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ICE-SHELF RESPONSE TO ICE-STREAM DISCHARGE 
FLUCTUATIONS: I. UNCONFINED ICE TONGUES 
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ABSTRACT. Ice-stream discharge fluctuations constitute 
an independent means of forcing unsteady ice-shelf 
behavior, and their effect must be distinguished from those 
of oceanic and atmospheric climate to understand ice-shelf 
change. In addition, ice-stream-generated thickness anomalies 
may constitute a primary trigger of ice-rise formation in 
the absence of major sea-level fluctuations. Such triggering 
may maintain the current ice-rise population that, in turn, 
contributes to long-term ice-sheet stability. Here, we show 
that ice-stream-generated fluctuations of an ideal, 
two-dimensional ice shelf propagate along two charac­
tenstlc trajectories. One trajectory permits instantaneous 
transmission of grounding-line velocity changes to all points 
down -stream. The other trajectory represen ts slow 
transmIssIon of grounding-line thickness changes along 
Lagrangian particle paths. 

INTRODUCTION 

Unsteady thickness and flow observed on the Ross Ice 
Shelf result primarily from fluctuations of ice streams and 
outlet glaciers that feed the ice shelf at its inland 
boundaries (MacAyeal and others, 1987; Shabtaie and 
Bentley, 1987). Investigations of climatic evolution therefore 
must discriminate atmospheric and oceanic effects from 
ever-present background of ice-stream-generated variability. 
Ice-stream forcing additionally may produce thickness 
fluctuations in sensitive areas where the sub-ice-shelf water 
column is shallow. Ice-shelf grounding triggered in this 
way could damp anomalous ice-stream acceleration, and thus 
provide a stabilizing feed-back on ice-stream fluctuations 
driven by other physical processes. 

In this study, we determine the general patterns of ice­
thickness and flow anomalies produced by time-varying 
grounding-line discharge. Our examination is restricted to 
anomalies of an ideal, floating ice tongue to facilitate an 
analytic treatment of the hyperbolic governing equations. 
This treatment suggests that two distinct characteristic 
trajectories constitute an underlying organization to 
seemingly disjoint ice-stream forcing events. This organiza­
tion provides: (i) a conceptual basis for modelling thickness 
and flow variations of West Antarctic ice shelves (such as 
developed in a companion paper; MacAyeal and Lange, 
1988), and (ii) an understanding of how inland-ice discharge 
may compete with oceanic and atmospheric conditions to 
force such variations. 

CHARACTERISTIC EQU A nONS 

As shown in the Appendix (see also Morland, 1987; 
Morland and Zainuddin, 1987), large-scale horizontal flow 
of typical Antarctic ice shelves is essentially depth 
independent. We thus treat thickness H(x,t) and longitudinal 
velocity U(x,t) of the ideal, two-dimensional ice shelf 
considered here (Fig. I) in a manner consistent with this 
simplification. Time evolution of Hand U is governed by 

(2) 

by grounding-line boundary conditions 

H(O,t) 

U(O,t) 

0, 

° 
(3) 

(4) 

where U g is the depth-averaged horizontal velocity at the 
grounding line (see Appendix), and by the initial condition 

H(x,O) = Hi(x) x > 0 . (5) 

Dimensionless variables are defined in Table I and are 
scaled using typical dimensions of Antarctic ice tongues 
(Holdsworth, 1985). 

Equations (I )-(5) are derived in the Appendix and 
represent mass-continuity and stress-equilibrium constraints 
that have been simplified to exploit the small aspect ratio 6 
(ratio of thickness to horizontal span) of the large-scale 
features considered here. Ice rheology is treated by a simple 
power-law relationship between the strain-rate and the 
deviatoric stress (in the Appendix, a strain-rate dependent 
effective viscosity is defined). Additional simplifications 
include: (i) all variables are independent of the horizontal 
direction transverse to the flow, (ii) resistance to seaward 
flow is provided by sea-water pressure on ly, and (ii i) the 
snow-accumulation rate M is constant in space and time. 
Our ideal ice shelf behaves, in effect, as if it were 
confined in a narrow but friction less channel. 

