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FREE CROSSED RESOLUTIONS OF GROUPS AND
PRESENTATIONS OF MODULES OF IDENTITIES AMONG
RELATIONS

RONALD BROWN anp ABDUL RAZAK SALLEH

Abstract

The paper gives formulae for a module presentation of the module of
identities among relations for a presentation of a group, in terms of
information on 0- and 1-combings of the Cayley graph. These formu-
lae are seen as a special case of formulae for extending a partial free
crossed resolution of a group, given a partial contracting homotopy
of the universal cover of the partial resolution.

1. Introduction

The initial motivation for this work was to determine, in an algorithmic mode, generator:

and relations for thé&-moduler () of identities among relations for a presentatidn=

(X|w : R — F(X))ofagroupG.Here we regar® as a set disjoint fron (X), andw gives

the corresponding element B{ X). Recall thatr (£) is given algebraically as the kernel of

82 : C(R) — F(X), the free crossed module of the presentation, and is given geometricall

asm2(K (P)), the second homotopy group of the cell complex of the presentation [17].
Our main results imply a formula as follows.

Theorem 1.1. The moduler (L) is generated as;-module by elements

-1
83lg, r1 = (ki(g, wr)) ™1 r®

forall g € G,r € R, where

(i) o : G — F(X) is a section of the quotient mappigg F(X) — G,

(ii) k1 is a morphismF(f) — C(R) from the free groupoid oiX, the Cayley graph
of the presentation, to the free crossed module of the presentation, suéhith@t, x) =
(og)x(o(g(px))) L forallx € X, g € G.

The identitiesi3[ ¢, r] may be seen as separation elements in the geometry Gtyley
graph with relators, as defined in Sectiohgand4. It is easy to see from properties (i), (i)
and the first crossed module rule that these elements all#€5). Thus the main feature
of the theorem is that these elements generate this module. We shall also show that if
sectiono is determined by a tree in the Cayley graph, then these elements generjte
additively.
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Crossed Resolutions and Identities among Relations

The identitiesiz[ g, r] will be seento arise from a boundary mappigg C3(1) — C(R)
from the freeG-module on a sef bijective with G x R, with basis elements written
[g.r], g € G,r € R. The seb3(]) is usually not a minimal set of generators (many of them
may even be trivial). So we suppose given a suliset I, determining a fre€-module
C3(J), with the property thaés(J) also generates (), and then seek relations among
these generatoz(J).

Theorem 1.2. A G-module generating set of relations among these generatg® of
7 (P) is given by

Salg. ] = —ka(g.83y) +y.g~"
for aII g€G,yel, wherek; : C(R) — C3(J) is a morphism from the free crossed
F(X) -module ond, : G x R — F(X) such thatky kills the operation ofF(X) and is
determined by a choice of writing the generatéske, r] € §3(1) for = (£) in terms of the
elements o83(J).

It will be noted that both these results use the language of groupoids. Morphisms fro
a groupoid to a group can be a convenient way of combining graphical and group theore
information.

In Section2 we shall explain the terms in these theorems in enough detail for the read
to follow an explicit calculation for the standard presentation of the gifaup Section3.

We give this example because it is sufficiently complex to illustrate important features c
the calculations, and sufficiently simple that the calculations can be carried out by hand.

In the example off3 Theoreml.1 gives eighteen generators for the moduleP); we
show this number can be reduced to fouThis set of generators was already known. The
rewriting involved in this reduction process and Theork&are then used to construct the
next level of syzygies. This initially yields twenty-four relations among identities, which
are then shown to be reducible to five. We are not aware of any previous determinati
of relations among generators for this module of identities. These calculations have be
extended by hand, but with different choices, by two further stage¥sin The numbers of
generators in the next dimensions are six and then seven.

The reader will notice the analogy between the formulae in these theorems — they ¢
in fact special cases of Corollafy).3, which computes higher-order syzygies inductively.
The context of that result is that of free crossed resolutions, universal covers of cross
resolutions, and contracting homotopies of such universal covers. Once this machinery |
been set up, the result becomes almost tautologous. It states that the pair consisting
partial free crossed resolution and a partial contracting homotopy of its universal cover ¢
be extended by one step, and hence indefinitely.

A sequel to this paper by Heyworth and Wensl&g][will show how the part of the
procedure required for Theoreinl can be implemented as a ‘logged Knuth—-Bendix pro-
cedure’, which terminates when the monoid rewrite system associated with the presentat
completes. This step has applications for infinite groups, and the resulting infinite set
generators for the module of identities may in some cases be reducible by hand.

A further paper by Heyworth and Reine7] will show how the reduction process re-
quired for Theorem..2can be implemented in the case of finite groups by using generalise

INote added in prooftn fact, G. J. Ellis and |. Kholodna have recently shown that this number may be reducec
to 3.
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Grdbner basis procedures for integral group rings. This allows a wide range of comput
tions, for example for standard presentations of the gra@sAs, B(2, 3). These further
papers will also discuss implementation issues.

The partial contracting homotopies are given by functibnfor i < » with appropriate
properties. In fackq corresponds to a 0-combing, ahd is analogous to a 1-combing;
from these we obtain the functioask; of the theorems. The algebra of such functions is
shown to be nicely handled in the context of the free group}dﬁ) on the Cayley graph
and the free crossed moduig : C(R) — F(X). We show that this crossed module is
the fundamental crossed module of the universal cover of the geometric 2-complex of t
presentation. The groupoid approach is required to utilise the vertices of the universal cov

In terms of chain complexes of modules rather than crossed complexes, a computat
of the module of identities among relations for the presentgtig®) of the groupG may
be seen as that of computing an extension of the partial resolutién of

ZG)R > 26X - 726G —> 7

where the first morphism is given by the Whitehead—Fox derivédivg x) [40, Lemma 8];
[23]. The process of extending a partial resolution is more difficult than that of just giving
resolution. There is in fact considerable work on constructing resolutions of groups, sor
of it for 2-groups mod 241], and other results using homological perturbation theory,
particularly by Larry Lambe and colleagués]. It is not clear how these methods apply to
the problem of extending partial resolutions. Work of Grov@$] [constructs a resolution
from a complete rewrite system for a monoid presentation of the group, rather than direc
from a group presentation. However, as mentioned above, complete rewrite systems
relevant to the computation &f of Theoreml.1.

Gruenberg in 25] constructs a fre&G-module resolution dependent functorially for
fixed G on the exact sequence2 N — F — G — 1. If Fis free onX andY is a set
of free generators of the group, then the number of generators in dimensias |V |1
or |Y|"~1|X| according to whether is even or odd. Thus the Gruenberg resolution is not
isomorphic to the module resolution obtained from our crossed resolution by the proce
of [40, 15] (part of which is used here in Theoréhb). Gruenberg’s work was pointed out
to us by Justin Smith, who has further work on the resolution in [38].

Our method yields a resolution that is dependent only on the presentation and two initi
sets of choices. More generally, we can obtain a free crossed resolution that is depend
only on the first: stages of a free crossed resolution and a contracting homotopy up to th
stage of the universal cover.

Inthe final section we show how these methods give rise to the standard crossed resolu
of a groupG, and to a small crossed resolution of a finite cyclic group. The resolution is ir
each case found through the construction of the universal cover and its contracting homoto

Itis interesting to compare our methods with the methods of pictures for calculating tt
generators of (#) (see for examplel], 17,31,36]). These methods use the geometry of the
relations nicely; they have been very successful in this field, and can prove more efficie
than ours for finding generators of ). However, they seem more difficult to carry outin
higher dimensions, for the following reasons.

The picture methods use 2-dimensional rewrite rules described by ‘pictures’ to redus
spherical elements to a combination of standard elements. The full information on the w;
in which these rewrites are used in a particular example is essentially 3-dimensional, a
it can thus be difficult to visualise or to record combinations of such rewrites, and the
dependencies. For our purposes this rewriting information must be recorded complete
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(see Tableg, 4 of Section3), since it is used to construct the next stage of a contracting
homotopy; this use of the complete record is one reason for the apparently cumberso
nature of the calculations. Thus there are problems in extending the picture method
determine 3-syzygies, whereas our purely algebraic method is essentially uniform ov
dimensions, giving rise mainly to computational problems. This suggests that in dimensic
2, our methods should be seen as complementary to those of pictures.

The method of pictures has also been applied successfully to determine generators for
module of identities among relations for various constructions on groups (see, for examp
[1]). In contrast, the only general construction on crossed resolutions which has so far be
appliedis the tensor product [143,39] — given free crossed resolutiofisC’ of two groups
G, H, the tensor produdf ® C’ gives a free crossed resolution of their prodGck H,
and so a presentation of the module of identities for the standard combined presentatior
the product. An application is given in [18].

There are three basic planks in our approach.

(i) Crossed complexes

Crossed complexes form an analogue of chain complexes, but with non-abelian featu
in dimensions 1 and 2. These features allow crossed complexes to combine many of
advantages of chain complexes with an ability to contain the information involved in
presentation of a group. So one can model many of the standard techniques of homolog
algebra, such as uniqueness up to homotopy of a free crossed resolution. Further, |
technique may be combined with a non-abelian version of the traditional notion of ‘chair
of syzygies’; this version takes account of the facts that free groups are non-abelian, a
that a normal subgrouly’ of a groupF is in general non-abelian and admits an operation
of F on N which is crucial in discussing presentations. Crossed complexes, unlike cha
complexes, allow for ‘free’ models of this inclusio — F (see [17]), and so give an
intuitive algebraic model of chains of syzygies in this non-abelian case. An account of us
of crossed complexes up to 1981 is given in [13].

