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Abstract
Vehicle telematics provides granular data for dynamic driving risk assessment, but current methods often rely on
aggregated metrics (e.g., harsh braking counts) and do not fully exploit the rich time-series structure of telematics
data. In this paper, we introduce a flexible framework using continuous-time hidden Markov model (CTHMM) to
model and analyse trip-level telematics data. Unlike existing methods, the CTHMM models raw time-series data
without predefined thresholds on harsh driving events or assumptions about accident probabilities. Moreover, our
analysis is based solely on telematics data, requiring no traditional covariates such as driver or vehicle charac-
teristics. Through unsupervised anomaly detection based on pseudo-residuals, we identify deviations from normal
driving patterns—defined as the prevalent behaviour observed in a driver’s history or across the population—which
are linked to accident risk. Validated on both controlled and real-world datasets, the CTHMM effectively detects
abnormal driving behaviour and trips with increased accident likelihood. In real data analysis, higher anomaly levels
in longitudinal and lateral accelerations consistently correlate with greater accident risk, with classification models
using this information achieving ROC-AUC values as high as 0.86 for trip-level analysis and 0.78 for distinguishing
drivers with claims. Furthermore, the methodology reveals significant behavioural differences between drivers with
and without claims, offering valuable insights for insurance applications, accident analysis, and prevention.

1. Introduction
Traditional auto-insurance ratemaking relies on driver and vehicle characteristics—such as driver’s
age, driving experience, and vehicle specifications—for risk classification, claim prediction, and pre-
mium determination. These ‘traditional’ covariates provide a static representation of risk but fail to
capture real-time driving behaviour that significantly influence accident likelihood. The rise of telem-
atics, enabled by on-board diagnostics systems and smartphone applications, has introduced granular
data on speed, acceleration, and GPS location. Such data offer a dynamic perspective on risk and are
increasingly adopted by insurers to supplement traditional models, with the potential to enhance pricing
accuracy and fairness (Eling and Kraft 2020).

However, the use of telematics data faces two primary challenges. First, identifying meaningful
features from high-frequency telematics data is complex. Traditional feature engineering aggregates
metrics like harsh braking, cornering events, or time spent driving on specific road types (see Paefgen
et al. 2014, Verbelen et al. 2018, Bian et al. 2018, Jin et al. 2018, Denuit et al. (2019), Ayuso et al. 2019,
Huang and Meng 2019, Sun et al. 2020, Longhi and Nanni 2020), but these approaches often neglect
critical temporal patterns, trends, and interactions between telematics variables. Emerging methods,
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such as speed-acceleration heatmaps (Wüthrich 2017, Gao et al. 2019, Gao et al. 2022) and time-series
modelling with neural networks (Fang et al. 2021), have been proposed to analyse raw telematics data.
While promising, these techniques demand careful feature design and interpretation, particularly for
insurance applications.

Second, integrating telematics into insurance models requires balancing the granular nature of telem-
atics data with the sparsity of claims data. Accidents are rare and claims are often aggregated over policy
periods, whereas telematics data are recorded continuously and at high frequency. Most existing studies
address this mismatch by aggregating telematics metrics at the trip level and regressing annual claim
probabilities and frequencies on these features. However, these approaches often assume stable driving
behaviour over time, failing to capture the variability and evolving patterns in risk. These limitations
necessitate new methods that preserve the richness of telematics data and perform risk evaluation on a
more granular level.

We would like to highlight that this study is not a typical actuarial paper focused on modelling claim
numbers or developing pricing frameworks. Rather, it aims to understand driving behaviour using telem-
atics data, detect anomalies, and evaluate risk at both the trip and driver levels. While the insights gained
can benefit actuarial applications such as pricing and risk classification, the primary objective is to
advance methodological approaches for telematics-based risk analysis, rather than directly linking driv-
ing behaviour to claims frequency or premium determination. Moreover, all the analysis presented in
this paper is based solely on telematics data—no classical covariates commonly used in Property and
Casualty (P&C) insurance are considered. This is a significant contribution, as we demonstrate that
meaningful insights and effective risk analysis can be achieved without relying on traditional covari-
ates. By shifting the focus to directly observable driving behaviour, our approach provides a data-driven
alternative that may potentially avoid fairness-related concerns associated with demographic charac-
teristics (e.g., gender, race) and socioeconomic status. While fairness in insurance is often framed as
a pricing problem, we emphasize that fairness begins at the risk assessment stage, which ultimately
informs pricing decisions. Studies have shown that telematics data can capture behavioural differences
that correlate with risk, reducing the need for demographic proxies. For example, Ayuso et al. 2016
demonstrated that average distance travelled per day can replace gender in risk assessment. While we do
not explicitly test such substitutions, our findings demonstrate that risk differentiation is possible using
telematics data alone. By focusing solely on driving behaviour, our approach provides a more indi-
vidualized and transparent framework for risk evaluation, independent of classical covariates. While
integrating such methods into pricing models is beyond the scope of this study, future research could
explore their potential role in fairer insurance pricing.

This work tackles the aforementioned challenges by addressing three specific problems. First, we
would like to define an anomaly index to quantify the level of anomalousness of each trip, capturing
deviations from normal driving behaviour. Driving behaviour such as aggressive driving, drunk driv-
ing, and fatigued driving are well-known contributors to accidents (Deng and Söffker, 2022). Existing
studies on driving behaviour recognition and prediction often focus on distinguishing between specific
behaviour, leveraging labelled datasets where driving conditions or behaviour are explicitly known.
However, in real-world scenarios, such labels are rarely available, limiting the applicability of these
methods. To overcome this, we do not target specific behaviour and instead, categorize diverse accident-
prone behaviour broadly as ‘abnormal’ behaviour. This motivates the need for a generalized anomaly
detection method that can operate without reliance on labelled data.

Second, by detecting anomalous driving behaviour, we aim to identify trips associated with acci-
dents. When claims involving accidents are reported, they often include only the date of loss, leaving
the specific trip unknown. Pinpointing the exact trip enhances claims investigations, uncovers contribut-
ing factors, and supports preventative measures to reduce future occurrences. Furthermore, accident
detection improves insurance pricing by differentiating risk profiles, rewarding safer drivers, and pric-
ing riskier behaviour appropriately. From a fleet management perspective, identifying accident-prone
trips enables proactive strategies such as targeted driver training, route optimization, and maintenance
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scheduling, ultimately leading to increased operational efficiency, reduced costs, and safer roads. While
our analysis in this work does not explicitly include location data, future research could extend our model
to incorporate GPS coordinates, enabling route optimization based on trip duration, route length, and
anomalous driving behaviour. Similarly, for maintenance scheduling, our anomaly detection framework
could flag trips that are outliers, signalling potential accidents or vehicle issues. A rising trend in overall
anomaly levels could also suggest the need for vehicle inspections and repairs. While these applications
would benefit from additional data, such as real-time traffic conditions and vehicle characteristics, our
approach provides a foundation for enhancing fleet management through data-driven insights.

Third, we would like to evaluate risk at both the trip and driver levels. Not all trips by a claimed driver
are dangerous, nor are all trips by a no-claim driver safe. A more granular, trip-based risk evaluation
allows for dynamic updates to risk profiles, as well as improved risk classification that are not solely
based on claims history. Rather than solely identifying accident-related trips, our anomaly detection
method assesses deviations from typical driving behaviour, providing a broader measure of driving
risk. Importantly, a trip without an accident does not necessarily mean it was completely safe—risky
manoeuvres and near-misses (e.g., Arai et al. 2001, Guillen et al. 2020, Guillen et al. 2021, Sun et al.
2021) can occur without resulting in a recorded crash. These events are strong indicators of increased risk
and should be accounted for when evaluating driving behaviour. Moreover, risk assessment must extend
beyond accident identification, as even claim-free drivers need to be ranked by their riskiness. While a
simpler classification model might suffice for distinguishing accident-related trips with precise accident
labels, our approach applies to all trips, regardless of whether an accident occurs. Accident-related trips
are used to establish the relationship between the anomaly index and accident likelihood, allowing us to
predict accident probability and assess trip riskiness for trips with no accidents. This ensures that our
method provides a more comprehensive evaluation of risk, capturing both actual accidents and high-risk
driving patterns that could lead to future incidents. Trip-level risk assessments can then be aggregated
to the driver level by evaluating extreme behaviour and focusing on the right-tail of the risk distribution.
This approach enables better identification of claim-prone individuals and more effective differentiation
of risk for insurance ratemaking purposes.

We tackle these problems by proposing a flexible framework that uses continuous-time hidden
Markov models (CTHMMs) to model and analyse trip-level telematics time series. By modelling multi-
variate telematics time series — speed, longitudinal acceleration, and lateral acceleration—the CTHMM
exploits the time-series structure of telematics and captures the dependencies between different vari-
ables. This enables the detection of abnormal driving patterns and their connection to risk, providing
detailed and novel insights into driver risk profiles. Importantly, the CTHMM accommodates unevenly
spaced time intervals in telematics data, fully utilizing data granularity without interpolation, which
could otherwise distort driving behaviour patterns.

Hidden Markov models (HMMs), as dynamic mixture models supported by extensive statistical theo-
ries, offer significant flexibility and have been applied to various domains, including speech recognition,
finance, and bioinformatics. HMMs have also been widely used to study driving behaviour. Deng and
Söffker (2022) conducted a survey of HMM-based approaches in driving behaviour recognition and
prediction, especially in the development of advanced driver assistance systems (ADAS), and we refer
interested readers to an extensive lists of literature therein. However, the complex structure of real-world
telematics data presents unique challenges: irregular time intervals pose difficulties for data modelling,
while boundary points complicate anomaly detection. Most of the reviewed literature uses discrete-
time HMMs, which struggle with these challenges, demanding modifications to the standard HMM
framework.

In the context of actuarial science, the study of vehicle telematics at the trip level is relatively new.
To our best knowledge, Jiang and Shi (2024) is the only other work that also applied HMMs to model
trip-level telematics data. However, their approach and ours differ substantially. Jiang and Shi (2024)
employed discrete-time HMMs to model driving behaviour that have been categorized based on prede-
fined thresholds (e.g., hard braking, sharp turns) and analysed each trip’s (latent) state durations with
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assumed probabilities for claim occurrences. In contrast, our CTHMM models numerical telematics data
directly in a continuous-time setting, accounting for the irregular time intervals while avoiding hard
thresholds. Additionally, our analysis is based on anomaly detection, which does not require explicit
state interpretations. Instead, we link claims to the proportion of anomalies across telematics dimen-
sions using logistic models, without assuming any direct relationship between claim probabilities and
latent states.

We further developed a generalized anomaly detection method using a fitted CTHMM. Traditional
HMM-based anomaly detection methods rely on labelled normal sequences for training (Khreich et al.
2009, Li et al. 2017, Leon-Lopez et al. 2021) and identify anomalies based on low likelihoods of obser-
vations (Khreich et al. 2009, Florez-Larrahondo et al. 2005, Goernitz et al. 2015). However, not only
is labelled data often unavailable, defining thresholds for low likelihoods is also challenging, especially
when telematics sequences vary in length. Our method overcomes these limitations by unsupervisedly
learning the most prevalent transitions and observations across trips. We quantify anomaly level based
on the proportion of outliers within each trip, introducing the concepts of the ‘anomaly index’ and the
‘normalized anomaly index’. Through a controlled study and a real data application, we show that
the method is effective in identifying outliers and detecting deviations in driving behaviour, proving its
practicality in telematics-based risk analysis.

Anomaly detection can be performed at either the driver level using an individual-specific CTHMM,
or at the group level using a pooled CTHMM. The individual-specific model captures each driver’s
unique, normal driving patterns and identifies anomalous trips that deviate from these norms. For
instance, we find that a higher anomaly index in longitudinal acceleration correlates with aggressive
driving, while increased anomaly indices in both longitudinal and lateral accelerations are strongly
linked to a higher probability of accident involvement. Classification models based on these features
achieve ROC-AUCs (areas under the receiver operating characteristic curve) of at least 0.8, demonstrat-
ing the effectiveness of our approach in identifying high-risk trips. To the best of our knowledge, there
are no existing classification models in the actuarial science literature specifically designed to identify
accident-related trips. Given this, our result is particularly notable, as values above 0.8 are generally
considered to indicate excellent classification performance.

In the context of trip-level risk evaluation, Meng et al. (2022) proposed an alternative scoring method
using telematics data. However, their approach imposes stricter preprocessing requirements, such as
focusing only on speed ranges between 10 and 60 km/h, analysing the first five minutes of each trip,
and limiting the analysis to a fixed number of trips per driver. In contrast, our methodology considers all
non-zero speed intervals, evaluates entire trips, and accommodates varying trip lengths and counts, cap-
turing richer temporal dynamics. Furthermore, the training datasets used for trip-level evaluations differ
fundamentally. Meng et al. (2022) used Poisson generalized linear model (GLM) deviance residuals to
classify drivers as risky or safe, labelling all trips from high-residual drivers as risky and those from
high-exposure, claimless drivers as safe. In comparison, our individual-specific CTHMM approach tar-
gets trips associated with accidents and at-fault claims, based on analysis on accelerations and speed.
While one claim occurred in each of the studied 3-day windows, we do not assume trips in these windows
to be equally risky.