As shown in the Appendix, Equations (I )-(5) do not 
describe flow structure possessing large vertical gradients. 
Such deviations from the simple large-scale flow, however, 
can persist only short horizontal distances. We hence­
henceforth disregard such structure in our examination of 

Fig. 1. Cross-section of ideal ice shelf considered in this 
study. The trajectory of the ice column labeled ~o follows 
one of the two types of characteristics associated with the 
governing equations. If ice-stream discharge was 
impulsively changed between two otherwise steady 
conditions at the time this ice column was at the 
grounding line. the subsequent locations of this ice column 
will separate the region where steady-state conditions have 
been renewed (up-stream) from the region where 
adjustment is still under way (down-stream). 
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TABLE I. VARIABLES AND SCALES 

Variable De/inilion Vnils Scales 

Symbol Value 

H Ice thickness m Ho 103 

V Horizontal velocity m/ s Vo 1.58 x 10-5 

h Thickness anomaly m Ho 103 

u Velocity anomaly m/ s Vo 1.58 x 10-5 

un ' uf Near- and far-field m/ s Vo 1.58 x 10-5 

horizontal velocity 

wn' wf Near- and far-field m/ s 
vertical velocity 

Uo 1.58 x 10-5 

Characteristic coordinate m Lo 104 

r Characteristic coordinate Lo/ Uo 6.33 x 108 

x Horizontal coordinate m Lo 104 

Z Vertical coordinate m Ho 103 

6 Aspect ratio Ho/ Lo 10-1 

I Time s Lo/ Vo 6.33 x 108 

M Accumulation rate m/ s VoHo/Lo 7.92 x 10-9 

Pi Ice density kg/ m3 
Pi 917 

g Gravity m/ s2 g 9.81 
Pw Sea-water density kg/ m3 

Pw 1028 
B Flow-law constant Pa s-I/n Bo 1.5 x 108 

Il Flow-law exponent 3 

A Stress ratio pgHo(I - Pj/Pw ) 1.39 

4(Vo/ Lo)1 /nBO 

p Pressure Pa PigHo 9.0 x 106 

exx Longitudinal strain-rate s-I Vo/ Lo 1.58 x 10-9 

ezz Vertical strain-rate S-l VIJ(Lo 1.58 x 10-9 

exz Vertical shear-rate S-I 6- V / L 1.58 x 10-8 
o 0 

u Effective viscosity Pa s Bo/ {2(V 0/ LO)I-I/ Il} 5.5 x 1013 

T'ij Deviatoric stress Pa PigHo 9.0 x 106 

Zs Surface elevation m Ho 103 

zb Basal depth m H 103 

r Stress ratio Non-dimensional Pi~Ho/{Bo(Vo/ LO)l / Il} 51.4 

large-scale ice-shelf behaviour. In demonstrating properties 
of Equations (I )-{5), for example, we shall consider the 
response to a step-like thickness jump introduced at the 
ice-stream outlet. Strictly speaking, this type of forcing 
violates one of the assumptions underlying the derivation of 
Equations (I )-{5), namely that gradients of thickness are 
small. Nevertheless, this forcing is adopted because it 
generates the impulse response for the problem; and it gives 
rise to a flow which illustrates simply and vividly the 
features of all responses. 