A small free crossed resolution is convenient for calculations of non-abelian extensiol
[18] and of the cohomology class of a crossed moduf 20]. A free crossed resolution
C of G determines a freEG resolutionAC of Z in the usual sensel, 16]. The crossed
resolutionC with its free basis carries more information thag’; for example, it includes
a presentation ofs.

(ii) Algebraic models of the geometry of covering spaces

Philip Higgins pointed out in 19642P] how presentations of groupoids could be applied
to group theory. The geometric basis of the argument is that the theory of covering space:
more conveniently handled if one uses groupoids rather than groups, since there is a pul
algebraic notion otovering morphism of a groupoidhich nicely models the geometry
(see [4]). Covering morphisms of a group or groupGicre equivalent to operations 6f
on sets.

In the same way, to apply crossed complexes to covering spaces we require crossed ¢
plexes of groupoids, not just of groups. Such general crossed complexes were also fol
essential in 12] for certain higher-order Van Kampen Theorems, so the basic definition
and applications are already known. This allows us to bring in techniques not only of pre
sentations of groupoids, as discusse®®i] but also of free crossed resolutions determined
by such a presentation.

https://doi.org/10.1112/51461157000000061 Published online by Caghfbridge University Press


https://doi.org/10.1112/S1461157000000061

Crossed Resolutions and Identities among Relations

In effect, we are giving a suitabkdgebraicframework in which to place the geometry
of the Cayley graph of a generating set of the group, but including the relations as we
as the generators of the presentation, and indeed including higher-order syzygies, as tt
are constructed. This algebraic framework also conveniently models the geometry of t
universal cover of a cell complex.

A crucial tool for our methods is the fact that a covering crossed complex of a fre
crossed complex is again a free crossed complex, on the ‘covering generators’ (Theor
9.2). This models the geometry of CW-complexes. The result is crucial because it enab
us to define morphisms and homotopies by their values on the free generators. Our pr
relies on a result of Howie [32].

(iif) Contracting homotopies

The key point is that the previous technigues allow us to discuss free crossed resolutic
of contractible groupoids, for example the universal covering groupoid of the original grouy
A free crossed resolution of a contractible groupoid will have contracting homotopies, ar
our method proceeds by the construction of such homotopies. This method is applied
truncated crossed complexes, and in particular to crossed modules. The usual slogan i
choosegenerators for the kernel and so kill homotopy groups; this fails to tell us how to
choose these generators. Instead, we construct a crossed complex whose universal cov
ahome for a contracting homotopyhis ‘tautologously’ yields generators of kernels. The
method was suggested by lectures at Bangor of L.A. Lambe, on homological perturbati
theory — in that context the construction of homotopies is crucial.

In order to make this method clear, we need the basics of the theory of presentatic
and of identities among relations for groupoids. We give the key features, largely witho
proofs, in Sectiord. This leads to the theory of crossed modules of groupoids in Segtion

The definition of crossed complexes is given in Sec@ipand the definitions and results
on covering morphisms that we need are presented in Segti¢hsThe notion of homo-
topy for crossed complexes is presented in Sectidnyielding results which justify the
exposition of Sectio. The final section] 1, gives two more applications.

We would like to thank Anne Heyworth and Emma Moore for discussions on this materic
which led to the exposition in SectioBsind11, and Chris Wensley and a referee for helpful
comments.

We finally remark that this paper should be seen as a part of the general programme
higher dimensional group theodescribed in [8].

2. The computational procedure

The purpose of this section is to state the computational procedure in as direct a way
we can. The theoretical underpinning is left to later sections. We hope that this will mak
it easier for the reader.

Let? = (X|w : R — F(X)) be a presentation of a grodp. The advantages of using
the functiornw are (i) to allow for the possibility of repeated relations, and (ii) to distinguish
between an element € R and the corresponding elementr) € F(X). We shall be
concerned with the following diagram, in whigh$ = @p1, p1d2 = 82p2, p2ds = 83p3.
The parts of this diagram will be developed in paragrahfs-2.12below.
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G G G

o el

Ca(l) ——= (B ——=F(X) G (1)
Psl h2 le h1 pll pol
Cs(1) —5= C(R) —5—= F(X) ——>G

2.1. ¢ : F(X) — G is the canonical morphism from the free groupXno G given by
the set of generators.

2.2. 82 : C(R) — F(X) is the free crossefl (X)-module on the function.

Thus the elements @f (R) are ‘formal consequences’

n
c= l_[(risi)”"
i=1

wheren > 0,r; € R, ¢; = +1,u; € F(X), 82(r®)* = u~L(wr)?u, subject to the crossed
module rule:b = ba®?’, a, b € C(R).Forinformation on crossed modules, and particularly
free crossed modules, see for example 4031, 7].

Let N = Ker ¢. Thend>(C(R)) = N. Of course, it is the kernet(£) of 82, the
G-module of identities among relations, that we wish to calculate. For this we requir
algebraic analogues of methods of covering spaces, and so use the language of groupc
Our convention is that the product of elements (arrows)g — g’,a’ : ¢ — ¢’ ina
groupoidl is writtenaa’ : g — g”, andI'(g) denotes the object group dfat g, that is
the set of arrowg — g with the induced group structure.

2.3. po: G — G isthe universal covering groupoif the groupG. The objects of; are
the elements of;, and an arrow of; is a pair(g, g') € G x G with sourceg = §%g, &)
and targegg’ = 81(g, g). The projection morphismy is given by(g, g’) — g’

2.4. X is the Cayley graphof the pair(G, X). Its objects are the elements Gfand its
arrows are pairgg, x) € G x X with sourceg = §%g, x) and targeig(¢x) = §1(g, x),
also writteng(g, x).

2.5. F(X) is thefree groupoidon X. Its objects are the elements Gfand its arrows are
pairs(g, u) € G x F(X) with sourceg and targeg (pu). We also write8(g, u) = g(pu).
The multiplication is given by(g, u)(g(pu), v) = (g, uv). The morphisni is given by
(g,u) — (g, ou). The morphismpq is given by(g, u) — u. It maps the object group
F(X)(1) isomorphically toN.

As we shall see in Section, G — G is the covering morphism corresponding to the
trivial subgroup ofG, andF(X) — F(X) is the covering morphism corresponding to the
subgroupN of F(X).
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2.6. R =G x Rands, : C(R) — F(X) is thefree crossedT(X) moduleonw R —
F(X), (g,r) — (g, 0()). ThenC(R) is the disjoint union of group§(R)(g), g €q,
all mapped byp2 isomorphically toC(R). Elements oC(E)(g) are pairs(g, ¢) € {g} x
C(R), with multiplication(g, ¢)(g, ¢') = (g, cc’). The (partial) action o (X) is given by
(g,0)&® = (g(pu), c*). The boundany; is given by(g, ¢) — (g, 82¢). The morphism
p2: C(R) — C(R) is given by(g, c) — c.

If (g.0) € C(ﬁ)(g) we write (g, ¢) = g ; we call 8 thebase point mapThe elements
of C(R)(g) are also all ‘formal consequences’

n n n
(g, ) =] (G, ryy &) = T g, ) = (g, [ 7))
i=1 i=1 i=1

wheren > 0,r; € R, & = £1, u; € F(X), g € G, gi(pu;) = g, subject to the
crossed module ruleb = ba®??, a,b € C(ﬁ) Here the first form of the product is useful
geometrically, and the last is useful computationally.

In effect, we are giving first a presentatl()mw R — F(X)) of the groupomﬂ [29],
and second the free crossed module corresponding to this presentation.

The proof that the construction given in Paragramudoes give the free crossed module
as claimed is given in Theorefn2.

We now construcCs(/) and its covng(IN).

2.7. Let I be a set in one-to-one correspondence withx R with elements written
lg,r], g € G,r € R. LetC3(I) be the freeG-module onl.

2.8. Let C3(7) be the freeG-module onl = G x I. ThenCs(I) is the disjoint union of
abelian group€ (7)(g), g € G, all mapped byps isomorphically toC3(7). Elements of
C3(I)(g) are pairs(g, i) € {g} x C3(I) with addition (g, i) + (g, i"y = (g,i +1i). The
(partial) action ofG on C3([1) is given by(g, i).(g, ') = (gg’, i.g).

The construction o83 (and hence 053) requires some choices.

2.9. Choose a section : G — F(X) of ¢ such thab (1) = 1, and writeo (g) = o(g)~ L.
Theno determines a functiong : G — F(X) by g — (g,0¢). Thusho(g) is a path
g — 1inthe Cayley graplx.

Remark 2.1. The choice ofi is often, but not always, made by choosing a maximal tree
in the graphX — such a choice is equivalent to a choice of Schreier transversal for th
subgroupV = Ker ¢ of F(X).

For each arrowg, x) of X, the eIemenb(g, x) = (hog) (g, x)ho(g(¢x)) is a loop at
lin F(X) and so is in the image b.

2.10. For each arrowg, x) of X choose an element (g, x) € C(ﬁ)(l) such that

S2(h1(g, x)) = p(g, x).

Thenhq extgnds uniquely to a morphism : F()?) — C(I?)(l) such that for all arrows
(g, u) of F(X)

S2(h1(g, u)) = (hog) (g, u)ho(g(pu)). )
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It follows thatgzhl(ho(g)) = (1,1) for all g € G. Further, ifhg is determined by a
choice of maximal tred" in the Cayley graph, then for each, x) in T we may choose

hi(g,x) = (1,1).