Conversely, the pooled model learns common, normal driving patterns across a population. It detects
anomalous trips among drivers and facilitates the comparison and ranking of drivers based on their
level of anomalousness. Our real-data analysis reveals notable differences in driving behaviour between
drivers with at-fault claims and those without claims. While trips by claimed drivers exhibit lower
average anomaly indices, their maximum anomaly indices attained are consistently higher—over time,
drivers in the claimed group demonstrate more extreme behaviour than those in the no-claim group.
Using the right tail of each driver’s anomaly index empirical distribution to classify drivers, our mod-
els achieve ROC-AUCs ranging from 0.7 to 0.78, with improved results when incorporating exposure
(number of trips). These results are competitive with existing studies on policy-level claim classifica-
tion incorporating telematics data, where most models report ROC-AUCs (if available) between 0.58
and 0.62 (Paefgen et al. 2014, Baecke and Bocca 2017, Bian et al. 2018, Jin et al. 2018, Huang and
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Meng 2019, Duval et al. 2022, Duval et al. 2023). The highest reported ROC-AUC in this domain
is 0.80, achieved by Li et al. (2023), which also relies solely on telematics data, but incorporates a
much broader set of features, including annual mileage, number of trips, exposure to different times
of the day and days of the week, and harsh events, etc. More broadly, models based only on tradi-
tional covariates generally perform the worst, followed by those relying only on telematics data, with
the best results achieved when both sources are combined. These comparisons further highlight the
strength of our anomaly-based approach, as it achieves comparable or superior performance using only
a minimal set of telematics features. We emphasize that our risk evaluation relies exclusively on telem-
atics data, as traditional covariates regarding the driver or vehicle are unavailable. Nevertheless, our
ROC-AUCs outperform the reported industry benchmark of 0.65, demonstrating the effectiveness of
our methodology.

The remainder of this paper is organized as follows. Section 2 gives an overview of the telematics
dataset analysed in this work and discusses the associated data challenges which motivate the proposed
modelling. Section 3 introduces the continuous-time hidden Markov model (CTHMM) framework for
modelling trip-level telematics data and outlines the proposed anomaly detection method. Section 4
details the estimation algorithm. Section 5 validates the framework and methodology through a con-
trolled study, while Section 6 applies the model to real-world data, focusing on accident-related trips and
driver behaviour. Finally, Section 7 concludes the paper with a discussion of future research direction.

2. Data description and challenges
This section describes the real-world telematics dataset we will study throughout this paper and the
associated challenges which have motivated our proposed modelling.

2.1. Overview of data and challenges
We analyse a rental car dataset from Australia focused on medium- to long-term rentals, with a median
duration of 1 month and a mean of 2 months. For each trip, telematics information are recorded at irreg-
ular time intervals: timestamp, GPS locations (latitude and longitude) and speed. This raw telematics
data allow the calculation of time lapse (time since the last observation) and lateral and longitudinal
accelerations. The dataset also includes claims reported between January 1, 2019 and January 31, 2023.

The first challenge with this dataset is the lack of labels. On one hand, we do not have labels regarding
the driving behaviour (e.g., normal or aggressive) nor the riskiness of each trip. On the other hand, in
cases where the rental results in claims and the date of loss is known, we do not know exactly in which trip
the accident or damage occurred. Therefore, we will employ unsupervised learning for trip telematics
modelling.

Moreover, this dataset poses another challenge, which is the lack of traditional covariates, such as
driver-specific or vehicle-specific characteristics commonly used in risk modelling. As a result, we focus
solely on telematics data to assess driving risk. First, we would like to use the proposed model to study
and analyse various driving behaviour. However, driving behaviour can be influenced by many fac-
tors, such as the driver’s experience, habits and the current traffic environment, leading to considerable
heterogeneity. Furthermore, driving behaviour can be categorized into different driving styles, such as
normal, cautious, and aggressive (Ma et al. 2021). However, there is no unified standard to clearly distin-
guish these styles. Deng and Söffker (2022) pointed out that in existing literature, the levels, terms, and
concepts often depend on the authors’ own definitions. For this reason, instead of pre-specifying the dif-
ferent behaviour, we let the fitted model inform us what the various types of behaviour and the transitions
between them are. This is similar to the study of animal movements (Michelot et al. 2016, Whoriskey
et al. 2017, Grecian et al. 2018). Second, while claims records are available for the dataset under con-
sideration, this is not typically the case for our industry collaborator’s other datasets. Yet, telematics
datasets without claims records are exactly where we would like to apply our proposed methodology
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for risk evaluation. The absence of claims or accidents does not imply an absence of risk, as driving
risk is not constant even when no claims or accidents occur. Hence, we require a model that can learn
and analyse driving behaviour without supervision and quantify the riskiness of each trip independently
of claims data. Using the available claims records, we further validate that the anomaly indices are
positively associated with accident involvement, demonstrating that our method can effectively assess
driving risk in both settings.

There are two more challenges regarding the structure of the telematics records. First, the time series
are irregular, where the sequence of data points is recorded at unevenly spaced time intervals. The reason
is that our collaborator employs a patented curve logging technique in its telematics tracking system,
which eliminates intermediate data points when changes are ‘insignificant’, to reduce the burden of
data transmission and storage. In the dataset, this technique has been applied to both GPS locations
logging and speed logging, and consequently, the telematics time series become irregular. Although
this technique eases data transmission and storage burden, analysis and modelling of irregular time
series are more challenging because traditional time-series methods often assume a regular time interval
between observations. One of the simplest and most straight-forward solutions is to choose a regular
time interval (e.g., per second) and fill in missing data via linear interpolation. However, such method
conflicts with the purpose of curve logging. Moreover, while we can return to traditional time-series
analysis after linear interpolation, much of the modelling and computing effort will be placed on the
interpolated points which provide no new information. For these reasons, we opt against using linear
interpolation.

It is natural to question how important it is to consider the irregular time intervals, and how differ-
ent the time series can be if these intervals are neglected. For illustrative purpose, Figure 1 shows the
speed time series of a sample trip. The top sub-figure illustrates how the time series would appear if
observations were assumed to be recorded at regular intervals. While the x-axis is labelled ‘observa-
tion’, it can also be interpreted as if the observations were collected at a fixed rate (e.g., one per second
or at another constant interval). The bottom sub-figure represents the time series considering the actual
timestamps (in seconds) of each observation, hence accounting for the irregular time intervals between
observations; this reflects the true speed time series as it occurred in reality. For example, the small ‘V’
shape at the start of the trip consists of observations recorded approximately one second apart, whereas
the observations centered around 200 seconds have a time gap of 50 seconds between them.

We observe that the patterns are similar, since the ‘significant’ changes should have been captured
by curve logging. However, the interpretation can be different, especially if we would like to study the
different driving behaviour, such as the magnitudes of acceleration and braking. In this example, we
observe that first, changes can seem less or more abrupt than they actually are; and second, the small
fluctuations at the end of the trip appear to have a much longer duration if observation times are not
considered (around 40% of the entire trip vs. less than 25% of the trip).

Another challenge with the telematics records is that the trips (and their time series) are of different
lengths. A possible solution is dynamic time warping (DTW), which is a technique to align, compare and
measure the similarity of time series of different lengths. However, DTW requires regular time series,
hence it is not directly applicable to our data unless the time series have been linearly interpolated.

The three aforementioned challenges demand a flexible, unsupervised time series model, which can
incorporate time series irregularity and of varying lengths. We propose the use of a time-homogeneous
CTHMM, where different states of the latent Markov chain will represent various driving actions and
can be inferred via the observed telematics data. Together, all these states will describe the prevalent
driving behaviour observed in the telematics data.

2.2. Data preparation
In particular, we model the following telematics responses: time (implicitly incorporated in the hid-
den Markov chain transitions), speed, and acceleration, which we further decompose into longitudinal

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.14
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 14 Jul 2025 at 03:11:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.14
https://www.cambridge.org/core


ASTIN Bulletin 211

Figure 1. Speed time series (in km/h) of a sample trip. Top: assuming observations are recorded
regularly; Bottom: considering the actual observation times (in seconds).

(acceleration and braking) and lateral (left and right turning) components. Longitudinal acceleration
reflects forward and backward movements, capturing braking and acceleration patterns, while lateral
acceleration represents side-to-side movements, associated with cornering and swerving (Rajamani
2012, Gillespie 2020). This decomposition provides a more detailed characterization of driving
behaviour, allowing us to distinguish between different driving styles and risk factors. For example,
high longitudinal acceleration may indicate aggressive driving or stop-and-go traffic, whereas high
lateral acceleration could suggest sharp cornering or sudden lane changes, which may result from reck-
less maneuvering or defensive evasive actions. Moreover, this separation enhances anomaly detection,
enabling the model to identify distinct types of risky events rather than treating all acceleration events
uniformly.

For illustrative purposes, let us consider a trip starting at time t0 and ending at time t6. We will employ
the response alignments as shown in Table 1. To achieve the necessary structure, we first convert the
GPS locations in latitude and longitude to Universal Transverse Mercator (UTM) coordinates, then we
apply the following physics formula to obtain the longitudinal and lateral accelerations.

Let s = (e, n) be the position of the vehicle at some time t, where e denotes the Easting and n denotes
the Northing of the vehicle in UTM coordinates. From two consecutive UTM coordinates and the time
interval in between, we calculate the velocity of the vehicle as

v = ds
dt

=
(

de

dt
,

dn

dt

)
.

In the case of discrepancy between this velocity and the GPS speed, velocity is scaled such that the
magnitude matches the latter speed. Hence, velocity will be missing at the start of the trip. Then from
two consecutive velocities, the acceleration is given by
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Table 1. Telematics response alignments.

time GPS locations speed longitudinal acceleration lateral acceleration
t0 GPS0 v0 missing missing
t1 GPS1 v1 ax,1 ay,1

t2 GPS2 v2 ax,2 ay,2

t3 GPS3 v3 ax,3 ay,3

t4 GPS4 v4 ax,4 ay,4

t5 GPS5 v5 ax,5 ay,5

t6 GPS6 v6 missing missing

a = dv
dt

=
(

d2e

dt2
,

d2n

dt2

)
.

It is noteworthy that this acceleration is attributed to the initial time point t1 as this is the (average)
acceleration applied from time t1 to t2. Consequently, the acceleration values at both the start and end
of the trip will be missing. Then the x-axis/longitudinal/tangential component of acceleration is

ax = v · a
||v|| ,

and the y-axis/lateral/normal component of acceleration is

ay =√||a||2 − a2
x .

3. Modelling framework: Continuous-time hidden Markov models
In this section, we introduce the time-homogeneous, continuous-time hidden Markov model (CTHMM)
used to model trip-level telematics data. Then, we outline an anomaly detection method to quantify the
degree of deviation in driving behaviour demonstrated by each trip. Finally, we discuss some assump-
tions and adjustments made to ensure the CTHMM can effectively accommodate the complexities of
telematics data and fulfill our analysis need.

We consider a population of M drivers. For driver i, i = 1, 2, ..., M, we have his/her telematics
records over Ni trips. For trip j, j = 1, ..., Ni, the multi-dimensional telematics data yijl are recorded at tijl,
l = 0, 1, ..., Tij, time points with irregular intervals.

3.1. Model description
The CTHMM is driven by a hidden Markov chain. A continuous-time hidden Markov chain with S
discrete latent states is defined by an initial state probability distribution π and a state transition rate
matrix Q. The elements quv in Q describe the rate the process transitions from states u to v for u �= v,
u, v = 1, ..., S, and quu = −qu = −∑

v �=u quv. The chain is time homogeneous in the sense that quv are
independent of time t. The probability that the process transitions from states u to v is quv/qu, while the
sojourn time in state u follows an exponential distribution with rate qu.

We assume drivers are independent, and each trip for a given driver is an independent time series
generated from the CTHMM. To simplify the notation, we first consider a single trip j. At time point
tl, the available observed telematics data yl depends on the current latent state Zl through the state-
dependent distribution f (yl|Zl = z(tl)), where z(tl) ∈ {1, 2, ..., S} is the latent state at time tl. Denote
� = (π , Q, �) the set of model parameters, where π is the initial state probability distribution, Q
is the transition rate matrix and � are the parameters of the state-dependent distributions. If the
continuous-time Markov model has been fully observed, meaning that one can observe every state
transition time T′ = (t′0, t′1, ..., t′T ′ ), the corresponding states Z′ = (z′

0 = z(t′0), z′
1 = z(t′1), ..., z′

T ′ = z(t′T ′)),
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the observed data Y = (y0, y1, ..., yT) at observation time points T = (t0, t1, ..., tT), then the complete data
likelihood is

L(�; Z′, T′, Y, T) = πz′0

T ′−1∏
k=0

(
qz′k ,z′k+1

qz′k

) (
qz′k exp (−qz′k (t

′
k+1 − t′k))

) T∏
l=0

f (yl|Zl = z(tl))

= πz′0

S∏
u=1

S∏
v=1,v �=u

qnuv
uv exp (−quτu)

T∏
l=0

f (yl|Zl = z(tl)),

where nuv is the number of transitions from states u to v and τu is the total time the chain remains in state
u.

