
TPLP 23 (4): 664–677, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068423000224 First published online 18 July 2023

664

On Program Completion, with an Application
to the Sum and Product Puzzle

VLADIMIR LIFSCHITZ
University of Texas, Austin, TX, USA

(e-mail: lifschitzv@gmail.com)

submitted 26 May 2023; revised 14 June 2023; accepted 15 June 2023;

Abstract

This paper describes a generalization of Clark’s completion that is applicable to logic programs
containing arithmetic operations and produces syntactically simple, natural looking formulas. If
a set of first-order axioms is equivalent to the completion of a program, then we may be able to
find standard models of these axioms by running an answer set solver. As an example, we apply
this “reverse completion” procedure to the Sum and Product Puzzle.
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1 Introduction

Program completion (Clark 1978; Lloyd and Topor 1984) is a transformation that con-

verts logic programs into sets of first-order formulas. The study of completion improved

our understanding of the relationship between these two knowledge representation for-

malisms, and it has been used in the design of answer set solvers (Lierler and Maratea

2004; Lin and Zhao 2004).

The definition of completion has been extended to programs with operations on integers

(Fandinno et al. 2020). That generalized completion process produces formulas in a two-

sorted first-order language (Lifschitz et al. 2019, Section 5). In addition to “general”

variables, which range over both symbolic constants and (symbols for) integers, a formula

in that language may include also variables ranging over integers only. The need to use

a language with two sorts is explained by the fact that function symbols in a first-order

language are supposed to represent total functions, and arithmetic operations are not

defined on symbolic constants. In answer set programming languages, applying arithmetic

operations to symbolic constants is usually handled in a different way; when a rule is

instantiated, a substituition is not used unless it is “well formed” (Calimeri et al. 2020,

Section 3).

In this paper, the idea of a natural translation (Lifschitz 2021) is used to define a

version of generalized completion that is limited to relatively simple (“regular”) rules but

produces simpler, and more natural-looking, formulas. The modified completion operator

is denoted by NCOMP, for “natural completion.” For example, the natural completion

of the one-rule program:
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even(2*X) :- X = -10..10. (1)

in the input language of the answer set solver clingo (Gebser et al. 2019) is the

sentence:

∀V (even(V )↔ ∃I(−10 ≤ I ≤ 10 ∧ V = 2 ∗ I)). (2)

Here, V is a general variable, I is an integer variable, and −10, 10, 2 are “numerals” –

object constants representing integers.

Two theorems, stated in Section 3.4 and proved in Section 5, relate stable models

of a regular program to standard models of its completion (standard in the sense that

they interpret symbols related to integers as usual in arithmetic). These theorems extend

well-known results due to (Fages 1991).

If a set of first-order axioms happens to be equivalent to the completion of a regular

program, then we may be able to find standard models of these axioms by running an

answer set solver. As an example, we apply this “reverse completion” procedure to a

formalization of the Sum and Product Puzzle (https://en.wikipedia.org/wiki/Sum_

and_Product_Puzzle). From the perspective of knowledge representation and automated

reasoning, that puzzle presents a challenge: express it in a formal declarative language so

that the answer can be found, or at least verified, by an automated reasoning tool. This

has been accomplished using first-order axioms for Kripke-style possible worlds and the

first-order theorem prover fol (McCarthy 1990), and also using a modal logic of public

announcements and the epistemic model checker demo (van Ditmarsch et al. 2005). More

recently, Jayadev Misra proposed a simple first-order formalization that does not refer

to possible worlds (Misra 2022, Section 2.8.3). In Section 4, we show that the answer to

the puzzle can be found by applying the reverse completion process to a variant of his

axiom set and then running clingo.

2 Review: Rules and formulas

2.1 Regular rules

To simplify presentation, we do not include here some of the programming con-

structs that are classified as regular in the previous publication on natural translations

(Lifschitz 2021). As in the Abstract Gringo article (Gebser et al. 2015), rules will be

written in abstract notation, which disregards some details related to representing rules

by strings of ASCII characters. For example, rule (1) will be written as:

even(2×X)← X = −10 .. 10. (3)

We assume that three disjoint countably infinite sets of symbols are selected: numer-

als, symbolic constants, and (general) variables. We assume that a 1-1 correspondence

between numerals and integers is chosen; the numeral corresponding to an integer n

is denoted by n. Precomputed terms are numerals and symbolic constants. We assume

that a total order on the set of precomputed terms is chosen so that, for all integers m

and n,

• m < n iff m < n, and

• every precomputed term t such that m < t < n is a numeral.
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666 V. Lifschitz

Regular terms are formed from numerals and variables using the binary function sym-

bols +, −, ×. A regular atom is an expression of the form p(t), where p is a symbolic

constant and t is a tuple of symbolic constants and regular terms, separated by commas.