Remark 2.2. The choice ofi1 is equivalent to choosing a representation as a consequenc
of the relatorsk for each element oN, given as a word in the elements &f There is

no algorithm for such a choice. It will be shown i&g] how a ‘logged Knuth—Bendix
procedure’ will give such a choice when the monoid rewrite system determin&chingy

be completed, and that this allows for an implementation of the determination of

The morphisnk4 of Theoreml.1 of the Introduction is simply the compositigih1.
2.11. For[g, r] € I define

salg. r1 = pz ((ha(g. () 7) #7%. 3)

It follows from equation 2) thatd»d3[g, r] = 1, and so the given valués[g, r] lie in
the G-modulern (£). This implies thadsz : C3(I) — C(R) is well defined orC3(7) by its
values on the set of free module generators.

2.12. Let 83 : C3(I) — C(R) be theG- -morphism given b)63(g, d) = (g,83d), d €
C3(I). Lethy : C(R) — C3(I)(1) be the groupoid morphism killing the operation of
F(X) (thatis,ha((g, ¢)®®) = ha(g, ¢) for all (g, ¢) € C(R),u € F(X)) and satisfying
(g,r) — (4,[g,r]),(g,r) € G x R. Then from equation3) we deduce that for all
g€G,ceC(R)

83ha(g, ¢) = (h182(g, )71 (L, 2%). 4

2.13. Proof of Theoreni..1.Equations (2) and (4) show th&ts; = 0, and so the elements
pz(gg,hg(g,c)) do give identities. On the other hand,dfe C(R) anddac = 1, then
by equation (4)(1,c) = 83h2(1, ¢), and soc = 83(d) for somed. Theoreml.1 of the
Introduction is an immediate consequence, With= pohj. O

However some of the elements &f(/) may be trivial, and others may depefid;-
linearly on a smaller subset. That s, there may be a proper siilo§détsuch thats(J) also
generates the modute(?). Then for each elemeite 7 \ J there is a formula expressing
83 as aZG-linear combination of the elements&f(J). These formulae determineZas-
retractionr : C3(I) — C3(J) such thatfor all € C3(1), 83(rd) = 83(d). So we replacé
in the above diagram by, replacing the boundaries by their restrictions. Further, and this
is the crucial step, we replaég by h’, = r'h, wherer’ : C3(1)(1) — C3(J)(1) is mapped
by pstor.

Thish, : C(ﬁ) — C3(J~)(1) is now used to continue the above construction, by defining
C4(J) to be the freeG-module on elements writtdg, d] € J = G x J, with

8alg, d] = —pa(hy(g, 83d)) +d.g L. %)

These boundary elements give generators for the relations among the gengyatprs
7 (P).

2.14. Proof of Theoreni.2. This is a similar argument to the proof of Theorgr, using
equation (5), and setting = pah’,. O
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Remark 2.3. In the discussion above we have defined morphisms and homotopies by the
values on certain generators, and so it is important for this that the structures be free. |
example /i), is defined by its values on the elemeqgsr) € G x R. So, noting thaky
kills the operation ofF (X), we calculate for examplg, (g, r's”) = h’z(g(gau)_l, r) +
h’z(g(cpv)*l, s). In this way the formulae reflect the choices made at different parts of the
Cayley graph in order to obtain a contraction.

The freeness of (X) was proved by Higgins in29]. Our proof forC(R) uses a result
of Howie, as we shall see later.

Remark 2.4. The determination of minimal subsefsof I such thatssJ also generates

7 (P) is again not straightforward. Some dependencies are easy to find, and others are |
A basic result due to Whitehead(] is that the abelianisation maR) — (ZG)® maps

7 (P) isomorphically to the kernel of the Whitehead—Fox derivative/dx) : (ZG)R —
(ZG)*. Hence we can test for dependency among identities by passing to thB&Gree
module(ZG)®, and we use this in the next section. For bigger examples, this testing ce
be a formidable task by hand. An implementation of Grébner basis procedures for findir
minimal subsets which still generate is described in [27].

We finally note in this section that in many cases the elements given by Thdotem
form an additive generating set. This was suggested by the referee.

Theorem 2.5. Suppose that the functidry is determined by a choice of tree in the Cayley
graph. Then the elemenis(g, r], (g, 7) € G x R of Theoreml.1form an additive set of
generators oft (£).

Proof. We recall a commutative diagram due to Whitehe&@, Lemma 8], which is ex-
plored in the situation of general crossed complexes of groupoids in [15]:

CR)—2 = F(x) > ¢ ©6)

(ZG)HR s (ZG)HX T LG L

Hereasy is effectively abelianisationy; is the universalp-derivation [22], and is defined
on the free basiX by x — x; ag is the derivatiorgy — g — 1. Whitehead proves that these
conditions imply thads is well-defined and is &-morphism. Then the derivation property
implies thatd, is the differential(dr/dx) of the Fox free differential calculus. (We call the
differential the ‘Whitehead—Fox derivative’ because Whitehead'’s paper was published fo
years before the more widely referenced paper of B8%] It follows from the fundamental
exact sequence o2P] (see also]5]) that the image of is N2, the abelianisation of the
kernelN of ¢.

Let T be the chosen tree i, and letD be the set of edges df not in 7. The tree
determines a retractiop : F(f) — F()?)(l), and by standard Schreier theory the set
p1p (D) freely generated'. Define amorphism: N — C(R) bys(p1p(0)) = k1(0), 0 €
D. By the conditions of1, we have gs = 1y. This sectiory of the restriction oB; yields
an additive section’ : N2° — (ZG)R of the restriction of..

Let(g,7r) € R. Thenki(g, wr) = k1p(g, wr). If p(g, wr) = (p01)...p(0;), 6; € D,
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then

ki(g, wr) = kip(g, wr)
= (k1001) ... (k100;)
= (sp1p01) . .. (sp106:)
= sp1((p1) ... (pt)))
= sp1p(g, wr).

It follows that

azk1(g, wr) = azsp1p(gwr)
= s'a1p1p(g. wr)
=s'a1((0g)(wr)(58))
= 5'a1(82(r7%))
= 5" B202(r%)
=5'do(r.g ).

The elements.g~1 generatg ZG)R additively and so the elementg =1 — s'9>(r.g 1)
generate Keb, additively. Hence the elemenisds[g, r] generate Keb, additively. [

Remark 2.6. The construction of a section suchsdss a common technique. One of the
points of our methods is that a computational descriptiost &f obtained from geometric
information on the Cayley graph.

3. Syzygies of levels 2 and 3 for the standard presentatich of

We illustrate the above method in this section with the standard presentation of the si
element grougss. This is chosen as perhaps the first interesting example which can still b
done by hand, and because it does illustrate all the above points. While our set of genera
of the module of identities for this presentation is known, we are not aware of previou
calculations of the relations between these generators.

The group presentatiox, y | x2, y2, xyxy) determines the symmetric grou on
three symbols. Lek = {x, y} and letF = F(X) be the free group oX. LetR = {r, s, t}
and letw : R — F be given by

wr = x5, ws = y?, ot = xyxy.

Lety : F — S3 be the epimorphism determined byy, and letV = Ker ¢. So we have
the free crossed modude : C(R) — F.

Now we set up the corresponding diagrah) ¢f the previous section. We think of each
element(g, r) € R as filling a 2-cell in the Cayley grapﬁ. Thus, in this example, each
relator, that is each element 8f is covered six times in the universal cover. We also see in
this situation the réle of relations which are proper powers. The covers of the element
R separate into two classes, namely

(L, 1), (px, 1), (@x%, 1)), (@, 1), (@yx, 1), (yx2, ).

An element of one of these classes has as its boundary the same ‘trian@te?)’ras the
other elements, but with a different starting point. Similarly, the relatiois of order 2

https://doi.org/10.1112/51461157000000061 Published online by Caghridge University Press


https://doi.org/10.1112/S1461157000000061

Crossed Resolutions and Identities among Relations

X
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/ b 067
- Xy
91 92 93
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(a) The Cayley graph of3 (b) Atreeinit

Figure 1: The Cayley graph of3, and a tree in it

and so the covers ofdivide into three classes, each with 2 elements. A similar statemen
holds fors.

We now hal/e to choose : S3 — F(X). For this, choose a maximal trgein the
directed graptX . The choice of" is well known to be equivalent to the choice of a Schreier
transversal fotv in F. For this example, we choose the ti®¢o be given by the elements

L, y), (L, x), (922, %), (@y, %), (P(xy), x).

The remaining elements &f we label as

01 = (py,y), 62 = (px,y), 3= (pxy,y), 04 = (pyx,y), (7)
b5 = (px2,y), 06 = (pyx,x), 67 = (px, x). 8)

The object groups of the free groupal{T) on the graphrl’ are all trivial. For each
g € S3lethog denote the unique elementB{T)(g, 1), so that the sectiom : S3 — F of
@ is given byhog = (g, (cg) ™), g € G. Then for eachig, u) : g — g'in F(X), we set
p(g, u) = (ho(g) (g, u)ho(g)). LetN = F(X)(l) which is mapped |somorph|cally by
p2to N = 32(C(R)) = Ker ¢. Thus the tred” determines a retraction : F(X) — N.

Let D be the set of edges df which do not lie inT. Then the sep(D) is a set of
free generators of the group, andp10 (D) is a set of free generators of the gradpLet
ni =,09,',i =1,... ,7.