However in a realization of a CTHMM, there are two levels of hidden information. First, none of the
states Z (at observation times) nor Z′ (at transition times) are directly observed in the hidden Markov
chain and can only be inferred from the observed data Y. Second, the state transitions between two
consecutive observations are also hidden– note the difference between state transition times T′ and
observation times T. In other words, the chain may have multiple transitions before reaching a state
which emits an observation. As a consequence, both nuv and τu are also unobserved. Here we assume the
observed telematics process possesses the ‘snapshot’ property, such that the observation made at time tl

depends only on the state active at time tl, instead of the entire state trajectory over the interval (tl−1, tl]
(Patterson et al., 2017).

We introduce two indicator functions: 1{Zl=u} = 1 if the latent state zl at observation time tl is u, and
0 otherwise; and 1{Zl=u,Zl+1=v} = 1 if the latent states zl, zl+1 at observation times tl and tl+1 are u and v,
respectively, and 0 otherwise. The likelihood can be expressed instead as

L(�; Y, T) =
S∏

u=1

π
1{Z0=u}
u

T−1∏
l=0

S∏
u,v=1

Puv(�l+1)
1{Zl=u,Zl+1=v}

T∏
l=0

S∏
u=1

fu(yl)
1{Zl=u} ,

where P(t) = exp (Q(t)) with �l = tl − tl−1 and matrix exponential exp, and fu(yl) = f (yl|Zl = u). P(t) is
a state-transition matrix with the (u,v)-th entry Puv(t), which is the probability that the (latent) Markov
chain transitions from state u to state v after time t. It accounts for all possible intermediate state
transitions which emit no observations happening before time t.

In an individual-specific model, where a distinct CTHMM is fitted for each individual, the complete
data likelihood for a driver i with Ni trips is given by

Li

(
�; Z′∗, T′∗, Y∗, T∗)=

S∏
u=1

S∏
v=1,v �=u

q
∑Ni

j=1 nij,uv
uv exp

(
−qu

Ni∑
j=1

τij,u

)
Ni∏

j=1

πz′ij0

Tij∏
l=0

f
(
yijl|Zijl = z(tijl)

)
.

Alternatively, it can be represented as

Li(�; Y, T) =
Ni∏

j=1

(
S∏

u=1

π
1{Zij0=u}
u

Tij−1∏
l=0

S∏
u,v=1

Puv(�ij,l+1)
1{Zijl=u, Zij,l+1=v}

Tij∏
l=0

S∏
u=1

fu(yijl)
1{Zijl=u}

)
.

In a pooled model, where a single CTHMM is trained to accommodate multiple individuals, each
with Ni trips for i = 1, ..., M, the complete data likelihood across all drivers is

L(�; Z′∗, T′∗, Y∗, T∗) =
M∏

i=1

Li(�; Z′∗, T′∗, Y∗, T∗),

or equivalently

Li(�; Y, T) =
M∏

i=1

Li(�; Y, T).

The rationale for choosing between the individual-specific model and the pooled model will be
discussed in Section 3.3.
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Table 2. UAH-DriveSet: Summary of state-dependent distributions from a 5-state individual-specific
CTHMM for D1. SD: standard deviation.

lateral longitudinal
acceleration acceleration speed

distribution Normal Normal Gamma
state mean SD mean SD shape scale mean SD
1 0.0002 0.0216 −0.0013 0.0147 1822.3880 0.0535 97.5073 2.2841
2 0.0012 0.0191 −0.0014 0.0134 1103.6513 0.0972 107.2352 3.2279
3 −0.0002 0.0249 0.0001 0.0158 820.2069 0.1097 89.9889 3.1422
4 −0.0004 0.0232 −0.0021 0.0149 217.7109 0.5785 125.9496 8.5360
5 −0.0112 0.0752 −0.0209 0.0573 23.0331 3.5364 81.4553 16.9724

While our modelling framework assumes independence across both drivers and trips by the same
driver, the latter requires further consideration to assess its validity and implications. Rather than mod-
elling each trip separately, we fit a single individual-specific CTHMM per driver, allowing all trips to
contribute to learning that driver’s unique driving patterns. This ensures that recurring behaviour, such
as tendencies in acceleration, braking, and cornering, is reflected in the estimated state transitions. As
a result, while individual trips are treated as independent realizations from the same model, the model
itself captures intra-driver dependencies by learning stable behavioural tendencies over time.

Although consecutive trips within a short time window (e.g., within the same day) may exhibit
stronger correlations due to persistent road, weather, or driver conditions, variations still arise due to
factors such as traffic conditions, driver fatigue, and trip purpose. These sources of randomness support
the assumption that trips are drawn from the same underlying distribution but are not necessarily depen-
dent on one another. Given that our focus is on long-term behavioural patterns and anomaly detection
rather than short-term trip clustering, assuming independence across trips remains a reasonable and
practical simplification for risk assessment.

If strong intra-driver dependence exists beyond what is captured by the driver-specific model, it may
lead to an underestimation of variability in a driver’s risk profile. Future extensions could incorporate
hierarchical models to explicitly account for temporal dependencies across trips, though at the cost of
increased complexity. For this study, our approach balances model complexity and interpretability while
effectively capturing key aspects of driver-specific behaviour, as will be demonstrated in the applications
in Sections 5 and 6.

3.2. Anomaly detection
Interpreting the hidden states and their corresponding state-dependent distributions in a CTHMM can
be challenging, especially when many states are needed to capture all significant combinations of the
response dimensions. To illustrate this, Table 2 presents the state-dependent distributions from a 5-state
individual-specific CTHMM for Driver 1 from the UAH-DriveSet (to be studied in detail in Section 5).
Each row represents a latent state, and for instance, the last row (state 5) can be roughly interpreted
as a driving action of ‘left turn (negative lateral acceleration) and deceleration (negative longitudinal
acceleration) at a lower speed range (with the lowest mean speed of 81 km/h, though with a large standard
deviation)’.

As shown in this example, a CTHMM with just 5 latent states for 3 response dimensions already
requires interpreting 15 distributions. With fewer states, the distributions exhibit large standard devia-
tions and significant overlap, making it unclear which driving action each state represents. Furthermore,
certain driving actions may not be captured, e.g., lower speed ranges appear underrepresented in this
example. Conversely, with more states, similar actions may be represented by multiple distributions,
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making it challenging to differentiate between them. More importantly, interpreting these latent states
does not directly help achieve our goal of risk assessment, as associating states with driving risk lev-
els is even more difficult and often subjective, especially in the absence of collision data. For example,
Jiang and Shi (2024) assumed specific accident probabilities associated with hard braking and big angle
changes and simulated accidents based on these assumptions. As explained in Section 1, instead of focus-
ing on specific accident-prone driving behaviour, we classify them broadly as ‘abnormal’ behaviour and
propose to perform anomaly detection under a (fitted) CTHMM. Our proposed method is statistically
supported and does not require explicit state interpretations, yet it can effectively identify outliers—in
our case, the deviating driving behaviour.

Given a fitted CTHMM, we can perform anomaly detection on both entire trips and individual data
points within a trip. Specifically, we utilize the ‘forecast pseudo-residuals’ introduced in Zucchini et al.
(2016). For a trip j from driver i at timepoint t, the uniform forecast pseudo-residual uijt,d for the d-th
dimension of the response Yijt, denoted as Yijt,d, is computed under the fitted model as

uijt,d = P
(
Yijt,d ≤ yijt,d | Yij0 = yij0, Yij1 = yij1, ..., Yij,t−1 = yij,t−1

)
.

In the context of HMMs, the analysis of pseudo-residuals serves two purposes: model checking and
outlier detection, and we focus on the latter for this work. The forecast pseudo-residuals help identify
observations that are extreme relative to the model and all preceding observations, highlighting the
abrupt changes in driving behaviour. If a forecast pseudo-residual is extreme, it indicates that the cor-
responding observation is an outlier, or that the model no longer provides an acceptable description of
the time series.

If the model fits the time series well, uijt,d should follow a Uniform(0, 1) distribution, with extreme
observations indicated by residuals close to 0 or 1. However, it can be hard to determine the extremity
of a value under the uniform scale. For example, while a value of 0.97 might seem extreme on its own,
it is less so when compared to 0.999. Consequently, Zucchini et al. (2016) suggest using the normal
forecast pseudo-residual

zijt,d = �−1
(
uijt,d

)
, (1)

where � is the standard normal cumulative density function. If the model is an accurate representation,
zijt,d should follow a standard normal distribution. In our analysis, we propose to classify observations
with normal residuals exceeding 3 standard deviations as outliers. The 3-standard deviation threshold is
widely used in statistical outlier detection, particularly for normally distributed data (Barnett and Lewis
1994, Aggarwal 2015). This threshold is based on the empirical rule (also known as the 68-95-99.7
rule) for normal distributions. Flagging observations with residuals beyond 3 standard deviations—
representing a 0.3% probability—effectively identifies points that are truly extreme relative to the model
and preceding observations. We further examine the impact of threshold selection on anomaly detection
performance in Section 5.2. Empirical results support the use of three standard deviations as the outlier
threshold, as it effectively identifies anomalous trips and driving behaviour while maintaining a clear
and consistent interpretation of what constitutes an extreme deviation from normal driving patterns.

Although we compute forecast pseudo-residuals uijt,d and zijt,d for each dimension d separately, all
response dimensions influence these values, as uijt,d is conditioned on the history across all dimensions.
Consequently, the other dimensions also impact the probability of being in a particular latent state at
each timepoint t.

In summary, our anomaly detection approach identifies deviations from learnt normal driving
behaviour without predefining specific risky states (e.g., ‘aggressive’ or ‘drowsy’ driving). Instead, the
model estimates the states in which a driver is most likely to be at a given time based on the (multivariate)
telematics response, such as speed, longitudinal acceleration, and lateral acceleration in our analysis.
Normal forecast pseudo-residuals zijt,d are computed for each dimension d of telematics observations, and
residuals beyond 3 standard deviations are flagged as outliers. At the trip level, we quantify the degree
of anomaly by calculating the proportion of outliers in each dimension, defining this as the ‘anomaly
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index’. Rather than classifying certain states as inherently risky, our approach evaluates whether an indi-
vidual is in an unexpected state given their usual driving patterns. This allows us to detect a broad range
of abnormal behaviour without requiring predefined labels or assumptions about specific risk types,
making the method both flexible and widely applicable.

3.3. Adapting and applying CTHMMs for anomaly detection in telematics
We perform anomaly detection at two levels to address two distinct objectives. At the driver level, we
focus on identifying anomalous behaviour and trips that deviate from a driver’s typical patterns, partic-
ularly those associated with accidents. For this purpose, we use individual-specific models to account
for heterogeneity in individual driving behaviour. Deng and Söffker (2022) listed five factors influenc-
ing driving behaviour, which are driving styles, fatigue driving, drunk driving, driving skills, and traffic
environment. Additional factors, such as vehicle characteristics, locations, and weather conditions, also
play a role but are not available for consideration in our modelling. Lefèvre et al. (2015) compared the
results of predicted acceleration and highlighted that a personalized/individualized model always outper-
forms an average/general model. While prediction is not our primary focus, the forecast pseudo-residuals
in our approach calculate the predictive probability that a response dimension at the next time point is
less extreme than the observed value given all previous observations. For reliable anomaly detection,
the CTHMM must accurately capture a driver’s typical behaviour. A pooled model trained on data from
multiple drivers may obscure individual anomalies, particularly for drivers whose deviations are minor
within the group. Therefore, we fit individual-specific models to each driver’s trips to detect anomalies
effectively.

At the group level, we aim to identify trips that deviate from the population norm and pinpoint
drivers associated with at-fault claims. For this, we use a pooled model. While individual-specific mod-
els generate forecast pseudo-residuals to detect anomalies for each driver, these residuals may not be
directly comparable across individuals. A pooled model, trained on trips from multiple drivers, enables
us to compare trips across drivers, identify population-level anomalies, and rank drivers by their relative
anomalousness.