Regular comparisons are expressions of the forms:

• t1 ≺ t2, where each of t1 and t2 is a symbolic constant or a regular term, and ≺ is

one of the comparison symbols =, 
=, <, >, ≤, ≥, and
• t1 = t2 .. t3, where t1, t2, and t3 are regular terms.

A regular rule is an expression of the form:

Head ← Body, (4)

where

• Head is either a regular atom (then (4) is a basic rule), or a regular atom in braces

(then (4) is a choice rule), or empty (then (4) is a constraint), and

• Body is a conjunction, possibly empty, of (i) regular atoms, possibly preceded by

not , and (ii) regular comparisons.

For example, (3) is a regular rule.

A regular program is a finite set of regular rules. This is a special case of Abstract Gringo

programs (Gebser et al. 2015), and stable models of a regular program are understood

in the sense of the semantic of Abstract Gringo. Thus, stable models are sets of ground

atoms that do not contain arithmetic operations.

2.2 Two-sorted formulas

A predicate symbol is a pair p/n, where p is a symbolic constant and n is a nonnegative

integer. About a predicate symbol p/n we say that it occurs in a regular program Π if

some atom of the form p(t1, . . . , tn) occurs in one of the rules of Π.

For any regular program Π, by σΠ we denote the two-sorted signature with the sort

general and its subsort integer, which includes

• every numeral as an object constant of the sort integer,

• every symbolic constant as an object constant of the sort general,

• the symbols +, −, × as binary function constants with the argument sorts integer

and the value sort integer,

• every predicate symbol p/n that occurs in Π as an n-ary predicate constant with

the argument sorts general,

• the symbols 
=, <, >, ≤, ≥ as binary predicate constants with the argument sorts

general.

A formula over σΠ that has the form (p/n)(t) can be abbreviated as p(t). This con-

vention allows us to view regular atoms occurring in Π as atomic formulas over σΠ.

Conjunctions of equalities and inequalities can be abbreviated as usual in algebra; for

instance, t1 ≤ t2 ≤ t3 stands for t1 ≤ t2 ∧ t2 ≤ t3. An equality between tuples of terms

(t1, . . . , tk) = (t′1, . . . , t
′
k) is understood as the conjunction t1 = t′1 ∧ · · · ∧ tk = t′k.

In this paper, integer variables are denoted by capital letters from the middle of the

alphabet (I, . . . , N), and general variables by letters from the end (U, . . . , Z).
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3 Completion

3.1 Replacing variables

In the process of constructing the natural completion of a regular program Π, the bodies

of rules of Π will be transformed into formulas over σΠ. Since general variables are not

allowed in a formula in the scope of an arithmetic operation, this process has to involve

replacing some of them by integer variables.

A critical variable of a regular rule R is a general variable X such that at least one

occurrence of X in R is in the scope of an arithmetic operation or is part of a comparison

of the form t1 = t2 .. t3. For every regular rule R, choose a function fR that maps its

critical variables to pairwise distinct integer variables. This function fR is extended to

other subexpressions of R as follows. For a tuple t of symbolic constants and regular

terms, fR(t) is the tuple of terms over σΠ obtained from t by replacing all occurrences of

every critical variable X with the integer variable fR(X). Applying fR to a regular atom

and to a comparison that does not contain intervals is defined in a similar way. The result

of applying fR to not A is defined as the formula ¬fR(A), and the result of applying fR
to a comparison t1 = t2 .. t3 is fR(t2) ≤ fR(t1) ≤ fR(t3). Finally, applying fR to the

body B1 ∧B2 ∧ · · · of R gives the formula fR(B1) ∧ fR(B2) ∧ · · · .
For instance, if R is rule (3) then the variable X is critical, and fR maps X to some

integer variable I. It transforms the term 2 × X in the head into 2 × I, and the body

X = −10 .. 10 into −10 ≤ I ≤ 10.

