noise levels are given in table 4. The input and algorithmically
scaled data are shown in figure 7. While the algorithm’s accuracy decreases with
increasing noise, the higher levels tested exceed typical experimental uncertainties,
and the method can be expected to perform reliably under realistic noise conditions,
as demonstrated in the examples using experimental datasets.

Appendix C. Application to data from literature: turbulent wake
We attempt to recover the self-similar expressions for turbulent wakes using our method
and experimental data from the literature. We consider the mean velocities at five stations
in the wake of a 47 % solid slender plate, as measured by Cimbala et al. (1988), in turbulent
conditions (Re= 5000) (see figures 8a and 8b). Figure 8(c) shows the collapse that is
obtained via the proposed method, assuming transformations of the form ỹ = α(x)y and
ũ = β(x)ū + γ (x). The identified transformations are regressed using PySR, with α =
α(x, yw, y1/2) (with yw(x) defined as ū(x,±yw)= 0.99U∞), β = β(U∞, ūcntr, x, ν) and
γ = γ (U∞, ūcntr, x, ν). The library of operators consists of the four basic mathematical
operations (+,−,×,÷). The interpreted similarity transformations are

ỹ = αy = 1.2188
y1/2(x)

y, (C1a)

ũ(x, ỹ)= βū + γ = 1
U∞ − ūcntr

ū − ūcntr

U∞ − ūcntr
= 1− ζ̃ , (C1b)
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Stations ỹ/y ũ/u

[1, 2, 3, 4, 5, 6, 7, 8, 9] U 0.5018∞ ν−0.5018x−0.4981 U−0.9995∞ ν−0.0005x0.0005

[1, 3, 5, 7, 9] U 0.5010∞ ν−0.5010x−0.4990 U−0.9980∞ ν−0.0020x0.0020

[1, 3, 9] U 0.5008∞ ν−0.5008x−0.4992 U−0.9998∞ ν−0.0002x0.0002

[2, 6, 8] U 0.5022∞ ν−0.5022x−0.4978 U−0.9990∞ ν−0.0010x0.0010

Table 1. Data-driven identification of self-similarity in the Blasius boundary layer. Identified transformations
for different number of available profiles (stations).

Nmeas ỹ/y ũ/u

100 U 0.5018∞ ν−0.5018x−0.4981 U−0.9995∞ ν−0.0005x0.0005

50 U 0.5033∞ ν−0.5033x−0.4967 U−0.9997∞ ν−0.0003x0.0003

20 U 0.5115∞ ν−0.5115x−0.4885 U−1.0001∞ ν0.0001x−0.0001

Table 2. Data-driven identification of self-similarity in the Blasius boundary layer. Identified transformations
for different number of measurements available at each station.

Nξ -points/Nmeas ỹ/y ũ/u

0.25 U 0.4993∞ ν−0.4991x−0.5013 U−0.9997∞ ν−0.0003x0.0003

1.00 U 0.5018∞ ν−0.5018x−0.4981 U−0.9995∞ ν−0.0005x0.0005

4.00 U 0.5016∞ ν−0.5016x−0.4984 U−0.9992∞ ν−0.0008x0.0008

Table 3. Data-driven identification of self-similarity in the Blasius boundary layer. Identified transformations
for different discretisations of the transformed coordinates grid.

ε ỹ/y ũ/u

0 U 0.5018∞ ν−0.5018x−0.4981 U−0.9995∞ ν−0.0005x0.0005

0.001 U 0.5023∞ ν−0.5023x−0.4976 U−1.0000∞ ν−0.0000x0.0000

0.01 U 0.5366∞ ν−0.5366x−0.4634 U−0.9950∞ ν−0.0050x0.0050

0.1 U 0.6689∞ ν−0.6689x−0.3311 U−0.9820∞ ν−0.0180x0.0180

Table 4. Data-driven identification of self-similarity in the Blasius boundary layer. Identified transformations
for different levels of added noise.

which match (ignoring the arbitrary multiplicative constant) the self-similar expressions
for turbulent wakes found in the literature (Tennekes & Lumley 1972; Townsend 1976;
Pope 2000).
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Figure 7. Data-driven identification of self-similarity in the Blasius boundary layer with added noise. Top row:
input data, bottom row: input data collapsed with the algorithmically identified scalings (table 4). Panels show
(a,d) ε = 0.001, (b,e) ε = 0.01, (c,f ) ε = 0.1.
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Figure 8. Data-driven identification of self-similarity in the wake of a porous plate. (a) Smoke-wire
visualisation of a porous plate wake. Figure adapted from Cimbala et al. (1988). (b) Mean streamwise velocity
profiles at different locations downstream of the plate. Experimental data extracted from Cimbala et al. (1988).
(c) Algorithmically collapsed velocity profiles.
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