For driver i with Ni trips, the anomaly index for response dimension d in trip j with Tij + 1
observations is defined as:

Aij,d =
∑

t 1(|zijt,d| ≥ 3)

Tij

. (2)

Note that the denominator is Tij only as forecast pseudo-residuals are not calculated at the first obser-
vation. To rank each driver’s trips by their level of anomalousness, we further define the normalized
anomaly index, which is the ratio of each trip’s index to the maximum index for that driver:

Ãij,d = Aij,d

maxj (Aij,d)
. (3)

The (raw) anomaly indices for response dimension d across Ni trips form an empirical distribution
{Aij,d, j = 1, ..., Ni} with empirical cumulative distribution function Fi,d(p). For group-level analysis, we
will focus on the right tail of this distribution, reflecting extreme anomaly levels in dimension d. In
particular, the maximum and α-th percentiles will be of interest:

max
j

(Aij,d) and Pα,d = inf{p : Fi,d(p) ≥ α}.
Although HMM is a flexible time-series model and the anomaly detection method is statistically

grounded, there are several assumptions and adjustments that we need to make to adapt the proposed
framework for the complex telematics data and ensure effective analysis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.14
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 14 Jul 2025 at 03:11:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.14
https://www.cambridge.org/core


ASTIN Bulletin 217

1. We assume that driving behaviour is predominately normal.
• While we aim to identify all abnormal driving behaviour, instead of focusing on just one or

a few, we still assume that driving behaviour is mostly normal and safe. This means that for
each driver, anomalous and risky trips are rare, and even within those risky trips (e.g., ones
that result in accidents), abnormal driving instances occur infrequently. Consequently, the
CTHMM, no matter individualized or generalized, is fitted to the normal and safe driv-
ing behaviour, with anomaly detection used to identify deviating ones. This assumption
should be fair as accidents would no longer be rare events otherwise. As will be shown
in Section 6.3, we tested pooled models with various portfolio compositions (having differ-
ent claim rates), and the method proves robust regardless of the proportion of drivers with
accidents the model is fitted on.

2. The CTHMM should have a reasonable number of states.
• The CTHMM should have sufficient (latent) states to capture the major combinations of

response dimensions, which ensures accurate modelling of a driver’s (in individual-specific
models) and a group’s (in a pooled model) normal driving behaviour. However, it is equally
important to avoid an excessive number of states, which can lead to model overfitting and
mistakenly fitting well to abnormal behaviour as well. As a general guideline, we suggest
starting with a number of latent states greater than the number of response dimensions (e.g.,
at least 5 states for 3 response dimensions) and increasing the number of states incrementally.
The optimal number of states can then be selected based on Akaike information criterion
(AIC) or Bayesian information criterion (BIC).

3. We divide each trip into intervals of non-zero speed and assume these sub-intervals of each
driver are independent time series generated from the same CTHMM.
• The forecast pseudo-residuals we consider for anomaly detection are based on probability

integral transform, which applies to continuous distributions. While continuity adjustments
can be made for discrete distributions, boundary points still pose problems. Harte (2021)
pointed out that pseudo-residuals are poor indicators of the model goodness-of-fit when
observations are near or at the boundary of the domain. Similarly, we find that under these
conditions, pseudo-residuals are also ineffective at detecting outliers. Although we can
model all values of speed with a semi-continuous distribution (e.g., a mixture of a con-
tinuous distribution on the positive real line and a point mass at 0), the boundary point 0
is problematic for anomaly detection. For this reason, we exclude 0-speed observations by
dividing each trip into intervals of non-zero speed and non-missing accelerations, captur-
ing moments when the driver is actually driving and the vehicle is moving. Consequently,
we assume these sub-intervals (instead of trips) of each driver are independent time series
generated by the same model and the CTHMM is fitted to sub-intervals. For analysis and
anomaly detection, we still evaluate on a trip basis: we first compute the pseudo-residuals
for each sub-interval, then aggregate the total number of outliers across all sub-intervals to
compute the anomaly index (outlier proportion) for the trip; see Figure 2 and the description
that follows for an illustration. By cutting trips into shorter, non-zero speed intervals, we
aim to standardize the time series and reduce trip heterogeneity due to varying trip duration,
road and weather condition, etc.

• Periods of low speed (near zero) may correspond to stops at traffic lights or other cir-
cumstances beyond the driver’s control and therefore may not be relevant for identifying
anomalous driving behaviour. While excluding 0-speed intervals was necessary for effective
outlier detection, this adjustment also mitigates the concern about such low-speed periods.
By focusing on non-zero speed intervals, representing moments when the driver is actively
driving and the vehicle is moving, this approach ensures that stopping events, such as waiting
at traffic lights, do not influence the anomaly detection process.
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4. Estimation algorithm
The proposed CTHMM is fitted using the expectation-maximization (EM) algorithm. As discussed in
Section 3.3, we fit the model to trip sub-intervals—either for individual driver i in an individual-specific
model or for a group of drivers i = 1, ..., M in a pooled model. In the following, we only present the
EM algorithm for the pooled model. With the assumption that drivers are independent, we note that the
individual-specific model is simply a special case where M = 1.

4.1. E-step
At the m-th iteration, we first calculate the expected complete data loglikelihood

Q(�; Y∗, T∗, �(m−1)) =E
(
�(�; Z′, T′, Y, T)|Y∗, T∗, �(m−1)

)
=

M∑
i=1

Ni∑
j=1

S∑
u=1

E
(
1{Zij0=u}|Y∗, T∗, �(m−1)

)
log (πu)

+
M∑

i=1

Ni∑
j=1

S∑
u=1

S∑
v=1,v �=u

{
log (quv)E

(
nij,uv|Y∗, T∗, �(m−1)

)
−quE

(
τij,u|Y∗, T∗, �(m−1)

)}
+

M∑
i=1

Ni∑
j=1

T∑
l=0

S∑
u=1

E
(
1{Zijl=u}|Y∗, T∗, �(m−1)

)
log

(
fu(yijl)

)
, (4)

where E( · |Y∗, T∗, �(m−1)) is the expected value given observed data Y∗, observation times T∗ and the
current estimate of model parameters �(m−1) resulted from the (m − 1)-th iteration.

To simplify the notation, we first state the computation algorithms for a single trip sub-interval j from
a driver i.

4.1.1. Conditional expectation of 1{Zl=u}
To compute the terms E(1{Zl=u}|Y∗, T∗, �(m−1)) for l = 0, 1, ..., Tj, u = 1, ..., S, one can apply standard
decoding methods—forward–backward algorithm (soft decoding) or Viterbi algorithm (hard decod-
ing). Given the current model parameter estimates �(m−1), which include the initial state probabilities
π , transition rate matrix Q, and state-dependent distributions fu(yl), we will utilize the state-transition
matrix P(�l), and let f(yl) be a diagonal matrix with the u-th diagonal element fu(yl).

4.1.2. Soft decoding—Forward–backward algorithm
We define the forward probabilities αl, backward probabilities β l and likelihood LTj (at time Tj)
recursively as follows:

α0 = π f(y0)

αl = αl−1P(�l)f(yl) for l = 1, 2, ..., Tj;

βTj
= 1

β
′
l = P(�l+1)f(yl+1)β

′
l+1 for l = 0, 1, ..., Tj − 1;

LTj = αlβ
′
l for l = 0, 1, ..., Tj.

Then we can define the ‘smoother’ for l = 0, 1, ..., Tj

E
(
1{Zl=u}|Y∗, T∗, �(m−1)

)= αl[u]β l[u]

LTj

, (5)

where αl[u] and β l[u] are the u-th elements in the vectors αl and β l, respectively.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.14
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.153, on 14 Jul 2025 at 03:11:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.14
https://www.cambridge.org/core


ASTIN Bulletin 219

To this end, we also define the ‘two-slice marginal’ for l = 0, 1, ..., Tj − 1, which will be used in the
computation in Section 4.1.2,

E
(
1{Zl=u,Zl+1=v}|Y∗, T∗, �(m−1)

)= αl[u]P(�l+1)[u, v] fv(yl+1)β l+1[v]

LTj

, (6)

where P(�l+1)[u, v] is the (u,v)-th element of P(�l+1).

4.1.3. Hard decoding—Viterbi algorithm
We first construct two S-by-(Tj + 1) matrices V1 and V2 with their (u,l)-th elements as follows:

V1[u, 0] = max
k

(πkfu(y0))

V2[u, 0] = 0

V1[u, l] = max
k

(V1[k, l − 1]P(�l)[k, u] fu(yl)) for l = 1, ..., Tj

V2[u, l] = arg maxk(V1[k, l − 1]P(�l)[k, u] fu(yl)) for l = 1, ..., Tj.

Then we backtrack to find the most likely sequence of latent states:

ẑTj = arg maxk(V1[k, Tj])

ẑl−1 = V2(ẑl, l) for l = 1, ..., Tj.

We can define the ‘smoother’ for l = 0, 1, ..., Tj

E
(
1{Zl=u}|Y∗, T∗, �(m−1)

)= 1{ẑl=u}, (7)

and the ‘two-slice marginal’ for l = 0, 1, ..., Tj − 1

E
(
1{Zl=u,Zl+1=v}|Y∗, T∗, �(m−1)

)= 1{ẑl=u,ẑl+1=v}. (8)

4.1.4. Conditional expectations of nuv and τu

The complication in the E-step lies in the calculation of E(nuv|Y∗, T∗, �(m−1)) and E(τu|Y∗, T∗, �(m−1)).
We make use of the Expm algorithm proposed by Liu et al. (2015), which provides an efficient way for
computing integrals of matrix exponentials; it is restated in Algorithm 1.

The algorithm exploits the fact that the hidden Markov chain is time-homogeneous and the state-
transition matrix at any timepoint tl−1, P(�l), only depends on the time interval between now and the
next observation timepoint �l = tl − tl−1. As a consequence, the conditional expectations of nij,uv and τij,u

only have to be evaluated for each distinct time interval rather than at each observation time. We denote
�′

k, k = 1, ..., r, the r distinct values of �l, l = 1, ..., Tj, and create count tables C(�′
k) with the two-slice

marginals from Equation 6 or Equation 8 as

C(�′
k)[u, v] =

∑
l:�l=�′

k

E
(
1{Zl=u,Zl+1=v}|Y∗, T∗, �(m−1)

)
.

4.2. M-step
The goal of the M-step is to maximize Q(�; Y∗, T∗, �(m−1)) with respect to �. However, it is too com-
putational costly to directly find the global maximum. Instead, we aim to use a computational effective
algorithm to find a near-maximum to update the parameters �(m) such that Q(�(m); Y∗, T∗, �(m−1)) ≥
Q(�(m−1); Y∗, T∗, �(m−1)). It follows from Equation 4 that Q(�; Y∗, T∗, �(m−1)) can be decomposed into
three parts

Q(�; Y∗, T∗, �(m−1)) = Q(m)
π

+ Q(m)
Q + Q(m)

� ,
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Algorithm 1 Expm Algorithm for Computing E
(
τu|Y∗, T∗, �(m−1)

)
and E

(
nuv|Y∗, T∗, �(m−1)

)
for states u = 1, ..., S do

E(τu|Y∗, T∗, �(m−1)) = 0
for distinct �′

k, k = 1, ..., r do

Du = exp (�′
kA)[(1 : S), (S + 1) : (2S)], where A =

[
Q I(u, u)
0 Q

]
E(τu|Y∗, T∗, �(m−1))+ =∑S

u′=1

∑S
v′=1 C(�′

k)[u
′, v′] Du[u′ ,v′]

P(�′
k)[u′ ,v′]

end for
end for

for states u = 1, ..., S do
for states v = 1, ..., S do
E(nuv|Y∗, T∗, �(m−1)) = 0
for distinct �′

k, k = 1, ..., r do

Duv = quv exp (�′
kA)[(1 : S), (S + 1) : (2S)], where A =

[
Q I(u, v)
0 Q

]
E(nuv|Y∗, T∗, �(m−1))+ =∑S

u′=1

∑S
v′=1 C(�′

k)[u
′, v′] Duv[u′ ,v′]

P(�′
k)[u′ ,v′]

end for
end for

end for

where I(u,v) is the matrix with a 1 in the (u,v)-th entry and 0 elsewhere.

where

Q(m)
π

=
M∑

i=1

Ni∑
j=1

S∑
u=1

E
(
1{Zij0=u}|Y∗, T∗, �(m−1)

)
log (πu); (9)

Q(m)
Q =

M∑
i=1

Ni∑
j=1

S∑
u=1

S∑
v=1,v �=u

{
log (quv)E

(
nij,uv|X∗, Y∗, T∗, �(m−1)

)− quE
(
τij,u|Y∗, T∗, �(m−1)

)}
; and (10)

Q(m)
� =

M∑
i=1

Ni∑
j=1

Tj∑
l=0

S∑
u=1

E
(
1{Zijl=u}|Y∗, T∗, �(m−1)

)
log

(
fu(yijl)

)
. (11)

Clearly, Q(m)
π

depends only on π , Q(m)
Q depends only on Q, and Q(m)

� depends only on �. As a
consequence, the problem reduces to maximize the three functions separately with respect to the corre-
sponding subset of parameters. While we can compute the E-step for each trip sub-interval separately,
we have to consider all of them collectively in the M-step calculation.