3.2 Completed definitions

Consider a regular program Π and a predicate symbol p/n that occurs in Π. The definition

of p/n in Π is the set of all rules of Π that have the form:

p(t)← Body, (5)

or

{p(t)} ← Body, (6)

such that the length of the tuple t is n. The completed definition of p/n in Π is the

sentence over σΠ constructed as follows. Choose a tuple V of n general variables that do

not occur in Π. For every rule R in the definition D of p/n in Π, by FR we denote the

formula:

fR(Body) ∧V = fR(t),

if R is (5), and

fR(Body) ∧V = fR(t) ∧ p(V),

if R is (6). The completed definition of p/n in Π is the sentence:

∀V
(
p(V)↔

∨
R∈D
∃URFR

)
, (7)

where UR is the list of all variables occurring in fR(Body) or in fR(t).

For example, if the only rule R of the program is (3), and p/n is even/1, then FR is

−10 ≤ I ≤ 10 ∧ V = 2 ∗ I,
where I is fR(X). The completed definition of even/1 is (2).
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The formula obtained from the completed definition (7) by replacing the global

variables V with fresh integer variables will be called the arithmetic completed definition

of p/n in Π. For example, the arithmetic completed definition of even/1 in program (3)

is

∀N(even(N)↔ ∃I(−10 ≤ I ≤ 10 ∧ N = 2 ∗ I)). (8)

The arithmetic completed definition is entailed by the completed definition, but not

the other way around. For example, from formula (2) we can derive ¬even(t) for every

symbolic constant t, but this conclusion is not warranted by formula (8).

3.3 Natural completion

The natural completion NCOMP(Π) of a regular program Π is the set of sentences that

includes

• for every predicate symbol p/n occurring in Π, its completed definition in Π, and

• for every constraint ← Body in Π, the universal closure of the formula:

¬f←Body(Body).

Consider, for example, the program that consists of rule (3), the choice rule:

{foo(X)} ← even(X), (9)

and the constraint:

← not foo(0). (10)

Its natural completion consists of the completed definition (2) of even/2, the completed

definition of foo/1:

∀V (foo(V )↔ ∃X(even(X) ∧X = V ∧ foo(V ))),

which can be rewritten1 as:

∀V (foo(V )→ even(V )),

and the sentence ¬¬foo(0), which is equivalent to foo(0).

3.4 Relation to stable models

The Herbrand base of a regular program Π is the set of all regular atoms p(t1, . . . , tn)

such that p/n occurs in Π and t1, . . . , tn are precomputed terms. If S is a subset of the

Herbrand base of Π then S↑ is the interpretation of the signature σΠ defined as follows:

(i) the universe of the sort general in S↑ is the set of all precomputed terms;

(ii) the universe of the sort integer in S↑ is the set of all numerals;

(iii) for every precomputed term t, S↑(t) = t;

(iv) for every pair m, n of integers, S↑(m + n) = m+ n, and similarly for subtraction

and multiplication;

1 When we talk about equivalent transformations of a completed definition, equivalence is understood
in the sense of classical first-order logic.
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(v) for every pair t1, t2 of precomputed terms, S↑ satisfies t1 < t2 iff the relation <

holds for the pair t1, t2, and similarly for the other comparison symbols.

Theorem 1

For any regular program Π and any subset S of its Herbrand base, if S is a stable model

of Π then S↑ satisfies NCOMP(Π).

The positive predicate dependency graph of a regular program Π is the directed graph

defined as follows. Its vertices are the predicate symbols p/n occurring in Π. It has an

edge from p/n to q/m if Π has a rule (4) such that

• Head has the form p(t1, . . . , tn) or {p(t1, . . . , tn)}, and
• one of the conjunctive terms of Body has the form q(t1, . . . , tm).

A regular program Π is tight if its positive predicate dependency graph is acyclic.

For example, the positive predicate dependency graph of program (3), (9), and (10)

has one edge, from foo/1 to even/1. This program is tight.

Theorem 2

For any tight regular program Π and any subset S of its Herbrand base, S is a stable

model of Π iff S↑ satisfies NCOMP(Π).

