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Abstract

Let A denote a triangulation of a planar polygon €i. For any positive integer 0 < r < k,
let Sj(A) denote the vector space of functions in C whose restrictions to each triangle
of A are polynomials of total degree at most k. Such spaces, called bivariate spline
spaces, have many applications in surface fitting, scattered data interpolation, function
approximation and numerical solutions of partial differential equations. An important
problem is to give the function expression. In this paper, we prove that, if (A, fl) is type-
X, then any bivariate spline function in S£(A) can be expressed by a series of univariate
polynomials and a special bivariate finite element function in S%_r(A) satisfying a so-called
integral conformality condition system. We also give a direct sum decomposition of the
space Sjf(A). In addition, the dimension of 5'+1(A) for a kind of triangulation has been
determined.

1. Introduction

For a connected polygonal region Q in R2, let A be a triangulation of £2, and by
this, we mean that the complement of A relative to Q consists of a finite number of
triangles such that none of the vertices of any triangle lies on the interior of any edge
of another triangle. For 0 < r < k — 1, where r and k are integers, we define Sr

k(A) to
be the vector space of Cr functions which are piecewise polynomials with total degree
at most k over each triangle of A. The space S£(A) is called a bivariate spline space
with degree k and smoothness order r.

It is well-known that, in the one dimensional case, univariate spline functions are
very useful in many practical applications. For example, the cubic spline, which
has good smoothness and solves the optimal interpolation problem, is widely applied
in solving bending problems of plates and shells and in the surface design of cars,
ships and aeroplanes. In the early and mid seventies, because of the increasing
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predominance of the finite element method, people began to study spline functions
in two dimensions, see [22, 25, 26]. Since then, bivariate splines have been widely
applied in multivariate function approximation, surface fitting and design, the finite
element methods and numerical solutions of partial differential equations. In recent
years, they have been used in scattered data interpolation [1,8] and wavelets [6, 7].

With such a widespread range of practical applications, the space of bivariate spline
functions is of great interest to many researchers. It is important to determine both
the dimension of such a space and the expression of the function. Since Morgan
and Scott gave the first result on dimension [22] in 1975, much work has been done
in determining the spaces dimension, see [2, 3, 8, 13, 21, 24]. As for research into
the expression of bivariate spline functions, there are currently three main methods:
Bernstein-Bezier representation (B-form, B-net) [4, 11, 12, 14, 16], the basic spline
(B-spline or box spline) method [5, 10, 17] and the smoothing cofactor method
[8, 9, 25].

In [19, 20], a so-called integral representation of bivariate splines is proposed by
the present author. This together with the B-net method, has been used to determine
the dimension of the double periodic spline space 5t'(A^) with k > 4 on Type-1
triangulation A ^ [19], the bivariate quadratic spline space 5^(A) [20] and the cubic
spline space 53'(A) over stratified triangulation [21]. In this paper, an expansion of
the bivariate spline function in S£ (A) is presented, a direct sum decomposition of
S[(A) is given and the dimension of S^+1(A) for a kind of particular triangulation is
determined.

2. An integral representation of bivariate splines

For any triangulation A, denote

V, := the set of all the interior vertices of A,

VB := the set of all the boundary vertices of A,

Ei := the set of all the interior edges of A,

E := the set of all the edges of A,

V := V, + VB.

We say (ft, A) is of type-X provided that there exists a rectangular coordinate
system XOY such that the slope of any edge in E equals neither 0 nor <x> and the
number of intersection points of the boundary 9ft and any straight line which is
parallel to the X-axis is no more than two. For example, (ft, A) is always type-X
for any triangulation A if ft is a connected convex polygonal region. We will merely
consider the case that (ft, A) is type-X throughout this paper.
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FIGURE 1. Planar polygon J2 and its triangulation A.

We set up a rectangular coordinate system X OY as required above. Clearly the
two boundary vertices of A with maximum and minimum ordinates divide dQ into
two parts. The left part is denoted by d~Q and the set of all the vertices on d~Q except
for the end points is denoted by Vg.

For each v € V}, the union of all the triangles with the common vertex v is called
a standard cell with interior vertex v and is denoted by A^. We denote the boundary
vertices in Av, in the counter-clockwise direction, by vi•,, j = 1,2,... , dv, where dv is
the number of edges emanating from v, called the degree of v. Set v0 := v, e, := vovj
and kj := slope («,-). Clearly, et can be described by the equation x = lj (y), where
lj(y) := XQ + (v — yo)/kj, and (x0, y0) are the coordinates of v0. In addition, the
triangle between e,- and ej+l is denoted by 7}, j = 1, 2 , . . . , dv.