Inorderto defindi : F(ff) — C(ﬁ)(l)we need only to give its values on the generators
(see Sectior10.1). We give these byi(r) = 1if t € T and foré € D, we let /4 (0) be
an element ofC (R)(1) which is mapped by, to p(0). Thenh; satisfies (2), and also

h1(0) = h1(p(9)).
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Table 1: Eighteen generators for identities

generator  pdo; Vi = p2 (hl(gzai)—laf"’ﬁ"” )
ar (px2r) 7 o or?
a (py.s)  m y2 sl
as  (px%s) 1504 ya  H T
as  (px.1)  nmmsnens ya (DY asTlem Y sl
as  (1,r) n7 s 1
ag (L,5) m ve 1
a7 (1,1) n2n1 yvi 1
ag  (px,s) M3 vs 1
ag  (py,1) 15 vo 1
a0 (py,r) 76 yio 1
11 (ex,r) 7 y1 e
@12 (pxy,r) 1ne vz (rmhy e
13 (pyx,r) 76 yiz (YT
a4 (pxy,s) n3n2 V14 (s~hyrey e
a15  (pxy, 1) nmn2 Y15 Lyt
ate (px2.1) 75 yie  (THY T
a7 (pyx,s) nans yi7 B sTHT ey e
a8 (pyx,1)  nmemsnmns yis  r*(s~HTr s HY sty

In our example ofS3, we definei1 on p (D), and so orF(f), as follows:

n = p(ey, y).
n2 = pex,y),
n3 = p(pxy,y),
na = p(pyx,y),
ns = p(pxZ, y),
ne = p(pyx,x),
n7 = pex, x),

hin = (1. 5) =(1s)

hinz = 1,0, s)7t =,
hins = (1, 8)(L, ) L(px, 5) @07 = s
hina = (gy, =@
hans = (px2, )@ (px?, ™H D = @, 5 (7H")
hing = (py, )@ =@
hiny = (1.7) =)

This ensures thabhy(n;) = ni,i =1,2,...,7.

In order to calculate the identities among relations, we now need to expépssn
terms of then; for all @ € R. Then according to the previous section we can obtain an
identity among relations for eache R, namely

P2 ((hlgza)flaho’ga) .

The results of these calculations are given in Tdbl&he order of writing the identities is
chosen so that the first four give our eventual minimal set of generators, the next six gi
trivial identities, and the last has the most difficult verification of its dependence on the fir:

four.
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Table 2: Reduction to four identities

y;  identity ra;

yin =y )x —a1.x?
iz =y ai.y

yis =" —apyx
V14 )/zy o ap.x?

yis =3 og.y

Y16 =3 as

vt = )/3()/’1)" Y a3 —apyx
yis = vays Qg4+ a3.xy

We now let! consist of elementd; in one-to-one correspondence with the and let
C3(I) be the freeG- module onl. Definedsa; to be the value/, € Cy glven in the fourth
column of the table. Lef = G x I, and IetC3(I) be the freeG-module onl. We define

ho(ey) = (L@),i =1,...,18.
Then we have
h1(B20i) P = (1, ;) = 83hpay, i =1, ... ,18.

So we have extended our covering complex and its contracting homotopy by one stage.
However, we can in fact omit all of the; except the first four, because of the trivial
identitiesys, ... , y10, and the further relations given in Tal#te We give the verification
for the last two further relations, the others being trivial or easy.
We note that

o -1 -1

yrz =" (sTH T s Y
T | 111 —1,-1

B L € s S A e e e B by the crossed module rules

-1

-1 ,-1.-1 -1 a1 -1,
G S A (O S R

= (f%-‘"lr"<(s—1>fls)*’1y’1

-1

sincer (21 Hx — 4
=y3(y, Lyl

In order to verify the further identity foyys, we consider the abelianisatia@n(R)2?,
which is isomorphic to the fre§s-module onR. The differencesg — y4 in C(R)®is

1 hy™) — o ™h) = 1.(p(xy) — Dp(?).

Since the module of identities is mapped injectively igtorR)2P [17], and inC(R)2° we
haveys = r.(p(x) — ¢(y~1)), the result follows. So we have a set of four generators for
the module of identities for this presentation$af of which the first three given belong to
the root module (see [17] for an account of this).

Let J consist of the elements,i = 1, ... ,4, and letC3(J) be the freeG-module on
J, with the restriction to it of the boundady. Letr : C3(I) — C3(J) be be theG-module
morphismdefined bya;) = &;,i = 1,...,4, r(@;) =0,i =5, ... ,10and otherwise as

in Table2, so thatisr = 83. Note thatC3(/) is anS3-module, and so we write it additively
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Table 3: Twenty-four generators for relations among identities

generator identity = p3 (—h/2§39,- + 9;’0’30" )
& (1,a1) ur O
& (d,a2) w2 0
& (1,a3) w3z O
& (1,a4) na 0
§5  (px, 1) us 0
&6 (px,a2) ue O

£ (px.@3)  pr  as.(y+xd

g8 (px,a4) pg  a1.(y —x?) +as(x?—1)

E9 (px?.@1) po  ar.(l+x+x?)

g0 (px%,a2) pio @21+ y)x

g1 (px%,a3) pu az.(l+yx)x

£12 (px? as)  p12 a1.(1—yx)+as(x—1)

§13  (py, 1) niz O

§14  (py,a2) uiga  az2.(1+y)

§15  (py, a3) uis O

§16  (py,aq) pie @2 (14+x%—yx) +as(l—y—xy) —as(l—y)
&17 (pyx,a1) wa7 O

&18 (pyx,a2) uig O

&19 (pyx,a3) pig9  as.(l+yx)

£ (pyx.@s) poo @1.(l—yx)+a2.(1+x%—yx) +az.(l—y—xy)+

+ag.(=1+ yx)
2

2

£1 (pyx?,@1) p21 @1.(L+x+x?)y

E22  (pyx2,@2) po2  a2.(1+ y)x?

23 (pyx%,@3) p23 O

Eo4  (pyx2,@s) poa a1.(y —x?) +a2.(1+x% — yx) + az.(L+x2 — xy)+
Fag.(—1+ xy)

as a group, and use for the group action. To simplify the notation we write these acting
elements as words in the generators.

Definer’ : C3(I) — C3(J), (g,d) > (g, rd), and definéiy, = r'h : C(R) — C3(J).
Then we have for =1,2,...,18

Sahiyat; = ha(Bae) 1t

L
and so we have a contracting homotopy up to this level.
Note that we now have 24 generatdr& (g,@;), g€ S3,i=1,...,40f C3(J~) and
we can proceed to the next stage, to obtain identities between identities corresponding
each of these generators, namely

pa(—hbdad + d"oPdy

ford = (g,@;),g € S3.i = 1,...,4. This requires another table (Talfg In order to
show how the calculations go, we next carry out one intermediate calculation, and one f
calculation. Further details of the calculations required for the table are omitted, but a
available on request.
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Table 4: Reduction to five relations among identities
generator definition / further identity

o a1.(1+x + x%)

14 az.(L+y)

19 az.(14 yx)

112 1.(1—yx) + as.(x — 1)

116 @2.(1+x2 — yx) + a3.(1—y — xy) —as.(1—y)
w21 = j19.y

110 = [114.X

122 = j14.x2

M1l = [119.X

7 = jt19.x2

us = po.(=1+y) + p12.(x + 1)

420 = po.(1—y) + p12.(x + D)y + n1e
w24 = p12.y + [16 + [19.X2

Recall thati), is a groupoid morphism, and kills the action®tX). So, for example,

gy, 1) = /’l&(((pyxil7 t)((/)xy,x))
= h(pxy, 1)
= h(a15)

— @& )
=& )
= (1,a3).

So we have

— hyBapyx, @a) + (pyx, @)=y )

= oy O sy e ) F e )

=—(1, —&z.xz 4+ dq+ @z.xy — a3+ a2.yx — @1 — @2 + a1.yx + ®3.y — €4.yX)

=1, a1.(1— yx) + a2.(L4+ x% — yx) + @3.(L — y — xy) + @s.(—1 + yx)).

Some of the identities in Tablemight seem as surprising to others as they were to the
authors. There is a process for checking that these are identities among identities as follo
We are required to check th& of some combination of theq; is zero. Certainly, each
83@; is an identity among relations, and hence so is the corresponding linear combination

Thereforeu is 0 if and only if it maps to 0 in the abelianised groipRr)2®, which is freely
generated as AS3 module by the elementss, . Thus we determine the coefficients of
these elements for the imagewfn C(R)®, and it is straightforward to check that these
are zero. This is analogous to a previous calculation.

We next reduce this to a smaller set of identities among identities, as indable

Let K be the set with elemenfsy, 114, 119, 12, ft16, l€t C4(K) be the freeG-module
on K, and letss : C4(K) — C3(J) be given by the first five lines of the second column
of Table4. Then the sequena&;(K) — C3(J) — C(R) is exact and we have extended
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our crossed resolution by one further step. Hence we have a presentatiorGoeftbdule
T (P).

Such a crossed resolution has been extended, again by hand, by two further steps,
with different choices, in Example 5.5.1 ¢&f§]. As stated in the Introduction, the numbers
of generators in the next dimensions are found to be 6 and then 7.

As explained in the Introduction, this example is chosen as one which illustrates tt
method, which has non-trivial calculations but also is perhaps the largest example of tt
type which one would care to do by hand. The major problems are: (i) the calculation c
hi (that is, representing a set of group generator® of Ker ¢ as consequences of the
relators), and more seriously, (ii) finding minimal generating subsets of sets of generatc
of submodules of fre&G-modules, as well as (i) finding the relations giving all the
generators in terms of the smaller set. The first problem is dealt with8) §nd the last
two are dealt with in [27].

4. Presentations of groupoids

The category of groupoids will be writte®pd. Our convention for groupoids is that the
composite of arrows : x — y, b : y — zis writtenab : x — z.

The theory of groupoids may be thought of as an algebraic analogue of the theo
of groups, but based on directed graphs rather than on sets. For some discussion of
philosophy of this, se€g].

4.1. Free groupoids

The termgraph will always mean what is usually called a directed graphgraph
X consists of two sets A(X), Ob(X), of arrows and objects respectively Xf and two
functionss, t : Arr(X) — Ob(X), called thesourceandtarget maps. Amorphismf :
X — Y of graphs consists of two functions A¥) — Arr(Y), Ob(X) — Ob(Y), which
commute with the source and target maps. This defines the categaqty.