STEADY-STATE SOLUTIONS 

Steady-state solutions of Equations (l )-(5), Hs(x) and 
Vs(x), satisfying Hs(O) = I and Vs(O) = I at the grounding 
line were found by van der Veen (1983) and are written 
(for M > 0): 

Hs(x) = [(1 - r)/ (I + Mx)n+1 + rj(-l/(n+I», 

Us(x) = [I - r + r(1 + Mx)n+1j(1/(n+1)) 

(6) 

(7) 

where r = All/ M. Hs(x) monotonically decreases with 
increasing distance from the grounding line and approaches 
a constant value r- 1/(1I+1) as x ~ "'. This asymptotic 
thickness (approximately 200 m for typical Antarctic 
conditions) is achieved because ice-shelf thinning by hori­
zontal spreading is balanced by snow accumulation M. Vs(x) 
monotonically increases with distance from the grounding 
line, but does not approach an asymptotic limit as x ~ "'. 
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CHARACTERISTIC EQUA nONS 

Deviations from steady state caused by fluctuations in 
H and V at the grounding line can be computed directly 
from Equations (I) and (2). Alternative forms of Equations 
(I) and (2), called the characteristic equations, are useful, 
however, for displaying fundamental properties of the 
solution. They are derived by defining new spatial and 
temporal coordinates that produce ordinary differential 
equations for thickness and velocity (the method of 
characteristics) and are written as: 

0, 

a~1 = 0, 

aTH - (M - AIIHII+I)arl 0, 

a~D - All Hlla~x = 0 

(8) 

(9) 

(10) 

(1 I) 

where H( t, r) and D( t, r) represent thickness and velocity, 
respectively, as functions of alternative coordinates ~ and r 
that satisfy 

al~ + Dax~ 

axr = o. 

0, (12) 

( 13) 

The curves ~ = ~o and r = To in the x,1 plane represent 
characteristics of the ice-shelf system along which changing 
conditions propagate. These curves can be determined by 
solving Equations (8) and (9) for x( ~,r) and I(T) (t and r 
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can be taken as identical in the present application; this 
gives oTt = I). 

As shown by Equation (12), the characteristic ~ = ~o 
represents the trajectory of a particular ice column (which 
may be labeled by its ~ -coordinate ~o) in Jhe x,t plane. 
The thickness of this particular ice column, H(~ = ~o,T), is 
determined as a function of T by Equation (10). The 
velocity of this ice column, U( ~ = ~o' T), is found by 
integrating Equation (11) over the domain ~l(T) < ~ < ~o 
where ~ 1(T) is the ~ -label of the ice column currently at 
the grounding line. This interval, in x-coordinates, spans the 
distance between the grounding line and x = X(~O,T) . 

The characteristic equations illuminate several basic 
aspects of time-dependent ice-shelf adjustment. Equation 
(10) indicates that the thickness of a given ice column (~ = 
constant) evolves independently of the ice thickness 
elsewhere. This independence is an aspect of unconfined ice 
shelves only. In circumstances where coastal confinement 
introduces resistance to seaward flow, evolution of a given 
ice column depends on thickness conditions down-stream. 

Another basic aspect of ice-shelf behavior illuminated 
by Equations (10) and (11) is that deviations from steady­
state are limited in space and time by the appropriate 
characteristic curves. If, for example, H or U at x = ° are 
impulsively changed at t = ° and the initial conditions are 
in steady state; unsteady conditions will prevail only within 
the region of the x,t plane bounded by the curves ~ = 

constant and T = constant that emanate from x = t = 0. 
This partition of the x,t plane into steady and unsteady 
regions is shown schematically in Figure 2. Change 

t 

1 
unsteady 

t 
O~-------------- 1 = "0 

~---------------------------x 

Fig . 2. If ice-stream discharge ( grounding-line thickness and 
velocity) is changed impulsively at 
conditions will prevail only within the 
plane boullded by the ~ = cOllstant 
characteristics. 

t = O. ullsteady 
region of the x .t 
and T = constant 

propagates down-stream instantaneously along the T = 

constant curve because velocity at any point is determined 
by spatial integration of the instantaneous ice-thickness 
distribution. Equilibration with new forcing conditions is 
completed, however, in a delayed fashion following the ~ = 

constant curve. Steady-state conditions prevail in the wake 
of the ice column that was at the grounding line at the 
instant t = O. This ice column follows the path determined 
by the ~ = constant characteristic. 