As shown in Figure 1, from bottom to top, we label consecutively all the vertices
on 3~£2 v\, i = 0, 1 , . . . , n, n + 1. And for i = 1 , . . . , n, we number all the edges
attached to v\ in the counter-clockwise direction and label them e?i}, j = 1 , . . . , d\,
where we have put e'n := i>,'_,!>,'. Note that, with the above-mentioned assumption of
slope (e) ^ 0, oo for any e e £, the equation of e|y can be denoted by x = faj (y),
i = 1 , . . . , n, j = 1 d\. In addition, we let 7V. stand for the triangle between e'ij

From the assumption that (Q, A) is type-.Y, we can see easily that the projections
of all vertices v\ (i = 0, 1 , . . . , n, n + 1) in the /-axis form a univariate partition Ay
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of interval [m, M] as follows:

Ay : m = y'o < y[ < • • • < y'n < y'n+i = M, (1)

where y • is the ordinate of v'r We denote the equation of the broken line on which
d~Q lies by x = O(y) with

( ^ " W ' y € W-i' y& ' = l j • • • ' n

For 0 < r < k — 1, where r and k are integers, we define 5[(A) to be the vector
space of C functions which are piecewise polynomials with total degree at most k
over each triangle of A.

Let Pi and FI* denote the spaces of univariate and bivariate polynomials with
degree at most k, respectively. As is well known [8, 9, 25], a necessary and sufficient
condition for 5 e S£(A) is that the following conformality condition

[ ] r + l = 0 (2)

holds for any v e V/, where qj e nt_r_i is the smoothing cofactor of s from 7}_i to
7} across edge e, around v satisfying

s(x,y)\Tj -s(x,y)\Tj_l=qj(x,y)[x-lj(y)Y+1. (3)

Recently [20], another kind of identity, namely

or

tCqj(x'-

;=1 A GO

y)[x-lj(y)Y+ldx=0, (4)

s(x,y)\Tidx=O, (5)

called ?/ie integral conformality condition ofs at the interior vertex v, was introduced
and a kind of relevant spline space 5£ (A) was defined to be composed ofs such that

(i) seSr
k(A);

(ii) the integral conformality condition (4) holds at each v e Vt.

On the basis of this ([20] also see [21]), we obtain the following lemma.
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LEMMA 1. Let 1 < r < k — l and (ft, A) be type-X; then a necessary and sufficient
condition for s € S£(A) is that s can be expressed as

s(x,y)=p(y)+ I r)(T,y)dr, (6)
J<S>(y)

where r)(x,y) e 5^_}(A) and p(y) is a univariate piecewise polynomial with degree

r)(x, y)\r, dx, i = 1 , . . . ,n, (7)

at most k on Ay such that

1=1 j=i

withpt(y) ••= pi.y)\\y[yi+i), i = 0, 1, . . . ,n.

For convenience we here recast Lemma 1 as follows.

LEMMA 2. Let 1 < r < k — 1 and (ft, A) be type-X; then a necessary and sufficient
condition for s € S[(A) is that s can be expressed as

s(x,y)=p(y)+ I r){x,y)dx, (8)
Jo>(y)

where r)(x,y) € Sr
kZ\ (A) and p(y) is a univariate piecewise polynomial with degree

at most k on Ay such that

p(y) =po(y) + ^2(y - y',)+ XI / n(x,y)\T;tdx, (9)

where

I I v > v'

(y-y'f+:={ \ *" (10)
10 otherwise.