A basic construction in any algebraic theory is that of free objects. For groups, the fre
group functorF : Set — Group is left adjoint to the forgetful functoGroup — Set.
In the case of groupoids, we may define free groupoidfunctor to be the left adjoint
F : Graph — Gpd to the forgetful functoi/ : Gpd — Graph giving the underlying graph
U G of agroupoidz, namely forgetting the composition, the identity functionGh — G,
and the inverse ma@@ — G. Soif X is a graph, then the free groupadid X') on X consists
of a graph morphismi : X — U F(X) which is universal for morphisms frori to the
underlying graph of a groupoid.

The set of objects of'(X) may be identified with Ob(X). There are several ways of
explicitly constructing the set of arrows éf(X). The usual way is as equivalence classes
of composablevords

w=(x1,81)...(xy,8,),n =20,x; e Arr(X), e =%

together with empty wordé),, a € Ob(X), where the wordv is composable means that
t(x;, &) = s(xjr1,6i41),i = 1...n — 1, where

sx ife=+, tx ife=+,
,€) = . t(x,¢e) = .
s(x. ) {tx if e =—, (x &) Lx if e = —.

The equivalence relation on words, and the composition, to obtain the free groupoid &
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defined in a manner analogous to the usual definition of free group, and the graph morphi
i : X - F(X) sends an arrow to [x], the equivalence class of the wapd +).

A groupoidG is calledconnectedf G(a, b) is non-empty for alk, b» € Ob(G). The
maximal connected subgroupoids@fare called théconnected) componen$ G.

If a is an object of the groupoid, then the se (a, a) inherits a group structure from the
composition orG; this is called thebject groupof G ata and is written also a& (a). The
groupoidG is calledsimply connected all its object groups are trivial. If it is connected
and simply connected, it is called 1-connected, or a tree groupoid.

A standard example of a tree groupoid is thdiscrete, or square, groupoilS) on a
setS. This has object set and arrow sef x §, withs, 7 : S x § — § being the first and
second projections. The composition bt¥) is given by

(a,b)(b,c) =(a,c),a,b,ceS.

A graphX is calledconnectedf the free groupoidf’'(X) on X is connected, and is called
a forestif every object groupF'(X)(a) of F(X), a € Ob(X), is trivial. A connected forest
is called aree. If X is a tree, therF (X) is a tree groupoid.

4.2. Retractions

Let G be a connected groupoid. L&s be an object of5. For each objeat of G choose
an arrowra : a — ag, with tag = 14,. Then an isomorphism

¢ : G — G(ag) x 1(Ob(G))

is given byg — ((ta)"1g(zbh), (a,b)),g € G(a,b),a, b € Ob(G). The composition
of ¢ with the projection yields a morphism: G — G (ag) which we call adeformation
retraction, since it is the identity o@ (ap) and is in fact homotopic to the identity morphism
of G, though we do not elaborate on this fact here.

Itis also standard, 8.1.5] that a connected groupdids isomorphic to the free product
groupoidG (ag) * T whereag € Ob(G) andT is any wide, tree subgroupoid ¢f. The
importance of this is as follows.

Suppose thak is a graph which generates the connected grougoi@lhenX is con-
nected. Choose a maximal trEén X. ThenT determines for eady in Ob(G) a retraction
por : G — G(ap) and the isomorphisms

G = G(ag) * I (Ob(G)) = G(ag) * F(T)

show that a morphisn& — K from G to a groupoidK is completely determined by a
morphism of groupoid€; (ag) — K and a graph morphisifi — K which agree on the
objectap.

We shall use later the following proposition, which is a special case of [4, 6.7.3]:

Proposition 4.1. Let G, H be groupoids with the same set of objects, andleG — H
be a morphism of groupoids which is the identity on objects. Supposé&tisatonnected
andag € Ob(G). Choose a retractiop : G — G(ag). Then there is a retractios : H —
H (ap) such that the following diagram, whegg is the restriction ofp,

G —2~> G(ao)

wl lw ©)

H —— H(ao)
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is commutative and is a pushout of groupoids.

4.3. Normal subgroupoids and quotient groupoids

Let G be a groupoid. A subgroupoil of G is callednormalif N is wide inG (that is
Ob(N) = Ob(G)) and for any objects, b of G andg in G(b, a), g"IN(b)g = N(a).

Lety : G — H be a morphism of groupoids. Then Key the wide subgroupoid of
whose elements are glin G such thatpg is an identity ofH, is a normal subgroupoid
of G. If Ob(f) is injective then Key is totally disconnected; that isker ¢)(a, b) = @ if
a # b.

A morphismg : G — H is said toannihilatea subgraphX of G if ¢(X) is a discrete
subgroupoid off. Thus Kerg is the largest subgroupoid 6f annihilated byy. The next
proposition gives the existence of quotient groupoids.

Proposition 4.2. Let N be a totally disconnected, normal subgroupoidcfThen there
is a groupoidG/N and a morphisnmp : G — G/N such thatp annihilatesN and is
universal for morphisms fror& which annihilateN.

Proof. We define OlbG/N) = Ob(G). Ifa, b € Ob(G) we define(G/N)(a, b) to consist
of all cosetsN (a)g, g € G(a, b). The multiplication ofG is inherited byG/N, which
becomes a groupoid.

The morphismp : G — G/N is the identity on objects, and on elements is defined by
g — N(sg)g. Clearly p is a morphism and Kep = N.

The remainder of the proof is clear. O

We callG/N aquotient groupoidf G.

4.4. Presentations of groupoids

We now consider relations in a groupoid. Suppose given for each etjpéttie groupoid
G a setR(a) of elements of5(a); thusR can be regarded as a wide, totally disconnected
subgraph of5. Thenormal closureN (R) of R is the smallest wide normal subgroupoid of
G which containsR. This obviously exists since the intersection of any family of normal
subgroupoids of; is again a normal subgroupoid@f Further N (R) is totally disconnected
since the family of object groups of any normal subgroupli®f G is again a normal
subgroupoid of5.

Alternatively, N = N(R) can be constructed explicitly. Latbe an object of5. By a
consequencef R ata is meant either the identity @ ata, or any product

=gt g e g, (10)

inwhichn > 1, g € G(q;, a) for some object;; of G, &; = +1 andr; is an element of
R(a;). Clearly, the sel (a) of consequences & ata is a subgroup of; (a), and the family
N = (N(a) : a € Ob(G)) of these groups is a totally disconnected normal subgroupoid o
G containingR. ClearlyN = N(R).

The projectionp : G — G/N(R) has the following universal property. f : G — H
is any morphism which annihilatg& then there is a unigue morphisfh: G/N(R) - H
such thatfp = f. We callG/N(R) the groupoidG with the relations = 1, r € R.

In applications, we are often give®, R as above, and wish to describe the object groups
of G/N(R). These are determined by the following result.
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Proposition 4.3. [4, 8.3.3]Let G be connected, ley € Ob(G)and letp : G — G(ap)
be a deformation retraction. Letl = G/N(R). ThenH (ag) is isomorphic to the group
G (ap) with the relations

p(r)=1,r€R.

Proof. The proof follows from Propositiod.1, withH = G/N andg = p : G - G/N
the quotient morphism. Details are given in [4]. O

5. Crossed modules and free crossed modules
over groupoids

The theory of crossed modules and free crossed modules is due to Whitdigad |
Expositions are given in, for example,q, 31]. In order to obtain an algebraic model of
universal covers, we need the corresponding definitions for the groupoid case, due to Bro
and Higgins in [11].

Let ® be a groupoid. Acrossedd-moduleconsists of:

(i) atotally disconnected groupoid with the same object set ds
(i) amorphismu : M — @ of groupoids which is the identity on objects; and
(iii) a (partial) action of the groupoi@ on the right of the groupoid/ via p.

This last condition means thatife ®(a, b), m € M(p), thenm* € M (b) and the usual
laws of an action apply, namely® = m, (m*)* = m*, (mn)* = m*n* whenever the
terms are defined.

The axioms for a crossed module are:

(CM1) p(m*) = x~H(um)x,
(CM2) n~tmn = m"",
forallm,n € M, x € ® and whenever the terms are defined.

Such a crossed-module is written(M, i, ®) or u : M — &, or simply asM.

A morphismfrom a crossed modulg : M — & to a crossed module : N — ¥
consists of a pair of morphisms of groupoifis ® — ¥, g¢: M — N suchthavg = fu
andg(m*) = (gm)’* whenevem* is defined. This yields the categoxyod of crossed
modules and their morphisms.

There is also a categoBXMod of precrossed modules, in which the axiom CM2) is
dropped. The inclusion of categoriMod — PXMod has a left adjoint constructed as
follows.

Letu : M — @ be a precrossed module. ByPaiffer element, otwisted commutator,
is meant an element

(m,n) = m " tmnHm
wherem,n € M(p) for some objectp. As in the group case (se&7, Proposition 2,
p.158]) one proves that the Peiffer elements generate a naparalariant subgroupoid
(M, M) of M, and the quotient groupoid/*** = M /(M , M), with the induced morphism
u o M%* — @, inherits the structure of the crossed module. Tdssociated crossed
modulegives the reflection from the categdrXMod of precrossed modules to the category
XMod of crossed modules as required.