TRANSIENT ICE-SHELF PROFILES 

We demonstrate basic ice-shelf response by computing 
ice-thickness and velocity anomalies generated by prescribed 
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scenarios of unstead y grounding-line discharge. These 
anomalies are defined by 

h(x,t) H(x,t) - Hs(x), (14) 

u(x,t) U(x,t) - Us(x) (15) 

where Hs(x) and Us(x) are the steady-state thickness and 
velocity profiles defined by Equations (6) and (7) 
respectively. To simplify the calculations, we require hand 
u to be small and use a linear expansion of Equations (I) 
and (2): 

0th + UsB0 = - (n + I)A"Hsnh - 0xHsu, (16) 

0xu = nAIHs" -1h. (17) 

With this simplification, the two generic characteristic curves 
~ = constant and T = constant associated with steady-state 
conditions may be applied as approximations to the 
characteristic curves associated with unsteady conditions . 

Boundary conditions at the grounding line (x = 0) and 
initial conditions are specified to represent three basic 
scenarios of ice-stream discharge fluctuations (amplitudes 
and time constants are arbitrary for demonstration): 

scenario I u(x,O) = h(x,O) = 0.0, ( 18) 

u(O,t) = h(O ,t) = 0.1, ° ~ t ~ 0.2, 

0.0, t > 0.2 

scenario II h(O,t) 0.1 sin (wt), (19) 

u(O,t) 0.0 

scenario III- h(O,t) 0.0, (20) 

u(O,t) O. lsin (wt) 

where w = 2Tl/ 0.5. Scenario represents an episode of 
increased grounding-line thickness and velocity that is 
sustained for a brief time interval. Scenarios TI and ITI 
represent periodic fluctuations in hand u (we do not 
consider a variety of forcing frequencies in the present 
study; see, however, MacAyeal and Lange, 1988). Initial 
conditions for scenarios II and III are not required because 
the grounding-line forcing is assumed to proceed ad 
infinitum (in practice, we apply an initial condition of 
h(x,O) = ° and u(x,O) = 0, and proceed with time integra­
tion until all manifestations of the initial conditions have 
dissipated). 

For demonstration purposes, finite-difference solutions 
to Equations (\6) and (17) under the three forcing scenarios 
described above were produced on the interval ° ~ x ~ I 
and over a sufficient time interval to display salient 
features (and to dissipate transients induced by initial 
conditions in periodic forcing scenarios). The finite­
difference form of Equation (16) possessed fully implicit 
time steps (tJ = 0.0 I) and centered space derivatives 
(t.x = 0.0 I), except at x = 1.0 where an up-wind space 
derivative was used . Equation (17) was integrated over x at 
each time step using centered space derivatives (except up­
wind at x = 1.0). This crude finite-difference method is 
notorious for introducing artificial smoothing and dispersion 
in hyperbolic systems (a more refined technique was not 
considered necessary for demonstration purposes). The results 
described below, nevertheless, demonstrate that the strong 
underlying organization provided by the characteristic curves 
persists even in crude finite-difference solutions. 

Salient features of scenario I are displayed by the 
contour maps of thickness anomaly h and volume-flux 
anomaly q, defined by 

q(x,t) = u(x,t)Hs(x) + h(x,t)Us(x) (21) 
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in Figure 3. In Figure 4, the x,t plane on which these 
maps are presented is divided into five regions by the four 
characteristic curves that emanate from the grounding line 
at the start and end of the modified discharge episode. In 
regions I, Ill, and V shown in Figure 3, ice-shelf 
conditions are in steady state with current discharge 
thickness and velocity (H $(0) + h(O,t), and U s(O) + u(O,t)). In 
regions 11 and IV, conditions are unsteady. Comparison of 
the maps of hand q indicates that thickness anomalies are 
organized primarily along ~ = constant trajectories and that 
flux anomalies tend to display rapid, discontinuous changes 
across T = constant trajectories. 