3. An expansion of bivariate spline functions

Before giving our result, we define an integral projection operator I, : C°(ft) ->
C°[w, M], i = 0 , 1 , . . . , r — 1. For any piecewise polynomial function / (x, y)
defined on A with global smoothness at least 0 on the region ft, denote

Wl := J>-y'f+j2 / /(*.y)lr, ̂ -

/ / • • / f(ir,y)dTr-- <2rr_I+2 rfrr_1+i , i = 2 , . . . , r - 1.
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THEOREM 1. Let 1 < r < k — 1 and (£2, A) be type-X; then a necessary and
sufficient condition for s € S£(A) is that s has the following expansion:

r-1

+ f" [' ••• (" S<r)(Tr,y)dTr---dT2dTl, (11)
J<t>(y) J<t>(y) JQ(y)

where r0 = x, Po\y) are arbitrary univariate polynomials in P*-;,./ = 0, 1 , . . . , r —
1, and s(r)(x,y) 6 S£_r(A) satisfies the following integral conformality condition
system at each interior vertex v € Vt :

E l fJ qjr)

i

I f i
l, Jlj Jlj

= 0,

with q(p e n t_ r feeing the smoothing cof actor of s{r\x, y) from Tj to Tj+l across
edge ey around v.

PROOF. From Lemma 2, we can easily see that a necessary and sufficient condition
for s(0)(;t, y) = s(x, y) e S£(A) is that the following recurrence expressions

sm(x,y)=p(O\y)+ I sw(rl,y)dru s(1> e Sr
kZ\(A), (13)

s(l\x, y) = pw(y) + I *(2)(r2, y) dx2, sm e 5t
r:2

2(A), (14)
«/<t>(y)

s^'^ix, y) = p(r-l)(y) + f s(r)(rr, y) dxr, sir) e 5^_r(A), (15)

hold, where

p«(y) = p » 0 0 + Io [5
(I+1>], i = 0, 1 , . . . , r - 1, (16)

https://doi.org/10.1017/S0334270000011802 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011802


[7] Bivariate spline functions 533

g:) being arbitrary univariate polynomials in P*-,,./ = 0, 1 , . . . , r — 1.
From (13)—(15) we have

J2^
+ r [>--["s"(Tr,y)dTr-dT2dr1, (17)

J<t>(y) J<S>(y) J<t>(y)

with T0 = x. From the recursions (13)—(15) and equality (16), we have, for 0 < i <

f+" 5('+2)(r1+2, y) dri+2]
J<t>(y) J

£

£ ^ y ( ) ir-i-i [sir)] • (18)

This gives

o( - V 1

Substituting this expression into (17) yields

, v) = ̂  i u - *)'
1=0

/ • / s{r){xr,y)dxr-• • dx2dx\

r - l

7=0 J •

+ f ° f ... f " s"(xr, y)dxr • • • dx1dxl. (20)

Next, we need to discuss the integral conformality condition of s(i)(x,y), i =
1,. . . , r, at each interior vertex v € V,. Let qflx, y) e nt_r_[ be the smoothing
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cofactor of s(i)(x,y) from Tj_{ to 7J across edge ej around v; then the integral
conformality condition of s(l)(x, y), i = 1 , . . . , r, at vertex v is equivalent to the
system

hly)

(2)( :,y)[x-lj(y)Y-1dx=O
(21)

From s(l)(x, y) e 5^_J(A), we have, for any i = 1,... , r — 1,

*<»(*, y ) | 5 - 5(l)(x, y)|r>_, = ^>(x , y)[x - lj (+1. (22)

For convenience, we say T)_i is located at the left side of 7} if there exists y* such that
(Xj, y*) e 7} a.nd(xj^i,y*) e 7}_! with;t;_i < * ; . Without loss of generality, we can
assume that 7}_x is located at the left side of 7}. Then by setting s,(0 := 5(0(x, y)\Ti,
tz=j — l ,y , it follows from (13M15) that

Sj°(x, y) = p 0 0 ^) + / su+i\x, y)dx+ sj'+l\x, y) dx
J<P(y) Jl

+ I* s?+l\r,y)dx,
Ji,

*]-,(*> y) = Pw(y) + f s(i+i\x, y)dx+ f sf+fix, y)dx,
J*>ly) Jl

wherex = l(y) stands for x = lj>-i(y) or the equation of the third edge of 7} _ j . These
two equalities together with (22) yield

that is,

q)\x, y)[x - lj (y)Y~i+l = f [^'+1)(T, v) - 5™{r, y)] dx,
Jtj

q^(x, y)[x - lj (y)Y'i+l = [' gj'+1)(x, y) [r - lj (y)]"' dx.

(23)

(24)

Substituting this into the integral-conformality-condition system (21) yields (12).
The proof of the theorem is complete.
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Theorem 1 shows that any bivariate spline function 5 6 Sk (A) can be expressed
by a series of univariate polynomials and a special bivariate finite-element function
5(r) € 5^_r(A) satisfying the integral-conformality-condition system (12). Hence all
discussion of the space 5[(A) can be transformed into discussion of the integral-
conformality-condition system (12).