Let ® be a groupoid, leR be a totally disconnected graph with the same object set a
®, and letw : R — ® be a graph morphism which is the identity on objects. We define

https://doi.org/10.1112/51461157000000061 Published online by CaéhBridge University Press


https://doi.org/10.1112/S1461157000000061

Crossed Resolutions and Identities among Relations

thefree crossed module anto be a crossed modube: C(w) — @ together with a graph
morphisma : R — C(w) such that:

(i) 0w = w;
(i) if w: M — @ is acrossed module and: R — M is a graph morphism over the

identity on objects such thatg = w, thenthere is aunique morphigih: C(R) — M
of crossedb-modules such that'w = g.

Free crossed modules over groups were defined and constructed by Whitébleadd
an exposition is given in [17]. The analogous construction for groupoids is as follows.

Letw : R — @ be given as above. One first forms the free grougdid) on the totally
disconnected graph with object set Obd) whereY (p) consists of pairgr, u) such that
r € R(q),u € ®(q, p). Letd’ : H(w) — ® be given by(r, u) — u~Y(wr)u, and letd
operate orfd (w) by (r, u)¥ = (r, uv). This yields theree precrossed moduén », and the
free crossed module is the associated crossed modulgw) = H (w)** — ©.

Notice that the imagé(C (w)) is the normal closur&/ (wR) of wR in ®.

It is useful to see this construction as a special case ahtheced crossed modules$
[10] (but for the groupoid case), which can be regarded as arising from a ‘change of bas
[6]. That is,C (w) is isomorphic to the crossed modude F (R) induced from the identity
crossed module 1 F(R) — F(R) by the morphisnw : F(R) — & determined by
w : R — ®. Further, we have a pushout of crossed modules

(1.0, F(R)) — 2" . (1.0, ®)

| |

(F(R),1, F(R)) — (C(w), 9, )

This allows a link with the two-dimensional Van Kampen Theoreml®f [or rather, with
the groupoid version formulated in all dimensions12]), to obtain a proof of a groupoid
version of a well-known theorem of Whitehead [40], as follows.

Theorem 5.1. LetUg be a subset of the spateand suppose the spadeis obtained from
U by attaching 2-cells by maps of paifs : (S1, 1) — (U, Up), r € R. Then the family of
second relative homotopy groups(V, U, p), p € Up form the free crossed module over
the fundamental groupoid; (U, Up) on the graph morphism : R — w1 (U, Up) given by
wr = (f)+(1), where: here denotes a generator of the fundamental grougs?, 1).

6. Crossed complexes

The basic geometric example of a crossed complex ifuth@amental crossed complex
7 X, of afiltered space

Xi: XS X1C---C X, C---C X,

Herem1 X, is the fundamental groupoid; (X1, Xo) and forn > 2, 7, X, is the family
of relative homotopy groups, (X,, X,—1, p) for all p € Xg. These come equipped with
the standard operations #f X, on 7, X, and boundary map$: =, X, — n,-1X,. The
axioms for crossed complexes are those universally satisfied for this example.

The definition of a crossed complex generalises to the case of a set of base poi
definitions given by Blakers [2] (under the term ‘group system’) and Whiteh&@ddnder
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the term ‘homotopy system’ (except that he restricted it also to the free case). We recall tt
general definition from [11].
A crossed complexC (over a groupoid) is a sequence of morphisms of groupoids ovel
Co
n 82

Cy Cn1 C C1
O Lol
Co Co Co Co.

Here{C,},>> is a family of groups with base point mél ands®, 51 are the source and
targets for the groupoid’s. We further require given an operation of the group@idon
each family of groupg’,, for n > 2 such that:

(i) eachs, is a morphism over the identity afl;
(i) C2 — C;isacrossed module ovén;
(i) C, isaCi-module forn > 3;
(iv) 8:C, — C,—_1is an operator morphism far > 3;
(v) 86 : C, — C,_pistrivial forn > 3;
(vi) 8C2 acts trivially onC,, forn > 3.

Because of axiom (iii) we shall write the compositiondp additively forn > 3, but we
will use multiplicative notation in dimensions 1 and 2.

LetC be acrossed complex. fisndamental groupoid; C is the quotient of the groupoid
C1 by the normal, totally disconnected subgroup&it. The rules for a crossed complex
give C,,, forn > 3, the induced structure ofrgg C-module.

A morphismf : C — D of crossed complexes is a family of groupoid morphisms
fn : C, = D, (n > 0) which preserves all the structure. This defines the categarpf
crossed complexes. The fundamental groupoid now gives a fumgto€rs — Gpd. This
functor is left adjoint to the functar : Gpd — Crs, where for a groupoid; the crossed
complexi G agrees withG in dimensions 0 and 1, and is otherwise trivial.

An m-truncatedcrossed compleg consists of all the structure defined above, but only
for n < m. In particular, ann-truncated crossed complex is far= 0, 1, 2 simply a set, a
groupoid, and a crossed module respectively.

7. Covering morphisms of groupoids and crossed complexes

For the convenience of readers, and to fix the notation, we recall here the basic facts
covering morphisms of groupoids.

Let G be a groupoid. For each objectof G the star of a in G, denoted by & a, is
the union of the set& (a, b) for all objectsb of G, thatis Sta = {g € G : sg = a}. A
morphismp : G — G of groupoids is aovering morphisnif for each objecti of G the
restriction ofp

Stz a — Stg pa
is bijective. In this casé is called acovering groupoid of G.

A basic result for covering groupoids isique path lifting. That s, lep : G — G be
a covering morphism of groupoids, and {gt, g2, ... , g,) be a sequence of composable
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elements ofG. Leta € Ob(G) be such thapa is the starting point of1. Then there is a
unigue composable sequen@e, g2, . . - , &) Of elements of; such thag starts at: and
pgi=g,.i=1,...,n

If G is agroupoid, the categoGpdCov/ G of coverings ofG has as objects the covering
morphismsp : H — G, and has as arrows (morphisms) the commutative diagrams o
morphisms of groupoids, whepeandg are covering morphisms,

H4>K

N A

By a result of [4],f also is a covering morphism. It is convenient to write such a diagram
as atriple( f, p, ¢). The composition irpdCov/ G is then given as usual by

(g’er)(f’ PvQ)Z(gf»P”’)

Itis a standard result (see for exam363]) that the categorgpdCov/ G is equivalent
to the functor categor;zetG . Thus if X : G°P — Set s a functor, therG = X x G has
object set the disjoint union of the se¥ga) for a € Ob(G) and arrowsc — y the pairs
(x, g) such thatt € X (sg) andX (g)(x) = y. This ‘semidirect product’ or ‘Grothendieck
construction’ is useful for constructing covering morphisms of the grou@oktbr example,
if a is an object of the transitive groupodg, andA is a subgroup of the object grodpa),
then the groupoid; operates on the family of cosdtdh : h € St a}, by (Ah).g = Ahg
whenevelg is defined, and the associated covering morptism G defines theoverG
of the groupoidz determined by the subgroup WhenA is trivial, this gives the universal
cover ata of the groupoidG. In particular, this gives the universal covering groupoid of a
group.

We now give the generalisation of this notion to crossed complexes.

Definition 7.1. [32] A morphismp : C — Cofcrossed complexes icavering morphism
if
(i) the morphismp; : (C1, Co) — (C1,Co)is a covering morphism of groupoids;
(i) for eachn > 2 andx € Co, the morphism of groupg,, : C,(3) — C,(pX) is an
isomorphism.

In such cases we call acovering crossed compleaf C.
This definition may also be expressed in terms of the unique covering homotopy proper
For more details (but there with emphasis on fibrations) see [16].

Proposition 7.2. Let p : C — C be a covering morphism of crossed complexes and let
a € Ob(C). Leta = pa, and letK = pal(a) C ODb(C). Thenp induces isomorphisms
7,(C,a) — 7, (C, a) forn > 2and a sequence

1— m1(C,a) — m1(C,a) - K — mo(C) — 70(C)
which is exact in the sense of the exact sequence of a fibration of groupoids.

The comment about exactness has to do with operations on the pointed se3s4$ee [
The proof of the proposition is easy, and is omitted here.

The following result gives a basic geometric example of a covering morphism of crosse
complexes.

https://doi.org/10.1112/51461157000000061 Published online by Caéh®ridge University Press


https://doi.org/10.1112/S1461157000000061

Crossed Resolutions and Identities among Relations

Theorem 7.3. Let X, andY, be filtered spaces and lgt: X — Y be a covering map of
spaces such that for eaah> O, f;, : X, — Y, is also a covering map with,, = f‘l(Yn).
Thenrf : X, — mY, is a covering morphism of crossed complexes.

Proof. By aresultof ff], 7 f : m1 X1 — m1Y3 is a covering morphism of groupoids. Since
Xo = f~1(Yp), the restriction ofry f tor1(X1, Xo) — m1(Y1, Yo) is also a covering mor-
phism of groupoids. Now for each> 2 and for eachg € Xo, fi : 7 (X, Xn—1, x0) —

7, (Yy, Yu—1, p(x0)) is an isomorphism (see for example, [33]). O

Here is an important method of constructing new covering morphisms.

Proposition 7.4. Letp : c — C be a covering morphism of crossed complexes. Then the
induced morphism1(p) : m11C — m1C is a covering morphism of groupoids.

Proof. Let ¥ e Co. We will show thatp; : St,_ & ¥ — Sty,c p¥ is bijective. Let[a] €
Sty,c px, wherea € Stcpx. Sincep is a covering morphism, there exists a uniguef
Stz such thaipd = a. So p.[a] = [a] and thusp; is surjective.

Now suppose thap;[d] = p.[b]. Then(pb)~*pa e §Ca(p¥), which implies that
(pb)~Y(pa) = 8pé for a uniques € Co (). Becausep is a covering morphism, we need
only show thai(b)~1a = §¢. This follows by star injectivity. Thereforp; is injective, and
so is bijective. Hence1(p) is a covering morphism of groupoids. O

Let C be a crossed complex. We wri@sCov/C for the full subcategory of the slice
categoryCrs/C whose objects are the covering morphismg of

Proposition 7.5. Suppose given a pullback diagram of crossed complexes

i

——F

¢
l ’

HE

in whichgq is a covering morphism. Thenis a covering morphism.