4 The puzzle

Two mathematicians, S and P, talk about two integers, M and N . S knows the sum

M +N , and P knows the product M ×N . Both S and P know also that the integers are

greater than 1; that their sum is not greater than 100; and that N is greater than M .

The following conversation occurs:

1. S says: P does not know M and N .

2. P says: Now I know M and N .

3. S says: Now I also know M and N .

What are M and N?

4.1 First-order axioms

Jayadev Misra’s approach to translating this puzzle into a first-order language

(Misra 2022, Section 2.8.3) involves the use of binary predicates b0, . . . , b3. The formula

b0(M,N) expresses that before the beginning of the conversation, the pair M , N was

considered a possible solution. This can be expressed by the formula:

b0(M,N)↔ 1 < M < N ∧M +N ≤ 100. (11)

The formula b1(M,N) expresses that M , N was considered a possible solution at step 1,

that is, after hearing the words “P does not know M and N ,” and so forth.

There are several ways to write axioms for b1, b2, and b3. One possibility is described

below.

We say that an integer I is puzzling at time 0 if is there is more than one way to

represent it as the product of two numbers J , K satisfying b0(J,K):
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puzzling0(I)↔ ∃J1K1J2K2(b0(J1,K1) ∧ b0(J2,K2)

∧ I = J1 ×K1 = J2 ×K2 ∧ J1 
= J2).
(12)

We say that an integer I is possibly easy if it can be represented as the sum of two

numbers J and K satisfying b0(J,K) such that J ×K is not puzzling at time 0:

possibly easy(I)↔ ∃JK(b0(J,K) ∧ I = J +K ∧ ¬puzzling0(J ×K)). (13)

Then the assumption:

“at Step 1, S knows that P does not know M and N”

can be expressed by the axiom:

b1(M,N)↔ b0(M,N) ∧ ¬possibly easy(M +N). (14)

We say that an integer I is puzzling at time 1 is there is more than one way to represent

it as the product of two numbers J , K satisfying b1(J,K):

puzzling1(I)↔ ∃J1K1J2K2(b1(J1,K1) ∧ b1(J2,K2)

∧ I = J1 ×K1 = J2 ×K2 ∧ J1 
= J2).
(15)

The assumption

“at Step 2, P knows M and N”,

can be expressed by the axiom

b2(M,N)↔ b1(M,N) ∧ ¬puzzling1(M ×N). (16)

We say that an integer I is puzzling at time 2 is there is more than one way to represent

it as the sum of two numbers J , K satisfying b2(J,K):

puzzling2(I)↔ ∃J1K1J2K2(b2(J1,K1) ∧ b2(J2,K2)

∧ I = J1 +K1 = J2 +K2 ∧ J1 
= J2).
(17)

Finally, the assumption

“at Step 3, S knows M and N”,

can be expressed by the axiom:

b3(M,N)↔ b2(M,N) ∧ ¬puzzling2(M +N). (18)

Since axioms (11)–(18) form a chain of explicit definitions, the predicates represented by

the symbols:

b0/2, . . . , b3/2, puzzling0/1, . . . , puzzling2/1, possibly easy/1, (19)

are uniquely defined, assuming that variables range over the integers and that the

symbols:

+ × < ≤,
are interpreted in the standard way. To solve the Sum and Product Puzzle, we will

calculate the extents of these predicates.

This will be accomplished by running clingo on the “reverse completion” of ax-

ioms (11)–(18).
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4.2 Reverse completion

Consider the regular program

b0(XM ,XN ) ← 1 < XM ∧ XM < XN ∧ XM +XN ≤ 100,

puzzling0(XI) ← b0(XJ1,XK1) ∧ b0(XJ2,XK2) ∧ XI = XJ1 × XK1

∧ XJ1 × XK1 = XJ2 × XK2 ∧ XJ1 
= XJ2,

possibly easy(XI) ← b0(XJ,XK) ∧ XI = XJ+ XK

∧ not puzzling0(XJ× XK),

b1(XM ,XN ) ← b0(XM ,XN ) ∧ not possibly easy(XM + XN ),

puzzling1(XI) ← b1(XJ1,XK1) ∧ b1(XJ2,XK2) ∧ XI = XJ1 × XK1

∧ XJ1 × XK1 = XJ2 × XK2 ∧ XJ1 
= XJ2,

b2(XM ,XN ) ← b1(XM ,XN ) ∧ not puzzling1(XM × XN ),

puzzling2(XI) ← b2(XJ1,XK1) ∧ b2(XJ2,XK2) ∧ XI = XJ1 + XK1

∧ XJ1 + XK1 = XJ2 + XK2 ∧ XJ1 
= XJ2,

b3(XM ,XN ) ← b2(XM ,XN ) ∧ not puzzling2(XM + XN ).