Ice-thickness anomalies generated in response to 
scenarios 11 and III (periodic forcing) indicate two contrast-

t 1 

o 

~-------------------------------o 

h 1 
x 

t 1 

q 1 
°O~---------------------------X 

Fig. 3. Ice-thickness (LOp) and flux (bOl/om ) anomalies 
(non-dimensional units: Table I) resulting from a limited 
episode of modified ice-stream discharge (scenario I). The 
ranges of x and t displayed above are both 0.0 - 1.0 
(non-dimensional units ). Comparison with the 
characteristics showll in Figure 4 suggests that thickness 
anomalies primarily follow ~ = constant characteristics , 
whereas flux anomalies primarily follow T = constant 
characteristics. 

124 

°o~--------------------------x 

Fig. 4. Ice-shelf response can be organized in terms of 
steady and unsteady behavior using the ~ - and 
T-characteristics to partition the x ,t plane. III scenario I , 
for example, the x,t plane is divided into five regions by 
the four characteristics that emanate from x = 0 at the 
start and end of the ice -stream discharge episode. Regions 
I, I I I , and V are in steady state with current ice-stream 
discharge (for region Ill, this discharge is greater than 
for regions I and V) : regions 11 and IV display unsteady 
conditions. 

ing patterns shown in Figure 5. For oscillatory 
grouding-line thickness (scenario 11), h is maximum at the 
grounding line, and decays monotonically down-stream. 
Ridges and troughs of the h(x,t) contours in the x,t plane 
extend along ~ = constant trajectories, In contrast, the 
maximum of h generated by scenario III (oscillatory 
grounding-line velocity) is smaller than in scenario 11 and 
occurs down-stream of the grounding line. The down-stream 
maximum of h results from velocity anomalies at locations 
where the gradient of Hs(x) is large. In addition, the 
h(x = 0) = 0 constraint demands that the maximum of h be 
separated from the ice-stream outlet. 

Comparison of scenarios 11 and III suggests that phase 
relationships between thickness and velocity oscillations of a 
given ice stream is critical in determining the location of 
maximum ice-thickness anomalies, This aspect of ice-stream 
dynamics may thus determine where ice rumples and ice 
rises are likely to form in response to ice-stream accelera­
tion. 

CONCLUSION 

Discrimination between ice-stream forcing and climatic 
forcing in the ideal, two-dimensional ice shelf can be 
accomplished through the relationship between ice-shelf 
anomalies and the characteristic trajectories that determine 
propagation of ice-shelf change. Variability forced by the 
atmosphere or ocean would not necessarily be constrained by 
such trajectories, but may propagate through the ice-shelf 
environment along pathways determined by oceanic and 
atmospheric dynamics. 

While only very simple ice-shelf geometries are 
amenable to treatment using the method of characteristics, 
qualitative aspects of ice-shelf behavior demonstrated here 
are expected in more complex, natural geometries where 
coastal confinement plays a larger role. The two types of 
characteristics described here, for example, represent fast 
and slow paths by which grounding-line influences are 
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Fig . 5. Ice-thickness anomalies driven by periodic 
fluctuations in ice-stream thickness ( top. scenario fl ) and 
velocity (bottom. scenario lll). Contour intervals are 0.01 
non-dimensional unit s. negative values are contoured with 
dashed pattern. The ranges of x and t displayed are both 
0.0 .... 1.0. Note that maximum h for scenario fl [ occurs 
down-stream of the grounding line. 

transmitted to the ice shelf down-stream. In natural ice­
shelf geometries, velocity and mass-flux changes are 
expected to propagate via an analogous fast path because 
the velocity profile is determined by an elliptic boundary­
value operator. Thickness changes, in contrast, are expected 
to propagate via an analogous slow path because ice 
thickness evolves primarily by ice-column advection. 
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APPENDIX 