We omit the proof. The groupoid case is done in [4, 9.7.6]. See also [9] for uses ¢
pullbacks of covering morphisms of groupoids.

Our nextresultis the analogue for covering morphisms of crossed complexes of a classi
result for covering maps of spaces [4, 9.6.1].

Theorem 7.6. If C is a crossed complex, then the functar : Crs — Gpd induces an
equivalence of categories

ni : CrsCov/C — GpdCov/(m1C).

Proof. If p : C — C is a covering morphism of crossed complexes, thep : 71:C —
m1C is a covering morphlsm of group0|ds by Propositibd. Sincer; is a functor, we
also obtain the functOﬁ1 To provenl is an equivalence of categories, we construct a
functorp GpdCov/(n1C) — CrsCov/C, and prove that there are equivalences of functors
1~ ,0711 and 1~ nlp
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LetC be acrossed complex, anddet D — m1C be a covering morphism of groupoids.
Let C be given by the pullback diagram in the category of crossed complexes:

C—2=iD

él lq . (12)

By Proposition7.5,3 : C — C is a covering morphism of crossed complexes.
We define the functop by p(¢) = ¢, and exteng in the obvious way to morphisms.
The natural transformatiom; p >~ 1 is defined on a covering morphism: D — m1C
to be the composite morphism

(@) T D) =
whereg : C—iDis given in diagram (11). The proof thatis an isomorphism is simple,
and is left to the reader.
To prove that I~ pr;, we show that the following diagram is a pullback:

~ @ L~
C —imC

‘IJ/ \Lq’ziﬂl(q) .

CT>iJT1C

This is clear in dimension 0 and in dimensiops?2. For the case of dimension 1, let
¢:x — yinC,and[¢] € (110) (%, ¥) be such thay[¢] = ¢(c). Then there exists a unique
¢’ : X — ysuchthafy(¢’) = [¢]andg(¢") = c. Now, c}(5552(£)) = ¢(c) = c8Ca(x). This
implies that(gc)éCa(x) = = c6C2(x). S0g(C) = c(3c2) for somecy € Ca(x). Therefore
there exists a uniqu& € Cz(x) coveringc,, andg (6(8¢2) 1) = ¢. So the above diagram
is a pullback, and thus we have proved that Jpr;. This proves the equivalence of the
two categories. O

8. Covering morphisms and colimits

In this section we give a result due to Howie [32, Theorem 5.1], which we use to prov
that covering crossed complexes of free crossed complexes are free.

Theorem 8.1. Letp : A — B be a morphism of crossed complexes. Thés a fibration
if and only if the pullback functop* : Crs/B — Crs/A has a right adjoint.

As a consequence we get the following corollary.

Corollary 8.2. If p : A — B is a covering morphism of crossed complexes, th&n
Crs/B — Crs/A preserves all colimits.

9. Coverings of free crossed complexes

We recall here a definition fromlLB]. A free basisfor a crossed comple& consists
of subgraphsx,, of C, for all n > 1 such thaiC; is the free groupoid oiX1, C2 is the
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free crossed’1-module on the restrictiod, : X, — C1, and forn > 3, C, is the free
m1C-module onX,,.

Following [16] we writeC(n) for the crossed complex freely generated by one generato
¢, in dimensionz. SoC(0) is the singleton sgfl}; C(1) is the groupoid! which has two
objects 0, 1 and non-identity elemengs: 0 — 1 andcl‘1 :1— 0;andforn > 2, C(n)is
in dimensions: andn — 1 an infinite cyclic group with generatoes andéc, respectively,
andis otherwise trivial. Thus @ is a crossed complex, then an elemeatC,, is completely
specified by a morphis#&: C(n) — C such that(c,) = ¢, andé(c) = ¢(5cy).

LetS(n — 1) be the subcomplex @ (n) which agrees witlC (n) up to dimensiom — 1,
and is trivial otherwise. IE” andS*~! denote the skeletal filtrations of the standablall
and (n — 1)-sphere, wher&® = {0}, S = ¢, El = 1 = {0,1} Uel, SO = {0, 1},
and forn > 2, E" = {1} U Tuet, 71 = {1} U &1, then it is clear that for all
n>0Cn) =xE"andS(n — 1) = 7S 1.

We now model for crossed complexes the process for spaces known as attaching ce
Let A be any crossed complex. A sequence of morphigmsC~1 — C” may be defined
with €% = A by choosing any family of morphisn&m; — 1) — C*1foranyx € A,
and anym;, and forming the pushout

]_[AeAn S(my — 1) —— ¢cn-1

l i . (12

[liea, Cmp) ——— c»

Let C = colim,C", and letj : A — C be the canonical morphism. The morphism
Jj + A — Cis called arelatively free crossed complex morphisinA is empty, then we
call C afreecrossed complex.

The importance of the definition is as follows:

Proposition 9.1. If C is a free crossed complex df,, then a morphisny : C — D can
be constructed inductively, provided that one is given the vafyes D,, x € X,,,n > 0,
and provided that the following geometric conditions are satisfied*(fyx = foéd%x, x €
X1, = 0,1; (i) Bfu(x) = fo(Bx),x € Xy,n = 2; (iii) 8, fn(x) = fu-18,(x),x €
X,,n>2.

Notice that in (iii), f,—1 has to be defined on all @f,_; before this condition can be
verified.

We now show that freeness can be lifted to covering crossed complexes.

Theorem 9.2. Suppose given a pullback square of crossed complexes

o~
HC

A
p/l p
A——

J

in which p is a covering morphism angl: A — C is relatively free. Then : A—Cis
relatively free.
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Proof. We suppose given the sequence of diagraghd_etC” = p~1(C"). By Corollary
8.2, the following diagram is a pushout:

p* (Lsea, St — 1)) —— ¢n-1

| |

p* (]_[)\EA,I (C(mx)) —(Cn,

Sincep is a covering morphism, we can write' (1,5, C(m1)) as] [,.z, C(my) for a
suitableA ,,. This completes the proof. O

Corollary 9.3. Letp: C — C be a covering morphism of crossed complexes. il free
on X,, thenC is free onp~1(X.,).

A similar result to Corollang.3applies in then-truncated case.

The significance of these results is as follows. We start with-druncated free crossed
resolutionC of a groupG, so that we are givep : C1 — G, andC is free onX,,
where X, is defined only fom < m. Our extension process of Sectiaf will start by
constructing the universal cover : C —» CofC; this is the covering crossed complex
corresponding to the unlversal covering grouppid: G — G. By the results above, is
the free crossed complex @i~ 1(X,). It also follows from Propositiof.2that the induced
morphismg : C — G makesC a free crossed resolution of the contractible group®id
HenceC is an acyclic and hence, since it is free, also a contractible crossed complex.

We now see the general context for the diagrajrof Sectior?2 and the exposition there.

10. Homotopies

We follow the conventions for homotopies ih4]. Thus a homotopy® ~ f of mor-
phisms 9, f : ¢ — D of crossed complexes is a pdit, /) where# is a family of
functionsh,, : C,, — D,1 with the following properties, in whiclc for ¢ € Cisc, if
c € Co, isdle,ifc € C1, andisx if ¢ € C,(x), n > 2. So we require [14, (3.1)]:

Bhn(c) = Bf(c) forallc e C; (13)
hi(ec) = h1(e)' hi(c")  if ¢, ¢’ € C1andcc is defined; (14)
hao(cc’) = ha(c) + ha(c)  if ¢, ¢’ € Coandec’ is defined; (15)
hp(c+ ¢ = hy(c) + hy(c) if ¢,c’ € C,, n > 3andc+ ¢ is defined:; (16)
hn (V) = (hype)/ if ceCp,n>2 c1€C1, andct is defined. (17)
Then f9, f are related by [14, (3.14)]
8%qc if ¢eCo,
hos® Soh1c)(hodte) ™t if ceCy,
£9() = (hod=c)(fe)(d2h10)( (2 ﬁf))_l if ceC 18)
{(f©)(h182¢)(83h2c)}"0P¢ if c¢eCo,

{fe + hn18nc + Spsahnc}m0PO™ if ceCy, n > 3.

The following is important for our computations. We saw in Propositiohthat a
morphism is specified by its values on a graded set of free generators. We now show t
the same is true for homotopies.
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Proposition 10.1. If C is a free crossed complex on a generating farXily n > 0, then a
homotopy(h, f) : fO~ f: C — D is specified by the valugéx € D,, hx € D, 11, x €
X,,n > 0 provided only that the following geometric conditions hold:

80fx = f8%, 8 fx = folx,x € X1,8fx = fox,x € Xp,n > 2,

(19)
Bfx = fBx,x € Xp,n =21, Bhx =Bfx,x € X,,n > 0.

Proof. All but the last condition are those given for the constructioryah Proposition
9.1. The final fact we need is that fer> 2 the fi-morphisma,, is defined by its values on
the generators iX,,, and this is standard. O

This resultis another aspect of the facts that (i) a homotopy D can also be regarded
as a morphisn€(1) ® C — D, where the tensor product is defined it], and (ii) the
tensor product of free crossed complexes is free, as proved in [16].