(20)

These rules are obtained from equivalences (11)–(18) by:

• replacing the equivalence signs ↔ by left arrows,

• dropping existential quantifiers,

• replacing integer variables by general variables, and

• replacing ¬ by not .

The natural completion of program (20) looks very similar to axiom set (11)–(18).

There is a difference though: the former consists of formulas over the two-sorted signature

described in Section 2.2, and the axioms formalizing the Sum and Product puzzle are one-

sorted; there are no general variables in them. Consider then the arithmetic completed

definitions of predicate symbols (19) (see Section 3.2). Those are one-sorted formulas, and

they are equivalent to the universal closures of the corresponding axioms. For example,

the completed definition of the predicate symbol b0/2 in program (20) is

∀XM XN (b0(XM ,XN )↔
∃MN(1 < M ∧M < N ∧M +N ≤ 100 ∧XM = M ∧XN = N)),

and the arithmetic completed definition of this symbol is the one-sorted formula:

∀M1N1(b0(M1, N1)↔
∃MN(1 < M ∧M < N ∧M +N ≤ 100 ∧M1 = M ∧N1 = N)).

This formula is equivalent to the universal closure of axiom (11). Similarly, the arithmetic

completed definition of puzzling0/2 is equivalent to the universal closure of axiom (12),

and so forth.

4.3 Calculating the answer

By running clingo, we can determine that program (20) has a unique stable model S. By

Theorem 1, the interpretation S↑ satisfies the completed definitions of symbols (19). It

follows that S↑ satisfies the arithmetic completed definitions of these symbols, which are

equivalent to axioms (11)–(18). In other words, S describes the extents of the predicates
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that we want to calculate. Since the only atom in S that begins with b3 is b3(4, 13), the

answer to the puzzle is

M = 4, N = 13.

To perform this calculation, we used version 5.6.0 of clingo. Earlier versions do not

accept the first rule of the program as safe unless the expression:

1 < M ∧M < N,

in the body is rewritten in the interval notation: M = 2 .. N − 1.

5 Proofs

Proofs of Theorems 1 and 2 are based on similar results from an earlier publication

(Fandinno et al. 2020), and we begin by reviewing them for the special case of regular

programs.

5.1 Review: Completion according to Fandinno et al.

For any regular term t, the formula val t(Z), where Z is a general variable that does not

occur in t, is defined recursively:

• if t is a numeral or a variable then val t(Z) is Z = t;

• if t is t1 + t2 then val t(Z) is

∃IJ(Z = I + J ∧ val t1(I) ∧ val t2(J)),

and similarly for t1 − t2 and t1 × t2.

If t is a symbolic constant then val t(Z) stands for Z = t. If t1, . . . , tk is a tuple of symbolic

constants and regular terms, and Z1, . . . , Zk are pairwise distinct general variables that

do not occur in t1, . . . , tk, then val t1,...,tk(Z1, . . . , Zk) stands for val t1(Z1)∧· · ·∧val tk(Zk).

If t is t1 .. t2 then val t(Z) stands for

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ≤ J ∧ Z = K).

The translation τB transforms expressions in the body of a regular rule into formulas

as follows:

• τB(p(t)) is ∃Zval t(Z)∧p(Z)), where Z is a tuple of distinct program variables that

do not occur in t;

• τB(not p(t)) is ∃Z(val t(Z) ∧ ¬p(Z));
• τB(t1 ≺ t2) is ∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2);

• τB(t1 = t2 .. t3) is ∃Z1Z2(val t1(Z1) ∧ val t2 .. t3(Z2) ∧ Z1 = Z2);

• τB(B1 ∧B2 ∧ · · · ) is τB(B1) ∧ τB(B2) ∧ · · · .
The completed definition of p/n in Π in the sense of Fandinno et al. is the sentence

over σΠ constructed as follows. Choose a tuple V of n general variables that do not occur

in Π. For every rule R in the definition D of p/n in Π, by F ′R we denote the formula:

τB(Body) ∧ val t(V)
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if R is (5), and

τB(Body) ∧ val t(V) ∧ p(V),

if R is (6). The completed definition of p/n in Π according to Fandinno et al. is the

sentence:

∀V
(
p(V)↔

∨
R∈D
∃U′RF ′R

)
,

where U′R is the list of all variables occurring in R.