4.2.1. Initial state probability distribution π

We constrain πu summing to unity by use of a Lagrange multiplier. Then by taking the derivative of Q(m)
π

with respect to πu, we have the maximum likelihood estimator (MLE) in the m-th iteration as

π (m)
u =

∑M
i=1

∑Ni

j=1 E
(
1{Zij0=u}|X∗, Y∗, T∗, �(m−1)

)
∑S

u′=1

∑M
i=1

∑Ni

j=1 E
(
1{Zij0=u′}|X∗, Y∗, T∗, �(m−1)

) .
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4.2.2. Transition rate matrix Q
By taking the derivative of Q(m)

Q with respect to quv for u �= v, we have the MLE in the m-th
iteration as

q(m)
uv =

∑M
i=1

∑Ni

j=1 E
(
nij,uv|Y∗, T∗, �(m−1)

)
∑M

i=1

∑Ni

j=1 E
(
τij,u|Y∗, T∗, �(m−1)

) and q(m)
uu = −q(m)

u = −
∑
v �=u

q(m)
uv .

4.2.3. State-dependent distributions �

The maximization of Q(m)
� depends on the specific probability distributions that are employed. Generally

speaking, one will have to compute the weighted MLE of the distribution parameters, with weights
for the u-th latent state E(1{Zijl=u}|Y∗, T∗, �(m−1)). In our proposed CTHMM, we assume the different
dimensions Yijl,d of the (multi-dimensional) response Yijl to be independent conditional on the latent
state. Then conditional on the latent state, one can compute the (weighted) MLE of each dimension
separately. In our Julia implementation, we incorporated the following distributions: gamma, Laplace,
log-normal, normal, von Mises, zero-inflated gamma, and zero-inflated log-normal. The MLE of the
parameters for each selected distribution are provided in Appendix A of the Supplementary Material.
The implementation is publicly available at https://github.com/ianwengchan/HMMToolkit.

4.3. Joint modelling of telematics and computational cost
In this work, we analyse multivariate time series of speed, longitudinal acceleration and lateral accel-
eration. Joint modelling of telematics responses provides a more complete picture of driving behaviour
while also enhancing anomaly detection. Although it increases computational complexity, it provides a
more comprehensive and robust risk assessment compared to analysing each variable separately.

One key advantage of joint modelling is that it captures the interactions between different telemat-
ics responses, leading to a more complete representation of driving behaviour. Speed and acceleration
complement each other, offering richer context than when analysed individually. For instance, the
same acceleration intensity at different speed ranges may indicate very different driving conditions:
a harsh acceleration at low speeds could be a normal response in stop-and-go traffic, whereas the same
acceleration at high speeds might signal aggressive driving.

Beyond improving behavioural modelling, joint modelling significantly enhances anomaly detection.
As will be demonstrated in Section 5.2 (Tables 5 and 6), outlier identification depends not only on a
single variable but on the combination of speed and acceleration components. Since pseudo-residual
calculations and anomaly detection are influenced by which latent state is the most probable at each
time point, and it depends on the other response dimensions as well, excluding key response dimensions
weakens the model’s ability to identify true behavioural anomalies.

The trade-off between predictive accuracy and computational complexity primarily comes from an
increase in the number of latent states. For example, if speed and longitudinal acceleration are each
categorized into three levels (low, mid, and high), a univariate CTHMM requires only 3 states, while
a multivariate model may require 9 states. However, if both univariate and multivariate models are
constrained to the same number of states, the multivariate model does not introduce significant additional
computational costs. Under the assumption of conditional independence of response dimensions given
a state, likelihood calculations remain computationally efficient as they only involve the multiplication
of density functions across dimensions.

5. Controlled study
This section details the application of the proposed CTHMM to a labelled telematics dataset to validate
its effectiveness in identifying deviating driving behaviour.
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5.1. Data description
Before applying our CTHMM-based anomaly detection to the real-world dataset that lacks labels for
driving behaviour, we first evaluate its effectiveness using a labelled telematics dataset. Specifically, we
analyse the UAH-DriveSet (Romera et al., 2016), a publicly available telematics dataset. This dataset
consists of six drivers, each driving a different vehicle, performing three distinct driving behaviour
(normal, aggressive, and drowsy) on two different roads (a motorway and a secondary road). While
the dataset contains extensive telematics information and even video recordings, our controlled study
focuses on validating the proposed method’s ability to detect abnormal driving behaviour, ensuring that
it can be applied to the real-world data for risk evaluation. For this purpose, we limit our analysis to the
same set of telematics features, which are speed, longitudinal, and lateral accelerations only.

In the UAH-DriveSet, telematics recording starts when the vehicle enters the specific road and ends
when it exits, hence speed is always non-zero, posing no issues for anomaly detection as discussed in
Section 3.3. Speed is collected from GPS at 1Hz, while accelerations are recorded from accelerometer at
10Hz. According to Romera et al. (2016), ‘Z’ and ‘Y’ denote the longitudinal and lateral accelerations,
respectively. Since accelerometers are sensitive and measurements can be noisy, we consider ‘Z_KF’
and ‘Y_KF’, which have been filtered by a Kalman Filter and are readily available in the dataset. We
downsample the 3-dimensional responses such that they are all observed per second. Although one can
apply a discrete-time HMM to this data due to its regular time intervals, we apply the continuous-time
version to also test that the model estimation algorithm runs correctly.

On the motorway, each driver performed three round trips, simulating each of the three driving
behaviour. On the secondary road, each of them performed four one-way trips, consisting of both a
departure and a return as normal, a departure as aggressive and a return as drowsy. Hence, each driver
should have telematics records of seven trips. In the following discussion, we omit driver D6 who drove
an electric vehicle, since he did not perform the aggressive trip on the secondary road due to lack of
autonomy.

While the road type is available in the UAH-DriveSet (in fact, drivers are not only driving on two
specific road types but two designated roads), road types are not always available in real data. In reality,
trips tend to be longer and can involve various road types. For example, a driver who commutes to work
from home can have travelled on all of residential streets, primary to tertiary roads, and motorways, and
it can be difficult to assign a single road type to such a trip. For this reason, we do not consider road
types in the controlled study; yet, we will show that results demonstrate strong model performance.

5.2. Individual-specific model
We first test the ability of individual-specific models in identifying anomalous trips for each driver,
with a particular focus on detecting the two aggressive trips as a representative example. For each of
the drivers D1 to D5, we fit a 20-state CTHMM to his/her seven trips. We tested a limited selection of
models with 5, 10, 15, 20, and 25 states, with 20 states being optimal according to both AIC and BIC.
This choice ensures that the model captures all major combinations of speed and accelerations without
overfitting. More discussions on the robustness of the results with respect to the number of states are
presented later in this subsection.

The state-dependent distributions are gamma for speed and normal for both longitudinal and lateral
accelerations. These choices are made based on the domain and characteristics of each response dimen-
sion. Gamma distribution is right-skewed and strictly positive, making it well-suited for modelling speed,
which is often asymmetric with a long tail at higher values. Additionally, it has two parameters (shape
and scale), allowing it to adapt to different degrees of skewness and dispersion in speed distributions.
Normal distribution is appropriate for acceleration because acceleration values are often symmetri-
cally distributed around zero, with both positive (acceleration) and negative (deceleration) values. It
is also widely used due to its tractable properties and well-established estimation methods. In addition
to optimizing the number of latent states, one can also explore alternative choices for state-dependent
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distributions. For example, a 20-state CTHMM could be fitted using either log-normal or gamma dis-
tributions for speed, with model selection guided by AIC or BIC. This flexibility allows for further
refinement of the model based on empirical fit.

Initial guesses for parameter estimation are important in EM algorithm as they can influence the
convergence of the algorithm and the final model fit, especially in the case when the algorithm converges
to a local optimum instead of a global one. Parameter initializations of π and Q are random, while state-
dependent distribution parameters � are initiated with k-means clustering. Users are encouraged to try
multiple different initializations to reduce the chances of the model converging to a local optimum. To
robustify our analysis, we re-fit the model 100 times with different random initializations and analyse
the average result.

After model fitting, we calculate the anomaly indices of each trip under the corresponding driver’s
model. The results are reported in Table 3. First, we observe that trips performed on motorway usu-
ally have some outliers in speed. This is expected as the driving speed is generally higher on motorway
than on secondary road. However, speed alone does not reveal the driving behaviour, and it is essential
to consider the changes of it, which are the accelerations. Second, we observe that the two aggressive
trips are characterized by the higher anomaly index in the longitudinal acceleration (acceleration and
braking). This is in line with the experiment set-up: the drivers are told to push to the limit their aggres-
siveness without putting the vehicle at risk. Furthermore, this is also in line with Zylius et al. (2014),
which showed that aggressive and safe driving styles can be more effectively classified using longitudi-
nal acceleration signals. While longitudinal acceleration is clearly associated with aggressiveness, the
relationship between lateral acceleration and driving behaviour is less straightforward. However, as we
will demonstrate in Section 6, anomaly indices for both longitudinal and lateral accelerations show a
positive correlation with accident probability.

While the anomaly index with the proposed outlier threshold of 3 standard deviations (SDs) provides
strong anomaly detection results, we further examine the impact of threshold selection on performance.
Table 4 presents the anomaly indices computed using alternative outlier thresholds of 2 and 4 SDs.
Using a lower (higher) threshold increases (decreases) the anomaly index. We observe that with a 2-SD
threshold, the two aggressive trips for each driver still exhibit higher anomaly indices in longitudinal
acceleration and can be identified. However, with a 4-SD threshold, many indices drop close to zero, as
it becomes highly unlikely for a normal forecast pseudo-residual to exceed 4 in absolute magnitude. As
a result, the two aggressive trips can no longer be distinguished from other trips. Furthermore, while the
2-SD threshold still identifies the aggressive trips, it results in anomaly indices that are approximately 10
times higher than those computed with a 3-SD threshold (Table 3). This raises concerns about whether
the trips are truly that anomalous and whether the anomaly index retains its intended meaning. For
instance, under the 2-SD threshold, normal trips on the secondary road have an average of 3.84% out-
liers, whereas under the 3-SD threshold, this drops to 0.82%, which more accurately reflects them as
following normal driving behaviour. These observations support the use of 3 standard deviations as the
outlier threshold, as it effectively identifies anomalous trips and driving behaviour while maintaining
interpretability.

It is worth mentioning that pseudo-residuals consider more than just the magnitudes of the
responses—they also take into account information derived from the other dimensions of the response
and how likely the observed transitions are. Table 5 includes a snapshot of D1’s aggressive trip per-
formed on the motorway, with pseudo-residuals of longitudinal acceleration Z_KF. First, we see that the
longitudinal acceleration (−0.070) at timepoint 300 is an outlier, despite having a magnitude smaller
than that (−0.102) at timepoint 334, which is not an outlier. This is because the first transition is from a
less extreme value (0.003) to a more extreme one, while the second transition is the other way around.
Second, we also observe that the longitudinal acceleration (−0.070) at timepoint 300 is an outlier while
that (−0.086) at timepoint 383 is not despite having transitions of similar magnitude. The reason is that
the speed during the latter transition is in a different range, and such transitions are more common in
the lower speed range for this driver. Furthermore, since model training and analysis are performed on
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Table 3. UAH-DriveSet: Anomaly index in each dimension of telematics
observations, computed from individual-specific CTHMMs with 20 states for
each driver and averaged over 100 random initializations. Note: S stands for
Secondary Road and M stands for Motorway; Z and Y are longitudinal and
lateral accelerations, respectively.

Driver Trip Y_KF Z_KF Speed
D1 S-Normal 1 0.0115 0.0030 0.0000

S-Normal 2 0.0058 0.0011 0.0000
S-Aggressive 0.0090 0.0080 0.0000
S-Drowsy 0.0099 0.0071 0.0000
M-Normal 0.0039 0.0013 0.0000
M-Aggressive 0.0046 0.0099 0.0049
M-Drowsy 0.0013 0.0035 0.0000

D2 S-Normal 1 0.0021 0.0003 0.0000
S-Normal 2 0.0038 0.0003 0.0000
S-Aggressive 0.0018 0.0166 0.0009
S-Drowsy 0.0209 0.0050 0.0000
M-Normal 0.0033 0.0016 0.0011
M-Aggressive 0.0071 0.0133 0.0007
M-Drowsy 0.0139 0.0034 0.0000

D3 S-Normal 1 0.0045 0.0016 0.0000
S-Normal 2 0.0074 0.0042 0.0000
S-Aggressive 0.0095 0.0133 0.0000
S-Drowsy 0.0051 0.0035 0.0000
M-Normal 0.0051 0.0017 0.0020
M-Aggressive 0.0037 0.0179 0.0001
M-Drowsy 0.0077 0.0003 0.0002

D4 S-Normal 1 0.0034 0.0027 0.0001
S-Normal 2 0.0080 0.0016 0.0000
S-Aggressive 0.0083 0.0132 0.0003
S-Drowsy 0.0153 0.0036 0.0004
M-Normal 0.0016 0.0023 0.0017
M-Aggressive 0.0134 0.0168 0.0001
M-Drowsy 0.0045 0.0008 0.0000

D5 S-Normal 1 0.0010 0.0006 0.0000
S-Normal 2 0.0015 0.0013 0.0037
S-Aggressive 0.0075 0.0099 0.0000
S-Drowsy 0.0060 0.0024 0.0000
M-Normal 0.0019 0.0029 0.0004
M-Aggressive 0.0105 0.0076 0.0000
M-Drowsy 0.0059 0.0011 0.0001

a per-driver basis rather than collectively, how likely a transition is, and consequently the identification
of outliers, also varies across drivers. Outliers cannot be identified through direct comparison between
drivers. For example, Table 6 provides a snapshot of D2’s aggressive trip performed on the motorway. If
we compare this transition with D1’s first (selected) transition, we see that despite having similar speed,
comparable resulting longitudinal acceleration, and an arguably more aggressive transition (from 0.041
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Table 4. UAH-DriveSet: Alternative thresholds (2 and 4 standard deviations (SDs)) for
calculating anomaly index in each dimension of telematics observations, computed from
individual-specific CTHMMs with 20 states for each driver and averaged over 100 random
initializations. Note: S stands for Secondary Road and M stands for Motorway; Z and Y are
longitudinal and lateral accelerations, respectively.