Noticing that, for ally = 0 , . . . , r—l,Ir_i-y [s(r)] is always a univariate polynomial
in P*_,, and denoting the subspace of 5°_r(A) with its elements satisfying the integral-
conformality-condition system (12) by S£_r(A), we can re-write Theorem 1.

THEOREM 2. Let 1 < r < k — 1 and (Q, A) be type-X; then a necessary and
sufficient condition for s 6 S[(A) is that s has the following expansion:

r-\ j

*(*. y) = J2 - ( * " *"&& Po](y)

+ r r . . . r~'sw(rr)y)dXr...dT2dTu ( 2 5 )
J<t>(y) J<S>(y) • J*Cv)

where To = x, Po\y) are arbitrary univariate polynomials in Pk-j> j = 0 , . . . , r — 1,
ands<r\x,y)S°k_r(A).

In addition, we can easily prove that the expansion in Theorem 2 is unique. Hence
we have the following direct sum decomposition of S£(

THEOREM 3. Let 1 < r < k - 1 and (ft, A) be type-X. If we set

(x - (t>n(y))j • P%\y) : pT e P,_, ] , j = 0,. . . , r - 1,

Q = I"" f ' ... f" ' s"(rr, y) dzr--- dx2dxl : s"~S°k_r(A) ) ,
Jt>(y) J«(y) J<t>(y) J

then
r—\

~ V: 8 Q. (26)

Alternatively, if we note that Q = 5£_r(A), we have the following result.

COROLLARY 1. Let 1 < r < k - 1 and (ft, A) be type-X; then

dim S;(A) = i(2£ - r + 3)r + dim 5?_r(A). (27)

However, we need to point out that, because the integral-conformality-condition
system (12) involves the triangulation A, it is still very difficult to discuss, especially
for the cases where the smoothness r is close to the degree k. This reflects the
complexity of the bivariate spline space.
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4. The bivariate spline space Sr
r+1(A)

[10]

Consider the special case of k = r + I. At this time, s(r)(jt, y) e 5f(A) and
qjr)(x, y) 6 n0, so we can set c, := q)r)(x, y), j = 0,... , dv. Then the integral-
conformality-condition system (12) can be simplified to

(28)

that is,

(29)

In addition, note that, for s(r) e 5j(A), c,
condition (2), that is,

= ^ j r ) should satisfy the conformality

(30)

which is equivalent to

(31)

So, a necessary and sufficient condition for s e Sr
r+l(A) is that s can be expanded as

(11) with 5(r) € S?(A) satisfying, at each interior vertex v € V}, the following system:

(32)
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The coefficient matrix of the above homogeneous system is

A =

with kj : = &, ' — kj x,j — 2 , . . . , dv.
It is easy to see that, if dv = r + 2, then

r+2

det A = Y[XJ -deiV\
1=2

537

1
0
0

0

1
A-2
X\

A,

1 ••

x 3 ••

x\ ••

A r + 1 • •Aj

1 "

ir+1
Ad, _

(33)

(34)

where det V[X2, X3,.. . , Xr+2] is the well-known Vandermonde determinant. So
det A ,£ 0 if and only if kt ^ kJt i,j = 1 , . . . ,dv, i ^ j .

We now introduce the following result in which the so-called cross-cut grid line is
introduced [25] and defined such that it divides £2 into two parts.

THEOREM 4. Let (£2, A) be type-X and, for each interior vertex v, let the number
of edges with different slopes attached to v be not greater than r + 2. Then

dim S;+1(A) = dim nr + 1 + iVC)

where Nc is the number of all cross-cut grid lines in A.