For example, the completed definition of one-rule program (3) is

∀V (even(V )↔ ∃X (∃Z1Z2

(
Z1 = X ∧ val−10 .. 10(Z2) ∧ Z1 = Z2

) ∧ val 2×X(V )
))

,

(21)

where val−10 .. 10(Z2) stands for

∃IJK(I = −10 ∧ J = 10 ∧ I ≤ K ≤ J ∧ Z2 = K),

and val 2×X(V ) stands for

∃IJ(V = I × J ∧ I = 2 ∧ J = X).

By COMP(Π), we denote the set of sentences that includes

• for every predicate symbol p/n occurring in Π, its completed definition in Π in the

sense of Fandinno et al., and

• for every constraint ← Body in Π, the universal closure of the formula ¬τB(Body).

Lemma 1

For any regular program Π and any subset S of its Herbrand base, if S is a stable model

of Π then S↑ satisfies COMP(Π) (Fandinno et al. 2020, Theorem 1).

Lemma 2

For any tight regular program Π and any subset S of its Herbrand base, S is a stable

model of Π iff S↑ satisfies COMP(Π) (Fandinno et al. 2020, Theorem 2).

5.2 Main Lemma

Theorems 1 and 2 follow from Lemmas 1 and 2 in view of the following fact proved below:

Main Lemma

For any regular program Π, the formula NCOMP(Π) is equivalent to COMP(Π) in clas-

sical predicate calculus with equality.

In the statements of Lemmas 3–7, R is a regular rule, X is the list of its critical

variables, and I is fR(X).

Lemma 3

If t is a list of symbolic constants and regular terms that occur in R, and Z is a list of

pairwise distinct general variables that do not occur in R, then the formula

I = X→ ∀Z(valt(Z)↔ Z = fR(t)), (22)

is logically valid (Lifschitz 2021, Lemma 1(i)).
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Lemma 4

For any regular atom p(t) occurring in R, the formulas

I = X→ (fR(p(t))↔ τB(p(t))),

I = X→ (fR(not p(t))↔ τB(not p(t))),

are logically valid (Lifschitz 2021, Lemma 1(iii,iv)).

Lemma 5

For any comparison t1 ≺ t2 occurring in R, the formula

I = X→ (fR(t1 ≺ t2)↔ τB(t1 ≺ t2)),

is logically valid (Lifschitz 2021, Lemma 2).

Lemma 6

For any comparison t1 = t2 .. t3 occurring in R, the formula

I = X→ (fR(t1 = t2 .. t3)↔ τB(t1 = t2 .. t3)),

is logically valid (Lifschitz 2021, Lemma 4).

From Lemmas 4–6, we conclude:

Lemma 7

The formula

I = X→ (fR(Body)↔ τB(Body)), (23)

where Body is the body of R, is logically valid.

Lemma 8

Let R be a regular rule with the body B1 ∧B2 ∧ · · · .
(a) For every variable X that occurs in Bi in the scope of an arithmetic operation, the

formula

τB(Bi)→ ∃I(I = X), (24)

is logically valid.

(b) If Bi is a comparison of the form t1 = t2 .. t3 then formula (24) is logically valid for

every variable X that occurs in Bi.

(Lifschitz 2021, Lemmas 7 and 9).

From Lemma 8, we conclude:

Lemma 9

Let R be a regular rule, and let X be the list of its critical variables. The formula

τB(Body)→ ∃I(I = X), (25)

where Body is the body of R and I is fR(X), is logically valid.

In the following lemma, R is a regular rule of form (5) or (6), FR and UR are as defined

in Section 3.2, and F ′R and U′R are as defined in Section 5.1.
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Lemma 10

The formula ∃U′RF ′R is equivalent to ∃URFR.

Proof Let X be the list of all critical variables of R, and let I be fR(X). It is sufficient

to prove the equivalence:

∃IF ′R ↔ ∃XFR.