DERIVATION OF GOVERNING EQUATIONS 

Ice shelves float in a relatively inviscid environment 
and span horizontal dimensions that greatly exceed the 
maximum ice thickness. These physical characteristics imply 
that large-scale ice-shelf flow is relatively simple. In par­
ticular, vertical shear is negligible, and relatively weak 
vertical velocity exists only to maintain the surface and 
basal elevations in local hydrostatic balance (Sanderson and 
Doake, 1979; Morland, 1987; Muszynski and Birchfield , 
1987). In spite of its simplicity, large-scale ice-shelf flow is 
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forced by ice-stream influx, ice-front pressure balances, and 
lateral shears that can be arbitrarily complex. Ice-shelf 
dynamics in the neighborhood of such lateral boundaries, 
therefore, must winnow flow structure that is incompatible 
with large-scale flow. In the following analysis, we describe 
this winnowing process and derive Equations (1)-{5) that are 
used to investigate large-scale ice-shelf behavior. 

To facilitate our derivation, we express the ice-shelf 
velocity and pressure fields as the sums of far-field and 
near-field contributions (denoted by the subscripts f and n, 
respectively): 

u = ur<x,z) + un(~'z), 

5wr<x,z) + w n( ~ ,z), w 

p pr<x,z) + Pn(~'z). 

(AI) 

(A2) 

(A3) 

The far-field contributions describe the simple, large-scale 
flow that dominates the ice-shelf interior (locations remote 
from lateral boundaries). The near-field contributions are 
corrections needed to satisfy boundary conditions at the 
ice-stream outlet (or at other lateral boundaries). 

The separation between far-field and near-field contri­
butions is accomplished by defining two dependent 
coordinates, x and ~ = 5- l x, that express horizontal distance 
along the same longitudinal axis . The coordinate x is scaled 
by the horizontal span of the ice shelf Lo' This span is 
typically much greater than the characteristic vertical scale 
Ho; thus x becomes order one in size at points far removed 
from the grounding line. The coordinate ~ is scaled by the 
characteristic vertical scale of the ice shelf Ho' and th us 
grows rapidly within a short distance of the grounding line 
x = ~ = O. 

Ideally, the goal of the following analysis should be to 
show that the near-field and far-field contributions can be 
made to match asymptotically as ~ ... ., and x ... 0, re­
spectively. If this goal were met, the far-field contribution 
alone would represent large-scale flow . The asymptotic limit 
of the near-field contribution, in this circumstance, would 
simply provide the suitably winnowed lateral boundary 
condition on the far-field flow . This winnowed boundary 
condition would be simpler than that actually imposed by 
the ice stream, and thus would be compatible with large ­
scale dynamics. 

We shall fall short of this goal and succeed only in 
deriving the far-field equations. The near-field winnowing 
process is too complex to demonstrate its asymptotic limits 
under the most general circumstances. We proceed to 
demonstrate the winnowing process, however, under more 
restrictive, yet physically motivated simplifications. In 
particular, we linearize the near-field stress-equilibrium 
equations by replacing the stress-dependent effective 
viscosity (defined below) with a constant. This simplification 
permits exact solution for eigenfunctions with which the 
most general ice-stream forcing can be described. The 
constant viscosity we apply, however, need not be associated 
with any specific reference stress (e.g. the far-field stress, 
the near-field stress, or some combination of the two). 
Observations suggest, however, that near-field contributions 
are minor, in an absolute sense, because typical ice-stream 
flow can be similar to far-field ice-shelf flow if basal 
shear stress is sufficiently low (Muszynski and Birchfield, 
1987). In this circumstance, the linearization of the near­
field equations can be made using the far-field stress as a 
reference state. 