2 SDs 4 SDs
Driver Trip Y_KF Z_KF Speed Y_KF Z_KF Speed
D1 S-Normal1 0.0740 0.0614 0.0126 0.0004 0.0000 0.0000
D1 S-Normal2 0.0690 0.0586 0.0038 0.0001 0.0000 0.0000
D1 S-Aggressive 0.0667 0.0675 0.0010 0.0008 0.0004 0.0000
D1 S-Drowsy 0.0657 0.0348 0.0100 0.0016 0.0021 0.0000
D1 M-Normal 0.0399 0.0389 0.0047 0.0001 0.0000 0.0000
D1 M-Aggressive 0.0565 0.0744 0.0327 0.0007 0.0011 0.0000
D1 M-Drowsy 0.0341 0.0294 0.0035 0.0000 0.0000 0.0000
D2 S-Normal1 0.0384 0.0185 0.0085 0.0000 0.0000 0.0000
D2 S-Normal2 0.0264 0.0299 0.0001 0.0008 0.0000 0.0000
D2 S-Aggressive 0.0413 0.1120 0.0318 0.0000 0.0000 0.0000
D2 S-Drowsy 0.1192 0.0431 0.0075 0.0025 0.0009 0.0000
D2 M-Normal 0.0253 0.0280 0.0086 0.0009 0.0000 0.0010
D2 M-Aggressive 0.0597 0.0999 0.0382 0.0012 0.0004 0.0000
D2 M-Drowsy 0.0894 0.0378 0.0060 0.0009 0.0004 0.0000
D3 S-Normal1 0.0349 0.0313 0.0028 0.0020 0.0000 0.0000
D3 S-Normal2 0.0341 0.0499 0.0042 0.0009 0.0000 0.0000
D3 S-Aggressive 0.0500 0.1163 0.0080 0.0009 0.0001 0.0000
D3 S-Drowsy 0.0728 0.0354 0.0024 0.0001 0.0000 0.0000
D3 M-Normal 0.0417 0.0384 0.0112 0.0002 0.0001 0.0000
D3 M-Aggressive 0.0528 0.0996 0.0528 0.0008 0.0007 0.0000
D3 M-Drowsy 0.0709 0.0144 0.0053 0.0010 0.0000 0.0000
D4 S-Normal1 0.0133 0.0433 0.0152 0.0000 0.0002 0.0000
D4 S-Normal2 0.0295 0.0344 0.0212 0.0000 0.0000 0.0000
D4 S-Aggressive 0.0612 0.1135 0.0126 0.0000 0.0017 0.0000
D4 S-Drowsy 0.0832 0.0436 0.0091 0.0016 0.0000 0.0000
D4 M-Normal 0.0310 0.0247 0.0145 0.0000 0.0000 0.0000
D4 M-Aggressive 0.0726 0.0943 0.0279 0.0011 0.0013 0.0000
D4 M-Drowsy 0.0657 0.0222 0.0055 0.0000 0.0000 0.0000
D5 S-Normal1 0.0220 0.0321 0.0032 0.0000 0.0000 0.0000
D5 S-Normal2 0.0504 0.0251 0.0105 0.0000 0.0000 0.0023
D5 S-Aggressive 0.0480 0.0884 0.0143 0.0004 0.0000 0.0000
D5 S-Drowsy 0.0655 0.0389 0.0053 0.0000 0.0000 0.0000
D5 M-Normal 0.0415 0.0551 0.0030 0.0000 0.0000 0.0000
D5 M-Aggressive 0.0823 0.0948 0.0055 0.0006 0.0001 0.0000
D5 M-Drowsy 0.0425 0.0399 0.0127 0.0006 0.0001 0.0000

to -0.075 as compared to from 0.003 to -0.070), it is not an outlier while D1’s transition is. This is due
to the fact that such transitions are more typical in D2’s driving history but not as much for D1.

While the above analysis uses CTHMMs with 20 states, we also explore the effect of different number
of states on the results. For simplicity, we consider a limited selection of 5, 10, 15, 20, and 25 states. For
each number of states, we re-fit the model 100 times with different random initializations and compute
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Table 5. Snapshot of D1’s aggressive trip on motorway with
pseudo-residuals of Z_KF. Note: Z and Y are longitudinal and
lateral accelerations, respectively.

Timestamp Y_KF Z_KF Speed Residuals
...

299 −0.010 0.003 96.4 0.3056
300 0.006 −0.070 95.7 −3.4650

...

333 0.030 −0.179 95.0 −3.1200
334 0.049 −0.102 95.0 −1.0931

...

382 −0.011 0.006 47.9 0.4493
383 −0.033 −0.086 51.3 −2.2369

...

Table 6. Snapshot of D2’s aggressive trip on motorway with
pseudo-residuals of Z_KF. Note: Z and Y are longitudinal and
lateral accelerations, respectively.

Timestamp Y_KF Z_KF Speed Residuals
...

283 −0.018 0.041 94.7 0.9829
284 −0.003 −0.075 94.8 −0.6250

...

the average results. Since the models with 25 states include degenerate state-dependent distributions for
accelerations, we do not report their results and terminate the search at 20 states, which gives the lowest
AIC and BIC. With increasing number of states, we observe that the anomaly indices generally decrease,
as more telematics combinations are described and fewer data points are then considered outliers. The
two aggressive trips are consistently characterized by more outliers in longitudinal acceleration, except
for Driver 1, where there is a mix between the two aggressive trips and the drowsy trip completed on
the secondary road when the number of states is lower. Detailed results can be found in Appendix B.

Using the UAH-DriveSet, we have validated that the proposed individual-specific CTHMM, along
with its anomaly detection method, effectively learns and distinguishes between different driving
behaviour. With minimal supervision— specifying only the number of states and the state-dependent
distribution families—the fitted model is able to capture key combinations of speed and accelerations
and identify deviating behaviour. The model achieves this by considering not only speed but also its
changes, and more importantly their combinations. We expect that speed inherently captures informa-
tion regarding road type, and driving behaviour (normal, aggressive, and drowsy) is then described by
its combination with lateral and longitudinal accelerations.

Compared to the state-of-the-art methods applied to the UAH-DriveSet, this work introduces several
methodological advancements and distinctions. Existing studies primarily rely on supervised machine
learning techniques, leveraging labelled data to classify aggressive driving behaviour using meth-
ods such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and ensemble
models. Moreover, these approaches typically incorporate diverse telematics inputs, including GPS data,
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gyroscope readings, and even video recordings, to enhance feature richness and classification accuracy
(Romera et al. 2016, Moukafih et al. 2019, Liu et al. 2024). In contrast, we introduce an unsupervised
anomaly detection method under the CTHMM, addressing the practical challenge of label unavailabil-
ity in real-world scenarios. Furthermore, this work demonstrates the robustness of using only three
fundamental telematics responses: speed, longitudinal acceleration, and lateral acceleration. This much
simpler yet effective approach highlights the adaptability of the proposed methodology to datasets with
limited sensor information while maintaining strong capabilities in anomaly detection and aggressive
trip identification.

5.3. Pooled model
As shown in the previous section, individual-specific models can produce forecast pseudo-residuals that
effectively highlight anomalous trips for each driver. However, there is no guarantee that these residuals
can be compared across different individuals as they are derived from distinct models. Therefore, we
employ a pooled model that enables trip comparison across individuals and driver rankings.

We train a 20-state CTHMM using all 35 trips from the five drivers D1 to D5. The state-dependent dis-
tributions and parameter initializations match those used in the individual-specific models. After model
fitting, we assess the anomaly indices of each trip under the pooled model. To enhance the robustness
of our analysis, we also re-fit the model 100 times with different random initializations and present the
average result in Table 7.

First, when comparing the 7 trips of each driver, we observe that the two aggressive trips again
exhibit a higher anomaly index in longitudinal acceleration, except for D1, where there is once more a
mix between the two aggressive trips and the drowsy trip driven on the secondary road. Second, since
the pseudo-residuals are derived from the same pooled models, we can now fairly compare them and
rank the trips. Table 7 also presents the ranking of each trip among all 35, in descending anomaly
index in longitudinal acceleration. D2’s aggressive trip on the secondary road ranks highest in terms of
anomalousness in longitudinal acceleration (or aggressiveness), followed by D5’s aggressive trip on the
motorway. Lastly, due to heterogeneity in individual driving behaviour, it is possible for a driver’s normal
trip to be deemed more anomalous than another driver’s abnormal trip. For instance, D5’s normal trip on
the motorway exhibits a higher anomaly index in longitudinal acceleration compared to D3’s aggressive
trip on the secondary road.

While the intermediate rankings of trips may not be completely clear, it is obvious that D2 is the most
aggressive driver, while D3 is the least. Although both drivers are male and in the 20–30 age range, they
drive different vehicles. D2 drives a Mercedes B180 (2013), a compact yet relatively powerful vehi-
cle, which could encourage more aggressive driving, particularly on secondary roads. In contrast, D3
drives a Citroën C4 (2015), a smaller and potentially less powerful car, which could lead to a more cau-
tious driving style. These differences in vehicle characteristics likely influence their respective driving
behaviours.

However, we lack ground-truth labels regarding the anomalousness or riskiness of each driver, as none
has been involved in accidents. While we have outlined a method in this section and demonstrated its
use, we admit that we cannot fully validate the rankings presented above. We keep this issue in mind, but
the observed patterns—such as D2’s higher anomaly index indicating more aggressive driving among
the group of drivers—are suggestive. We aim to validate our findings further in Section 6.3 using the
rental car dataset.

6. Real data analysis
This section details the application of the proposed CTHMM to the rental car dataset. We analyse
telematics data at two distinct levels. At the driver/rental level using individual-specific modelling,
we aim to identify accident-associated trips for rentals with at-fault claims. At the group-level using
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Table 7. UAH-DriveSet: Anomaly index in each dimension of telematics observa-
tions, computed from pooled CTHMM with 20 states from all drivers and averaged
over 100 random initializations. Note: S stands for Secondary Road and M stands
for Motorway; Z and Y are longitudinal and lateral accelerations, respectively.

Driver Trip Y_KF Z_KF Speed Rank
D1 S-Normal 1 0.0066 0.0009 0.0002 25

S-Normal 2 0.0070 0.0014 0.0000 21
S-Aggressive 0.0058 0.0077 0.0000 7
S-Drowsy 0.0056 0.0063 0.0000 9
M-Normal 0.0024 0.0004 0.0000 29
M-Aggressive 0.0044 0.0046 0.0001 11
M-Drowsy 0.0019 0.0038 0.0000 13

D2 S-Normal 1 0.0019 0.0010 0.0000 24
S-Normal 2 0.0039 0.0004 0.0000 28
S-Aggressive 0.0001 0.0164 0.0000 1
S-Drowsy 0.0125 0.0068 0.0000 8
M-Normal 0.0026 0.0008 0.0007 26
M-Aggressive 0.0028 0.0124 0.0009 4
M-Drowsy 0.0070 0.0048 0.0000 10

D3 S-Normal 1 0.0023 0.0004 0.0000 30
S-Normal 2 0.0052 0.0007 0.0000 27
S-Aggressive 0.0048 0.0028 0.0000 16
S-Drowsy 0.0043 0.0014 0.0000 22
M-Normal 0.0004 0.0000 0.0047 32
M-Aggressive 0.0025 0.0040 0.0001 12
M-Drowsy 0.0053 0.0000 0.0001 34

D4 S-Normal 1 0.0022 0.0017 0.0000 20
S-Normal 2 0.0024 0.0024 0.0000 17
S-Aggressive 0.0027 0.0117 0.0000 5
S-Drowsy 0.0090 0.0029 0.0000 15
M-Normal 0.0000 0.0020 0.0047 18
M-Aggressive 0.0045 0.0132 0.0000 3
M-Drowsy 0.0025 0.0010 0.0000 23

D5 S-Normal 1 0.0000 0.0000 0.0000 33
S-Normal 2 0.0018 0.0000 0.0058 34
S-Aggressive 0.0089 0.0113 0.0000 6
S-Drowsy 0.0070 0.0002 0.0000 31
M-Normal 0.0033 0.0037 0.0011 14
M-Aggressive 0.0204 0.0144 0.0010 2
M-Drowsy 0.0042 0.0018 0.0000 19

pooled modelling, we analyse driving behaviour patterns across drivers with and without at-fault claims,
focusing particularly on the anomaly index, to reveal population-level trends and behavioural differences.