We consider the case when R is (5), so that FR is

τB(Body) ∧ val t(V),

and F ′R is

fR(Body) ∧V = fR(t).

The case of rule (6) is similar.

Left-to-right: assume ∃I(fR(Body)∧V = fR(t)). Since ∀I∃X(I = X), we can conclude

that

∃I(∃X(I = X) ∧ fR(Body) ∧V = fR(t)).

It follows that

∃IX(I = X ∧ fR(Body) ∧V = fR(t)),

because the critical variables X do not occur in the formula fR(Body)∧V = fR(t). Then

∃IX(τB(Body)∧ val t(V)) follows using the iniversal closures of (22) and (23). Since the

integer variables I do not occur in τB(Body) ∧ val t(V), the quantifiers binding I can be

dropped.

Right-to-left: assume ∃X(τB(Body) ∧ val t(V)). We can conclude, using the universal

closure of (25), that

∃X(∃I(I = X) ∧ τB(Body) ∧ val t(V)).

It follows that

∃IX(I = X ∧ τB(Body) ∧ val t(V)),

because the integer variables I do not occur in the formula τB(Body) ∧ val t(V)). Then

∃IX(fR(Body) ∧V = fR(t)) follows using the universal closures of (22) and (23). Since

the critical variables X do not occur in fR(Body)∧V = fR(t), the quantifiers binding X

can be dropped.

Lemma 11

If R is a regular constraint← Body then the universal closures of the formulas ¬fR(Body)

and ¬τB(Body) are equivalent to each other.

Proof Let X be the list of all critical variables of R, and let I be fR(X). It is sufficient

to prove the equivalence:

∃I fR(Body)↔ ∃X τB(Body),

because it entails

∀I¬fR(Body)↔ ∀X¬τB(Body),
and consequently entails also the equivalence between the universal closures of

¬fR(Body) and ¬τB(Body).
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Left-to-right: assume ∃I fR(Body). Since ∀I∃X(I = X), we can conclude that

∃IX(I = X ∧ fR(Body)),

because the critical variables X do not occur in fR(Body). Then ∃IX τB(Body) follows

using the iniversal closure of (23). Since the integer variables I do not occur in τB(Body),

the quantifiers binding I can be dropped.

Right-to-left: assume ∃X τB(Body). We can conclude, using the universal closure

of (25), that

∃IX(I = X ∧ τB(Body)),

because the integer variables I do not occur in τB(Body). Then ∃IX fR(Body) follows

using the universal closure of (23). Since the critical variablesX do not occur in fR(Body),

the quantifiers binding X can be dropped.

Main Lemma follows from Lemmas 10 and 11.

6 Discussion

In the presence of arithmetic operations, the completed definition in the sense of Fandinno

et al. is often longer and syntactically more complex than the “natural” completed def-

inition introduced in Section 3.2; compare, for instance, formula (21) with (2). On the

other hand, the approach of Fandinno et al. is applicable to some types of rules that are

accepted by clingo but are not regular, such as

p(1..8,1..8).

p(2*(1..8)).

These two rules can be easily rewritten as regular rules:

p(X,Y) :- X = 1..8, Y = 1..8.

p(2*X) :- X = 1..8.

Regularizing the rule

q(X/5) :- p(X).

in a similar way gives the rule:

q(Y) :- p(X), X = 5*Y+Z, Z = 0..4.

that the current version of clingo considers unsafe.

The translation COMP is used in the design of the proof assistant anthem (Fandinno

et al. 2020), and our Main Lemma shows that NCOMP can be employed in the same

way. In the process of interacting with anthem, the user often has to read and modify

completion formulas. A version of anthem that implements natural completion would

make this work easier.

It would be interesting to extend the definition of NCOMP to programs containing

conditional literals (Gebser et al. 2019, Section 3.1.11). Such an extension would make

the reverse completion process applicable to some formulas that are more complex syn-

tactically than the current version. For instance, it may be able to handle the formula:
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b1(M,N) ↔
b0(M,N) ∧ ¬∃JK(b0(J,K) ∧M +N = J +K ∧ ¬puzzling0(J ×K)),

which can replace axioms (13), (14) in the first-order formalization of the Sum and

Product Puzzle.
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