The upper and lower surfaces of the ice shelf, z~(x) 
and zb(x), are assumed to be functions of the far-fIeld 
coordinate x only. This assumption is compatible with 
observations that suggest surface and basal topography at the 
grounding line is not abrupt (Bindschadler and others, 
1987). In some demonstrations of large-scale behavior, we 
introduce step-like changes in surface and basal topography 
at the grounding line. This violates the above assumption 
insofar as we do not specify the small-scale behavior that 
would surround such steps. For the purpose of our 
demonstrations, however, it is sufficient to realize that 
large-scale flow can bridge such step-like topography (or 
any topography organized on the scale of Ho or smaller) in 
a manner analogous to the near-field boundary layer 
described below. We additionally assume a state of local 
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hydrostatic equilibrium between the surface and basal eleva­
tions at the grounding line x = ~ = 0, zb = -{pj/ pw) 
(zs - zb)' Observations suggest the location of the 
grounding line, in fact, is determined by this condition 
(Bindschadler and others, 1987). 

Several other simplifications beyond those motivated by 
natural ice-shelf configuration are applied here to facilitate 
an analytic treatment. First , temperature-dependent rheo­
logical parameters are replaced with similar depth-dependent 
parameters to approximate the prevalent vertical temperature 
gradient in Antarctic ice shelves. Thermo-mechanical 
coupling (as by, Shumskiy and Krass, 1979; Morland and 
Shoemaker, 1981; Williams and Hutter, 1983) is not a subject 
of our study. Secondly, we restrict our analysis to the ideal 
two-dimensional ice tongue shown in Figure I. As stated 
previously, our third, and most grave simplification concerns 
the treatment of ice rheology in near-field dynamics. 

FAR-FIELD DYNAMICS 

Stress equilibrium in the far-field horizontal (x) and 
vertical (z) directions, and dynamic boundary conditions at 
the ice-shelf surface (zs(x), stress-free) and base (zb(x), 
sea-water pressure only), are written in terms of far-field 
variables only (subscripts f are dropped for clarity): 

rp = 0, 

A viscous flow law 

Tij' = 2ueij 

where effective viscosity u is 

z 

(A6) 

(A7) 

(A8) 

(A9) 

(AIO) 

(All) 

is defined to represent Glen's flow law. As stated above, 
the non-dimensional flow-law parameter B(z) is assumed z­
dependent, rather than temperature-dependent, to avoid 
thermo-mechanical coupling. 

Systematic approximations to Equations (A4)-{A9) are 
developed by expanding all variables in power series using 
the small parameter 52. The zero-order approximations to 
Equations (A4)-{A9) constitute the ice-shelf equivalent to 
the shallow-ice approximation describing lead-order ice-sheet 
dynamics (Hutter, 1983) and are written: 

(AI2) 

-rBzp(O) + Bx(v(O)exz(O» + Bz(u(O)ezz(O» - r 0, 

zb(O) < z < zs(O), (AI3) 

0, z z (0) 
s ' (AI4) 

-B z (O)u(O)e (0) + u(O)e (0) - rp(O) 0 
x s xz zz ' 

z zs(O), (AIS) 

v(O)exz(O) = 0, z zb(O), (AI6) 

Bxzb(O)u(O)exz(O) - u(O)ezz(O) + rp(O) = -{pw/ pi)rzb(O), 

z = zb(O). (AI7) 
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The zero-order solutions can be obtained immediately by 
integrating Equations (A 12) and (A 13) subject to the 
boundary conditions (A 14 )-(A 17): 

exz(O) = 0, 

ptO) = (zs(O) - z) + (u(O) / r)ezz(O), 

zb(O) = Pi / (Pi - Pw)zs(O) . 

(AI8) 

(AI9) 

(A20) 

The above solutions indicate that: (i) vertical shear in the 
ice column is negligible, (ii) pressure increases linearly with 
depth, and (iii) the ice shelf floats in local hydrostatic 
equilibrium. 