(35)

PROOF. First, we just consider the case that A = A«. Without loss of generality, we
can assume that there are only two interior edges having the same slope, for example,
eia and ex. Then the system (32) becomes

(36)

) - l
r' - */T+1 C'J + E
I J J J 4_^ij=j

with dx = ci + cjo and c< = cJfj = 2 , . . . , <iu, _/ ^ j 0 . Since the number of edges
with different slopes attached to v is not greater than r + 2, that is, dv — 1 < r + 2,
the system (36) has a unique zero solution:

(37)
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that is,

c i = - < v o . c 2 = • • • = c , 0 _ i = c j o + i = - - = c d e = 0 . ( 3 8 )

Hence the dimension of 5^(A) equals the sum of the dimension, 3, contributed from
the so-called source-cell [8, 9, 25] and the dimension, 1, contributed from all the
smoothing cofactors. Furthermore, according to Corollary 1, we can easily have

-dim S;+1 (A) = - (r + 5)r + 4 = dim n r + , + 1 = dim nr + 1 + Nc. (39)

Secondly, we consider the case that the number of interior vertices in A is more
than 1. Without loss of generality, we can still assume that there is only one cross-cut
grid line, denoted by L in A. From one end to the other, we denote all vertices which
lie on L by v(i), i = 0 , 1 , . . . , N + 1, as shown in Figure 2, where u<0) and viN+X) are
two boundary vertices. For each v(i\ i = 1 , . . . , AT, we denote all the edges attached
to u(l) in the counter-clockwise direction by ej'J, j = 1 , . . . ,dt, where dt is the degree
of v(i). Without loss of generality, we can assume that e\l) and eft lie on the cross-cut
grid line L and the corresponding smoothing cofactors of s(r) e S°(A) across ej° and
ejl* around v(<) are denoted by c\l) and c^, respectively. Then from the proof of the
first case, we have

c { ° = - c j j \ i = l , . . . , N . (40)

Note that c]|+1) = -c{° [8, 9, 25] and we have

c ? = c[l), i = l , . . . , N . (41)

Now, let v be any interior vertex in V,. Since the number of edges with different
slopes attached to v is not greater than r +• 2, it follows from the proof of the first
case that, for any edge e, attached to v, if no other edge has the same slope, then the
corresponding smoothing cofactor c, = 0; otherwise c, = — cjo, where ejo has the
same slope as edge e,. For the latter case, e, and eh either lie on the unique cross-cut
grid line L or a line segment L*. We have proved that if they lie on L then both c, and
cjo are determined by c,1*. Hence we need merely discuss the case that e, and ejo lie
on the line segment L*.

Because L* is not a cross-cut grid line, there exists at least one end point of L* that
is an interior vertex of A, denoted by v*, as shown in Figure 2. From this end point v*
to v, we denote all vertices that lie on L* by v*,j = 0 , 1 , . . . , N*, with v* = VQ and
v = v*N.. Similarly to (41), we conclude that each smoothing cofactor of s(r)(x, y)
across edge v*v*+l around v*+l,j = 0, 1 , . . . , N* — 1, equals the smoothing cofactor
of s(r)(x, y) across edge uju* around u*. Since there is no other interior edge in A^
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FIGURE 2. A particular triangulation A of Q in Theorem 4.

having the same slope as edge v^v*, it follows from the proof of the first case that
the smoothing cofactor of 5(r)(jc, y) across edge v£v* around v* equals 0. So all the
smoothing cofactors of s(r)(x, y) across all the edges that lie on L* are equal to 0,
meaning c, = 0.

So we conclude that the dimension contributed by the edges lying on the cross-cut
grid line L is 1 and by other edges is 0. This results in the same result as (39). The
proof of the theorem is completed.

It is worth indicating that, in the special case discussed in Theorem 4, our dimension
result is not the lower bound of the dimension formula given by Schumaker [24]. In
fact, if we still use et, as in [24], to stand for the number of edges with different slopes
attached to the ith interior vertex, i — 1, 2 , . . . , | V/|, then [24] gives

i

dimS;+1(A) > -(r + 2)(r + 3) + \E,\ - (r
1

| V,\ 2 - e,)+

i

= ^(r + 2)(r + 3) + |E/| - (r + 2)| V,\ + £ ( r + 2 - e,)

= -(r + 2Kr + 3) + \El\-(r + 2)\V,\- (42)

Generally speaking, the lower bound (42) is often smaller than the dimension given
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in (35).

COROLLARY 2. Let (Q, A) be type-X and, for each interior vertex v, let the number
of all edges around v with different slopes be not greater than r + 2. IfNc = 0 then
the spline space Sr

r+l(A) degenerates to a trivial polynomial space n r + ) .

From Corollary 1 we can easily see that, for the well-known Morgan-Scott trian-
gulation As [23], whether it is symmetrical or not, the bivariate spline space Sr

r+l(A)
is always a trivial polynomial space FIr+i when r > 2.
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