From this we can deduce formulae for a retraction. Suppose, then, that in the abc
formulae we tak&€ = D, f9 =1, f = 0where 0 denotes the constant morphisnCon
mapping everything to a base point 0. Then the homotop$ >~ 0 must satisfy

Bhyc=0 ifcedC, (20)
8%0c = ¢ if ¢ € Co, (21)
Sohic = (hod%) e (hodte) if ¢ € C, (22)
83hoc = (h18pc) ~LchoPe if c € Co, (23)
Sprthne = —hp_18,c¢ + cMoP¢ ifceCy,n>3, (24)
hn(cY) = (hye) if ce Cp,n>2, c1€Cq1, andc! is defined. (25)

Further, in this cask; is a morphism by (14), and far> 2,4, is by (16) a morphism, which
by (17) trivialises the operations 6. All these conditions are necessary and sufficient for
h to be a contracting homotopy.

An m-truncated crossed complé&xis a crossed complex as earlier, except thaand
8, are defined only fon < m. Similarly, for a contracting homotopy of anm-truncated
crossed complex’, we haveh, defined only form < m, and the above conditions hold
where they make sense.

Our main result is now rather formal and straightforward to prove. It is to extend the
pair (C, h) of a partial free crossed resolutichand partial contracting homotogyof the
universal cover of® by one step. Hence the process can be continued indefinitely.

Theorem 10.2. Letm > 1 and letC be anm-truncated free crossed resolution of a group
G.Letp : C — C be the universal cover af so thatC is anm-truncated free crossed
resolution of the universal covering groupojeh : G — G of G. Leth be a partial
contractlng homotopy of . Suppose also that,, is free onX,,

LetX — Xm+1, X — x, be a bijection to a sek,, 11 d|S]0|nt fromX . Define an
extensiore(C) of C to an(m + 1)-truncated free crossed complex as foIIows
Form = 1, letC, = e(C)2 be the free crossed;-module onX, with 82 : Xo — C1 given

by
Sox = p1 ((hogox)*l)z (ho’Sl)z)) JieX. (26)
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For m = 2let C3 = ¢(C)3 be the freaG-module onX3 with 83 : e(C)3 — C> defined by

S3x = py ((hl?s'zxrl ihoﬂf) . ieX, 27)

Form > 3letC,,11 = e(C),,41 be the freeG-module onX,, 11 with 8,41 : Ciur1 — Ci
defined by

Smi1X = Dm (—hm_ﬁmi n ihoﬁf) , %€ Xn. (28)

Lete(p) : e(C) — e(C) be the induced covering morphism, extendin®y ppi1 :
Cnt1—> Gyt ~ _

Defineh,, : C,, — C,,4+1 on the basisy,, by h,, (x) = (1, x). Then this extensioa(h)
of h is a contracting homotopy @f(&). Hencee(C) is an (m + 1)-truncated free crossed
resolution ofG.

If further there is a subset of X,,,1 such thats,, 1Y also generate&er §,,, and a
retraction¢ : C,, 11 — Cpr1(Y)isgivensuchthat,, 1 16(x) = §,,41(x) forall x € X, 11,
andé¢ is a G-morphism forn > 2, and a crossed’1-morphism form = 1, then we may
replaceCy,+1 by C,,+1(Y) andh,, by&h,, to again get an extension of the p&, /) by
one step.

Proof. The fact that we have a contracting homotopy is immediate from the definitions. |
follows thate(C) is exact, and se(C) is aspherical withr1(e(C)) = G. O

Corollary 10.3. Under the assumptions of Theordf.2, if m= 1thenKer¢ : C1 > G
is generated as a normal subgroup®@f by the elements:

1 ((hoﬁ%)—lx (h051i>) JieX. (29)

Form > 2, Ker (8, : C,y — Cp—1) is generated as &-module by the elements:

2 ((hl'(s”z;)*l xhof’f) . ieXy ifm=2 (30)
P (—hm_lgmi + xhoﬁf) ,FeX,, ifm>3. (31)

We have now finally justified the process set out in SecBand illustrated with an
example in SectioB.
Implementations of these procedures will be given in papers by other autho28]27,

11. Examples

11.1. The standard crossed resolution of a group

The standard crossed resolution of a group was defined by Huebschma&#j anfl
applied also in, for examplel 8,39]. Here we show how this resolution, with some differing
conventions, arises from our procedure.

We start with a grouggr and letC; = F(G), the free group on the sét, with generators
written [a], a € G. Lety : C1 — G be the canonical morphism. This has a section
0:G— F(G), ar [al,a # 1,1+ 1. This definedip : G — C1, a — (a, [a]™Y).

The Cayley graph of this presentation has arr@wgb]) : a — ab so that

ho(a)~Y(a, [b)ho(ab) = (1, [allbllab] ™).
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So we may take”, to be the free crossed;-module on elementg:, b] and defines; :
Cz; — C1 by

82la, b] = [al[bllab] .
Then in the universal cover we can defing: 51 — 52(1) by (a, [p]) — (1,]a, b]).

Theorem 11.1. There is a free crossed,(G) resolution of a groupG in which C,,(G)
is free on the seG" with generators writterjas, ap, ... , a,], a; € G, with contracting
homotopy of the universal cover giventay [a1, az, ... , a,]) — (1,[a, a1, a2, ..., a,)),
and boundang, : C,,(G) — C,_1(G) given bys, as above,

83la. b. c] = [a. bellab. ¢]Ya. b1, ]!V ",
and forn > 4

n—1
(Sn[ala az, ..., an] == [a27 ) an]afl+z(_1)’ [ala az, ... ,di-1, aiai+1’ ai+2’ ) aﬂ]
=1
+ (_1)"[611’ az, ..., anfl]' (32)
Proof. We first verify
S3ha(a. [b. cl) = h1da(a. [b. c])"Y(a, [b, c]) @11
= ha(L, a. [bI[cllbe]™H 72, [, ]l
= ha((a. [b])(ab. [c])(abe, [be]™) (L, [b, ] )
= ha((a. [b])(ab, [c])(a. [be]) ™Y 711, [b, ]9
= (1, [a, bellab, ] Ha, b1 1[b, ]9 7).
In order to have a contracting homotopy we requirerfor 3
§n+1hn (a].? [a27 cee an+l])
= —hp_18y(a. [az. .. ans1)) + (L [az, ... . aps1]®)
-1 n .
= (19 [aZs cee an+1]a1 + Z(_l)l [alv e, aidig 1, ..., an+l]
i=1
+ (=1 ay, az, ... , an).

This completes the proof that the family, give a contracting homotopy, and thus that
C.(G) is aresolution.
O

Remark 11.2. The formulae for the differential given above are different in detail from
those given in [3413,39]. This reflects only the different conventions used.

11.2. A small crossed resolution of finite cyclic groups

We would like to thank A. Heyworth for discussions on this section.
We write C for the (multiplicative) infinite cyclic group with generateyandC, for the
finite cyclic group of order with generator. Lety : C — C, be the morphism sending
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x to t. We show how the inductive procedure given earlier recovers the small free cross

resolution ofC, given in [19], together with a contracting homotopy of the universal cover.
Let po : C, — C, be the universal covering morphism, and fet: C — C be the

induced cover of. ThenC is the free groupoid on the Cayley gragtpictured as follows:

1%
1 (1,x) ! (t.x) ! (t2,x) ! ("2,x) !
A sectiono_: C, — C of ¢ is given bys' + x'.i = 0,...,r — 1, and this defines
ho:C, — F1 by
ho(t') = (&', x ™). (33)

It follows that fori =0, ... ,r —1

1,1 ifi#r—1,

iN—1/.i i+1y
ho(t) (1", x)ho(t"™") = {(1,{) ifi=r—1.

So we take a new generator for F» with 2x2 = x™ and set

i xy = | &Y =1, (34)
1, xp) ifi=r—1.
Thenforalli =0,...,r —1we have
Sah1(t', x) = ho(t") "1t X)ho(tHH).
We use next that
ha(t', x") = ha((t', ) x) L@ )
= (1, x).
LetN(G@)=1+14---+r 1 Then
—h18a(t', x2) + (1", x2).x T = (1, —x2) + (1, x2.t ™)
=L x.0 = 1)
_Jo ifi =0,
CINe-D@-1) fi=1,...,r—1.
Hence we can take a new generat@for F3 with §3x3 = x2.(r — 1), and define
. 1,0 if i =0,
ho(t', x2) = (L9 . . (35)
1, x3.Nr—1)) if0O<i<r—1.
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Now we find that

—h282(t', x3) + (1, x3.t7") = —ha((t' 7Y, x2).t + (1, x2)) + (1, x3.07)

—ha(t" 71, x2) + (1, x3) ifi =0,
0+ ha(t, x2) + (1, x3.6" 1) ifi=1,
=3 x3(=N@r —i+1D+N@r—i)+t"77) ifi=
2,...,
r—1,
)@ x3.N()) i =1,
o otherwise.

Thus we take a new generatoyfor F4 with 84x4 = x3.N (r) and

1, xg) ifi=1,

36
(1,0) otherwise. (36)

ha(t', x3) =

Then

—h3da(t’, xa) + (1, xa.t ") = —h3(t', x3.N(r) + (L, xa.t™")
= —ha(l, x3.N(r).t ™) + (1, xa.t7")
= (1, x4.(t" 7" = 1)).
Thus we are now in a situation of period 2, and we have Thedref

Theorem 11.3. A free crossed resolutiof, of C, may be taken to have single free gener-
atorsx, in dimensiom > 1with ¢(x1) = ¢, and
x] ifn=2,
Sn(xp) = § xp_1.(t — 1) ifn > 1, nodd,
Xn—1.N(r) if n > 2, n even.

A contracting homotopy,, on F, is given by(33) for n = 0, by (34) for n = 1, and for
n > 1by

i =0,n even,
(1,0) .
; i #1,n 0dd,
h}’l(t ’ .)Cn) = H
(1, x,41) if i =1,n odd,

(1, x,41.N(r —i)) otherwise.
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