6.1. Data description
We now apply our proposed CTHMM to the rental car dataset, which contains claims reported from
January 1, 2019 to January 31, 2023. As we would like to investigate the connection between driving
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behaviour and accidents, we focus on at-fault claims. These claims are typically more directly related to
driver actions and behaviour and are expected to provide greater insight into how these factors contribute
to accidents. The portfolio includes 1,678 rentals with at least one at-fault claim and 16,495 rentals
without claims.

Recall that one challenge with this dataset is the lack of precise labels for accident-associated trips.
Claims are reported with a date of loss but not the specific trip involved. To approximate these labels,
we rely on ‘potential accident triggers’ provided by our collaborator, who specializes in both telematics
recording hardware and software development. In big lines, these triggers are derived based on prede-
fined thresholds on accelerometer readings and further inspections on speed changes (e.g., whether the
vehicle comes to a stop afterwards).

However, the method used by our collaborator is not perfect. While these triggers are accurate in
distinguishing between real crashes and harsh braking events, they suffer from a high false-negative
rate due to curve logging (explained in Section 2), which also applies to accelerometer readings. Curve
logging reduces noise in the accelerometer readings, but may unintentionally filter out some acceleration
values that exceed the thresholds. As a result, only about 10% of the at-fault claims are matched with
a corresponding trigger, leaving the remaining 90% unassociated with specific trips—even though we
know these claims exist.

Given this limitation, we treat the detected triggers as ground truth. Since the date of loss is customer-
reported and may not be fully reliable, we extend the analysis to consider all trips completed within a
3-day window (the date of loss, plus the day before and after). While we are certain that 1,678 trips are
associated with accidents (corresponding to the 1,678 at-fault claims), only 94 of them are identified by
our collaborator’s method. These 94 trips are referred to as ‘target trips’ and are treated as the ground
truth for our analysis. The challenge we address with the individual-specific models is whether our
method can correctly identify these 94 target trips as being accident related. The number of trips per
3-day window (around date of loss) ranges from 2 to 63, with an average of 18 trips, totalling 1,765 trips.
In summary, the goal of the individual-specific model is to identify the 94 target trips that correspond
to actual claims and accidents from the pool of 1,765 trips.

Remark. While potential accident triggers are produced using accelerometer readings, we only con-
sider telematics responses based on GPS recordings. This is because we can compute acceleration values
from GPS recordings, but not the other way around. Additionally, accelerometer and GPS logging have
their own curve logging logic and their readings do not always align. Furthermore, identifying accident-
associated trips is an extremely challenging problem, especially since our analysis is based solely on
three telematics responses (speed, longitudinal acceleration, and lateral acceleration).

For both individual-specific and pooled models, telematics data undergo the same preprocessing
steps as follows. First, we compute the longitudinal and lateral accelerations and align them with speed,
as detailed in Section 2.2. Next, we divide each trip into intervals of non-zero speed and valid (non-
missing) accelerations, as shown by the shaded regions in Figure 2. For model training, trips must be at
least 3 minutes long, and each trip sub-interval must contain at least 10 observations; these correspond
to the blue shaded intervals in Figure 2. This ensures that the CTHMM is trained on longer, informative
sequences. For evaluation, the requirements are relaxed: trips must be at least 30 seconds long and con-
tain at least 10 observations. These trips are similarly divided into intervals of non-zero speed and valid
accelerations, with sub-intervals needing only at least 2 observations so that forecast pseudo-residuals
can be computed. Hence, pseudo-residuals are computed for all shaded intervals (both the blue and pink
ones). Finally, all sub-intervals of a trip will be considered together to compute the anomaly index.

Remark. While we assume that all trips within each rental are performed by a single driver, it is possible
for vehicles to have multiple drivers. In such cases, the model captures the dominant driving behaviour
exhibited collectively by all drivers of the vehicle rather than individual-specific patterns. This can be
viewed as a pooled model, which still accounts for vehicle-specific effects (e.g., horsepower) while
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Figure 2. Speed time series (in km/h) of a sample trip. Shaded regions indicate intervals of non-zero
speed, where all intervals are used for anomaly detection, but only the blue ones are used for model
fitting.

incorporating driving patterns across multiple users. As demonstrated in Section 5.3, a pooled model
can still effectively identify anomalous trips, even when multiple drivers contribute to the data.

A potential limitation arises when the dataset is imbalanced. For example, if one driver completes
most trips and another completes only a single trip, that one-off trip—even if it is objectively safer— may
still be classified as anomalous if it significantly deviates from the dominant driving pattern. However,
this is an inherent characteristic of anomaly detection, and controlling for such cases would require addi-
tional contextual information. If information on driver changes is available, the model could be adapted
simply by clustering trips by driver and training a separate model for each driver, thereby reducing the
influence of mixed driving patterns.

6.2. Individual-specific model
We first apply individual-specific models to identify the 94 target trips. For each of the 94 3-day windows
consisting of a potential accident triggers around the date of loss, we assume the processed trip sub-
intervals are generated from the same model and a CTHMM is fitted on them. The model structure
is the same as that employed in the controlled study: the CTHMM has 20 states, with state-dependent
distributions gamma for speed and normal for both acceleration components. Although a CTHMM must
be fitted for each rental, the computation time remains manageable (maximum of 10 minutes each using
Julia) as we have restricted to 3-day windows. Moreover, the process is highly scalable as CTHMMs
can be fitted in parallel across rentals.

After model fitting, we compute the anomaly indices of each trip under its corresponding model.
In Table 8, we present summary statistics of these indices for the 94 target trips and all other trips.
We first observe that the target trips exhibit a slightly lower average anomaly index in speed compared
to the other trips; however, this difference appears minimal as indicated by the other quartiles. As we
learnt from the controlled study, speed alone does not fully capture driving behaviour and the analysis
should focus on the accelerations. The summary statistics support this, revealing that the target trips
have significantly higher anomaly indices in both acceleration components, with averages nearly 10
times higher. To further illustrate these differences, the left column of Figure 3 presents the empirical
density plots of the anomaly indices for the two groups, with target trips shown in red and all other trips
in blue. These plots help visualize the different distributional characteristics between the two groups,
particularly in the acceleration components. Additionally, as we would like to rank the trips in each
3-day window by their level of anomalousness and ultimately identify the target trip, we can further
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Table 8. Summary statistics of anomaly indices (%), computed from CTHMMs with 20 states

Longitudinal
Speed Acceleration Lateral Acceleration

Target Other Target Other Target Other
Min 0 0 0 0 0 0
1st Qu. 0 0 0 0 0 0
Median 0 0 0.5333 0 0.6944 0
Mean 0.1286 0.1749 1.3403 0.1621 1.8249 0.1596
3rd Qu. 0 0 1.4983 0 1.9423 0
Max 2.0833 28.5714 13.6364 13.3333 18.1818 10.0000

Table 9. Summary statistics of normalized anomaly indices, computed from CTHMMs with 20 states

Longitudinal
Speed Acceleration Lateral Acceleration

Target Other Target Other Target Other
Min 0 0 0 0 0 0
1st Qu. 0 0 0 0 0 0
Median 0 0 0.5100 0 0.6087 0
Mean 0.0622 0.0424 0.5310 0.0708 0.5574 0.0720
3rd Qu. 0 0 1 0 1 0
Max 1 1 1 1 1 1

consider the normalized anomaly indices given in Equation 3, which is the ratio of each trip’s indices
to the maximum indices within that window.

We present the summary statistics of these normalized indices in Table 9. The target trips have higher
indices across all three dimensions compared to the other trips, with the differences much more pro-
nounced for both acceleration components. This suggests that the target trips contain more outliers
among the trips completed by the same driver, which will facilitate our identification of the target
trips. It is important to note that we did not specify the target trips during model training nor pseudo-
residuals computation, yet we observe distinct differences in anomaly indices and their normalized
versions between the target and all other trips. The right column of Figure 3 displays the empirical
density plots of the normalized anomaly indices for the two groups, with target trips represented in red
and all other trips in blue.

With the three raw or normalized anomaly indices as covariates, we consider three models to pre-
dict the probability that a trip is actually a target trip. The candidates are logistic regressions with and
without cubic splines (i.e., generalized linear model (GLM) and generalized additive model (GAM),
respectively) and XGBoost (eXtreme Gradient Boosting). We implement these models with standard
R packages stats, mgcv and xgboost, respectively. For GAM, we specify a cubic regression spline
(bs = ‘cr’), while for XGBoost, we use the package’s default parameter settings, adjusting only the num-
ber of iteration rounds to 20. This choice ensures reproducibility and consistency, as training log loss
stabilizes around 0.001 at this point, indicating sufficient convergence without overfitting. While further
optimization of the XGBoost model is possible, our primary focus is on demonstrating the usefulness
of the proposed anomaly index in identifying accident-related trips.

We then evaluate model performance based on ROC-AUC (the area under the receiver operating
characteristic curve). ROC-AUC is a performance metric frequently used to evaluate the effectiveness
for a binary classification model, which quantifies the model’s ability to distinguish between the two
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Raw index for speed Normalized index for speed

Raw index for longitudinal acceleration Normalized index for longitudinal acceleration

Raw index for lateral acceleration Normalized index for lateral acceleration

(a) (b)

(c) (d)

(e) (f)

Figure 3. Empirical densities of target trips and all other trips for their anomaly indices. The left
column shows the raw indices, while the right column shows the normalized indices. Red: target trips,
and blue: all other trips.

classes. A perfect model has an AUC of 1, while a model that randomly guesses has an AUC of 0.5.
To robustify the performance evaluation, we perform fivefold cross-validations (CV) for each set of
covariates and model. In a k-fold cross validation, the dataset is split into k subsets. In each fold, the
model is trained on k − 1 subsets, and the trained model is tested on the remaining subset. The k-fold
CV then reports the average of the k results. Our dataset is randomly partitioned into 5 subsets such that:
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Table 10. Fivefold cross-validation
ROC-AUC of logistic models with raw
or normalized anomaly indices as
covariates.

Raw Normalized
GLM 0.849 0.863
GAM 0.857 0.853
XGBoost 0.825 0.826

Table 11. Fivefold cross-validation window-based ROC-AUC of logistic models with raw
or normalized anomaly indices as covariates.

Raw Normalized
Mean Median Accuracy Mean Median Accuracy

GLM 0.849 0.957 0.436 0.856 0.966 0.499
GAM 0.855 0.978 0.488 0.857 0.973 0.532
XGBoost 0.844 0.952 0.445 0.854 0.962 0.531

first, all trips from a window are in the same subset; and second, the proportion of target trips are close
(0.05234, 0.05263, 0.05882, 0.05740, and 0.04651).

In Table 10, we report the cross-validation performance of the candidate models with raw or normal-
ized anomaly indices as covariates. We observe that the average ROC-AUCs are all above 0.82, with the
ones using normalized indices as covariates performing slightly better for GLM and XGBoost.

Recall that in practice, the goal is to rank the trips in each 3-day window based on their level of
anomalousness, ideally identifying the target trip. To assess the effectiveness of this ranking, we evalu-
ate the ROC-AUC for each 3-day window. In Table 11, we present the mean and median window-based
ROC-AUC from cross validation. Furthermore, we report the average accuracy, which we define as
the proportion of windows where the ROC-AUC is 1 — that is, when the target trip has the highest
predicted probability among trips within the same window and is considered the most anomalous. The
results show that models using normalized indices as covariates again perform slightly better on average.
Although the average accuracy ranges only between 0.43 and 0.53, achieving a classifier with an AUC
of 1 is inherently challenging. This difficulty is amplified in our context, where identifying the target trip
requires selecting it from a group that can range from 2 to 63 trips. Nevertheless, it is noteworthy that
more than half of the cases achieve perfect classification. Moreover, the relatively high (average) pop-
ulation ROC-AUCs (above 0.82), along with the mean and median window-based ROC-AUCs (above
0.84 and 0.95, respectively), all indicate that the models effectively rank trips by their anomalousness,
both overall and within each window, with the target trips often ranked near or at the top.

Finally, we fit the models to the whole dataset and report the model summary of GAM in Table 12,
while model summary of GLM and feature importance of XGBoost are provided in Appendix C. The
findings show that outliers in both longitudinal and lateral accelerations are more significant predictors
of target trips than outliers in speed, which is in line with observations from the controlled study.

Our proposed CTHMM modelling and anomaly detection framework hold great potential for prac-
tical applications, particularly for companies aiming to enhance safety and operational efficiency. For
instance, it can be employed to detect anomalous driving behaviours, assess risk factors, and provide
actionable feedback to improve driver safety.