A sub-set of the first-order approximations to 
Equations (A4)-(A9) (for the x-component of forces) 
describes how the zero-order strain-rate ex)O) = - ezz(O) 
varies with H(O) = Zs (0) - zb (0): 

(A21) 

a zb(O)(u(O)e (0) - rp(O) - P / p.r zb(O) x xx w 1 ' 

Integration of Equation (A21) over z using boundary 
conditions (A22) and (A23), followed by integration of the 
result over x (assuming that exx(O) ~ 0 as H(O) ~ 0, and 
that r, PW ' and Pi are independent of x) gives 

(A24) 

where 

(A25) 

Substitution of Equation (A25) into (A24) gives Equation (2) 
of the main text: 

where 

e (0) 
xx (A26) 

(A27) 

is a non-dimensional parameter that measures the ratio of 
the gravitationally driven spreading stress to the stress 
required to deform the ice shelf at the far-field strain-rate 
scale U 0/ Lo' 

We have now shown that large-scale ice-flow is 
predominantly depth-independent and satisfies a simple 
relation between horizontal spreading and local thickness. To 
determine how this large-scale flow is forced at the ice­
stream outlet, we next examine the small-scale effects 
expected close to the grounding line. 

NEAR-FIELD DYNAMICS 

To facilitate an exact solution of the stress-equilibrium 
equations that have been scaled to represent conditions close 
to the grounding line, we make two simplifications: (i) we 
assume u to be a constant (chosen to correspond with some 
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unspecified reference stress), and (ii) we replace the 
dynamic boundary conditions specifying stress at Zs and zb 
(Equations (A 7) and (A9)) with kinematic constraints 
motivated by the large-scale nature of the surface and basal 
topography . Equations (A4)-(A9) and the mass continuity 
constraint thus are written in terms of near-field flow 
variables only (subscripts n are dropped for clarity): 

-(2r / u)a~p + ..,2u = 0, Zs > Z > zb' (A28) 

-(2r / u)( Bzp + I) + ..,2w 0, Zs > z > z b, (A29) 

azu = 0, Z = zs,zb' (A30) 

w = 0, Z = zs,z b' (A31) 

a~u + Bzw 0, Zs > Z > zb (A32) 

where ..,2 = B~ 2 + a/. The eigensolutions of Equations 
(A28)-(A32) are: 

(A33) 

(A34) 

p = Zs - z (A35) 

where the eigenvalue kll is given by 

(A36) 

where n = 0, I, 2, ... . The key feature of these eigen­
solutions is that all except that associated with the ko = 0 
eigenvalue exhibit exponential decay as ~ ~ "'. The ko = 0 
eigensolution thus represents the part of the near-field flow 
that forces the far-field flow . This special eigensolution 
exhibits zero vertical shear and is thus compatible with far­
field dynamics. 

To satisfy an arbitrary ice-stream influx condition (e.g. 
u(~ = O,z) = (zb - z)2), we simply express the prescribed 
influx as a linear combination of the eigensolutions 
described above . The ko = 0 contribution of the prescribed 
influx, for example, is simply the vertical average of the 
horizontal flow at the grounding line. As indicated by the 
exponential factors in the eigensolutions, all terms except 
that associated with ko = 0 are winnowed within a narrow 
region of the grounding line. In fact, modes with greater 
vertical structure and higher values of k n decay more 
quickly than modes with grave vertical structure. 

SUMMARY 

We have shown that large-scale ice-shelf flow (the 
far-field flow) is forced by depth-averaged horizontal flux 
at the grounding line, even if the vertical profile of the 
horizontal flux deviates significantly from this average. 
Vertical structure not allowed by simple conditions prevalent 
down-stream decays exponentially over horizontal distances 
comparable to the ice thickness. This behavior is similar to 
other systems in which conditions far from boundaries 
exhibit intrinsically simple flow such as: shallow-water 
waves forced by complicated wave makers (see Yih, 1969, 
p. 195), or the flow of a homogeneous, rotating fluid 
forced by horizontal lfiJections at lateral boundaries 
(Barcilon, 1967). The analytic approach we use to determine 
the behavior of the near-field solution requires linearity. 
Numerical solutions of the full non-linear near-field 
behavior (Herterich, 1987) confirm the behavior we deduce 
here. 
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