In our rental-car dataset, recall that our collaborator’s collision detection method produces accident
triggers for only around 10% of claims. By applying the proposed method, we can effectively pinpoint
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Table 12. Model summary of logistic GAMs, with raw or normalized anomaly indices
as covariates. Note: x1, x2, and x3 denote indices for speed, longitudinal, and lateral
accelerations, respectively.

Estimate Std. Error z value p value
(Intercept) −4.054 0.746 −5.437 5.41e-08 ∗∗∗

edf Ref.df Chi.sq p value
s(x1) 3.124 3.722 3.098 0.586
s(x2) 4.858 5.406 71.446 <2e-16 ∗∗∗

s(x3) 6.944 7.612 86.267 <2e-16 ∗∗∗

Estimate Std. Error z value p value
(Intercept) −3.829 0.184 −20.820 <2e-16 ∗∗∗

edf Ref.df Chi.sq p value
s(norm x1) 1.002 1.004 0.363 0.549
s(norm x2) 2.721 3.252 82.759 <2e-16 ∗∗∗

s(norm x3) 2.960 3.530 94.035 <2e-16 ∗∗∗

Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’, 0.1 ‘ ’, 1

target trips for investigation in the remaining 90% of cases. Moreover, leveraging the analysis of pseudo-
residual points, as detailed in Section 5.2, allows us to locate each outlier and delve deeper into its nature.
This facilitates the identification of underlying causes, such as harsh braking or cornering events relative
to each driver’s driving patterns, and the provision of individualized feedback to mitigate such actions
and improve driving practices.

6.3. Pooled model
Lastly, we apply the pooled model to compare trips across individuals and investigate differences in
driving behaviour between drivers with and without (at-fault) claims. While we can fit a pooled model
using all 35 trips in the controlled study, the sheer number of trips in real-world settings makes it infea-
sible to train the model on each and every trip. Hence, sampling of trips is necessary for practical model
training.

To ensure the robustness of our results, we experiment with multiple training sets. As the claim rate
in the dataset is approximately 10%, we decide to create training sets with random stratified samples
reflecting this proportion. Each training set consists of 100 rentals, including 10 rentals with at-fault
claims and 90 rentals without claims. For the claimed rentals, we consider trips within the 3-day window
around the date of loss, while for the no-claim rentals, we consider the 3 days immediately before the
rental ends. Additionally, to test the extreme cases, we construct two alternative training sets: one with
0% claim rate (100 no-claim rentals) and one with 100% claim rate (94 rentals with at-fault claims,
discussed in Section 6.2), using the same respective 3-day windows.

For our primary analysis, we focus on the 10% claim rate sample, as it aligns with the portfolio
average. We train a single 20-state CTHMM with state-dependent distributions gamma for speed and
normal for both acceleration components. Training pooled models, such as for 100 rentals, is more
computationally intensive than training 100 individual-specific models. This is because each iteration
of the EM algorithm must process all trips from the 100 rentals. Based on our experience, fitting such
a pooled model takes about a day to complete 5,000 iterations of the EM algorithm. However, once the
model is fitted, it can evaluate both existing and newly observed trips.

Using the fitted pooled model, we determine the anomaly indices of all trips from all rentals over
their entire rental periods, rather than just a 3-day window. This allows us to examine any differences in
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Table 13. Comparison of anomaly indices (%) in each telematics response dimension for claimed
and no-claim rentals, computed from pooled CTHMMs trained on training sets with a 10% claim
rate.

Trip-basis
Training Set 1 Training Set 2 Training Set 3 Training Set 4

claimed no claim claimed no claim claimed no claim claimed no claim
speed 0.0466 0.0613 0.0722 0.0984 0.0642 0.0940 0.4480 0.4582
longitudinal 0.4391 0.5303 0.4949 0.6037 0.5071 0.6189 0.8317 0.9802
lateral 0.2714 0.3033 0.3241 0.3712 0.3319 0.3832 0.3180 0.3635

Rental-Basis
Training Set 1 Training Set 2 Training Set 3 Training Set 4

claimed no claim claimed no claim claimed no claim claimed no claim
Average
speed 0.0500 0.0721 0.0770 0.1048 0.0634 0.0988 0.6035 0.9938
longitudinal 0.5136 0.7373 0.5803 0.8254 0.5841 0.8485 0.9253 1.3156
lateral 0.2807 0.3459 0.3429 0.4091 0.3455 0.4179 0.3293 0.3847
Maximum
speed 25.5600 13.3159 31.4940 17.0440 30.3340 16.8740 46.6200 26.2900
longitudinal 30.0000 17.2080 34.8800 20.3670 34.2000 20.3170 36.0900 21.5540
lateral 27.8200 15.2737 33.0760 18.6550 32.1820 18.5560 32.9830 18.2270

driving behaviour, focusing particularly on differences in driving anomalies, between rentals with and
without (at-fault) claims. The analysis is repeated with four different random training sets, each with a
10% claim rate, and results are reported in Table 13.

The first question we address is whether there are notable differences in anomaly indices for individual
trips performed by the claimed and no-claim groups. In the sub-table titled ‘trip-basis’, we calculate the
average indices across all trips completed by each group. We find that the differences are minimal. In
fact, the claimed group shows slightly lower average anomaly indices than the no-claim group, which
may seem counterintuitive. A plausible explanation is that the model was trained on only 300 days of trip
data, which may not capture all major driving behaviour. In contrast, the evaluation spans entire rental
periods of over 17,000 rentals, providing a broader context that may dilute the trip-specific differences.

Next, we investigate whether anomaly indices differ when aggregated over entire rental periods for the
claimed and no-claim groups. This analysis examines the empirical distribution of anomaly indices for
each rental. In the sub-table titled ‘rental-basis’, we present the averages of two metrics for each group:
the rental-wise average indices and the rental-wise maximum indices. Specifically, we calculate the
average of the rental averages and the average of the rental maximums for each group. While the average
indices between the groups remain similar, the claimed group exhibits significantly higher maximums.
On average, the maximum indices for the claimed group are roughly double those of the no-claim group
across all response dimensions. To help visualize these differences, Figure 4 presents the empirical
density plots of the anomaly indices for the claimed and no-claim groups on a rental basis. The left
column displays the rental averages, while the right column illustrates the rental maximums, with the
claimed group represented in red and the no-claim group in blue.

While it may seem counterintuitive that the claimed group has slightly lower average anomaly indices
per trip, it is important to recognize that the no-claim group is ten times larger than the claimed group,
leading to greater variability in their driving behaviour. This highlights the importance of trip-based
risk evaluation, as not every trip by the claimed group is dangerous, and similarly, not all trips by the
no-claim group are safe. Over the entire rental period, however, the claimed group consistently exhibits
more outliers, with this difference remains significant across all quantiles. This is similar to the finding
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Mean index for speed Max index for speed

Mean index for longitudinal acceleration Max index for longitudinal acceleration

Mean index for lateral acceleration Max index for lateral acceleration
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Figure 4. Empirical densities of claimed and no-claim groups for their anomaly indices on a rental
basis. The left column shows the mean indices over rentals, while the right column shows the maximum
over rentals. Red: with claims, and blue: without claims.

that higher maximum speed attained is associated with increased driving risk, while average speed is
not (Chan et al. (2024)). It only takes one very aggressive or anomalous trip to result in an accident and
incur a claim.

As mentioned, to further validate the robustness of these findings, we test two alternative training sets
with 0% and 100% claim rates, representing two limiting cases. Despite the change in claim rate, the
observed trends remain consistent across all scenarios. The claimed group consistently shows slightly
lower average trip-based anomaly indices but higher maximum indices across rentals. Additionally, the
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Table 14. Fivefold cross-validation ROC-AUC of logistic
GLMs with different sets of covariates. Set 1: maximum
anomaly indices, Set 2: right tail of the anomaly index empiri-
cal distribution, Set 3: right tail and the number of trips as an
offset.

Covariate Sets
Set 1 Set 2 Set 3

Training Set 1 0.6901 0.7447 0.7806
Training Set 2 0.6878 0.7439 0.7834
Training Set 3 0.6824 0.7467 0.7869
Training Set 4 0.6967 0.7174 0.7707

anomaly indices for longitudinal and lateral acceleration in the claim group are 1.5 to 2 times greater
than those in the no-claim group. These persistent observations suggest that the findings are robust and
indicative of true underlying behaviour trends. Detailed results from analyses performed with the two
alternative training sets (0% and 100% claim rates) are provided in Appendix D.

The next goal of our numerical investigation is to assess the risk associated with each rental. To
achieve this, we aim to differentiate between claimed and no-claim rentals and predict the probabil-
ity of a rental resulting in an at-fault claim. Our analysis relies solely on telematics data, with no
additional covariates such as demographic or vehicle-specific information included. Specifically, we
consider the following three sets of telematics covariates for predicting the claim probability of each
rental:

1. Set 1 includes maximum anomaly indices across all telematics response dimensions;
2. Set 2 includes the right tail of the anomaly index empirical distribution (α-th percentiles Pα,d

for α = 90, 95, 97, 97.5, 98, 98.5, 99, 99.5 and the maximum); and finally
3. Set 3 combines the right tail from Set 2 and the number of trips as an offset (i.e., with regression

coefficient 1).

For each covariate set, we fit a logistic regression and evaluate the model performance based on
ROC-AUC. To robustify the evaluation, we perform fivefold CV for each set of covariates computed
from different pooled CTHMMs (fitted to 4 different training sets). Our dataset is randomly partitioned
into 5 subsets with close claim rates (0.1007, 0.0996, 0.0968, 0.0989, and 0.0986).

In Table 14, we report the CV performance. We observe that the average ROC-AUCs are gener-
ally stable across anomaly indices computed from pooled CTHMMs trained on different training sets.
(Covariate) Set 1 achieves ROC-AUCs around 0.69, while Set 2 improves to 0.74. Since the tail and its
smoothness depend on the number of observed data points, we incorporate the exposure, which is the
number of trips, as an offset. The resulting ROC-AUCs further improve to around 0.78. We would like
to highlight that first, our ROC-AUC values consistently outperform our collaborator’s current bench-
mark of 0.65, demonstrating the effectiveness of our proposed method; and second, we perform our
analysis using solely telematics data, and inclusion of traditional covariates such as driver and vehicle
information can definitely further improve the results.

Finally, we fit the logistic GLM to (covariate) Set 3 of the entire portfolio. The model summary is
presented in Table 15. In general, larger percentile values of the anomaly indices increase the claim
probability. Moreover, the right tails of anomaly index empirical distribution in both longitudinal and
lateral accelerations appear to have more significant predictive power for claim probability than that in
speed, aligning with our previous findings.
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Table 15. Model summary of logistic GLM with the right tail of the anomaly index
empirical distribution and the number of trips as an offset.

Estimate Std. Error z value p value
(Intercept) −7.1969 0.0726 −99.1720 < 2e-16 ∗∗∗

Speed p_x1_90 −83.1564 14.6050 −5.6940 0.0000 ∗∗∗

p_x1_95 20.7476 26.3087 0.7890 0.4303
p_x1_97 64.4520 81.0186 0.7960 0.4263

p_x1_97.5 −63.8849 79.6475 −0.8020 0.4225
p_x1_98 22.1807 42.4384 0.5230 0.6012

p_x1_98.5 16.8307 25.0453 0.6720 0.5016
p_x1_99 30.1601 10.3361 2.9180 0.0035 ∗∗

p_x1_99.5 −24.7184 2.8232 −8.7560 < 2e-16 ∗∗∗

max_x1 −2.3644 0.7786 −3.0370 0.0024 ∗∗

Longitudinal p_x2_90 36.1721 8.1520 4.4370 0.0000 ∗∗∗

acceleration p_x2_95 −35.9972 12.6930 −2.8360 0.0046 ∗∗

p_x2_97 9.1265 17.2016 0.5310 0.5957
p_x2_97.5 −17.8940 18.1615 −0.9850 0.3245
p_x2_98 29.6963 14.4371 2.0570 0.0397 ∗

p_x2_98.5 2.2637 10.7571 0.2100 0.8333
p_x2_99 −22.4719 5.9504 −3.7770 0.0002 ∗∗∗

p_x2_99.5 8.2769 1.9463 4.2530 0.0000 ∗∗∗

max_x2 −0.2077 0.5316 −0.3910 0.6960
Lateral p_x3_90 51.7715 12.4382 4.1620 0.0000 ∗∗∗

acceleration p_x3_95 −24.9194 17.2206 −1.4470 0.1479
p_x3_97 70.9683 26.8603 2.6420 0.0082 ∗∗

p_x3_97.5 −65.0287 28.9889 −2.2430 0.0249 ∗

p_x3_98 2.1981 21.3955 0.1030 0.9182
p_x3_98.5 −25.7424 14.2144 −1.8110 0.0701 .
p_x3_99 −4.5599 7.5234 −0.6060 0.5445

p_x3_99.5 6.1297 2.8084 2.1830 0.0291 ∗

max_x3 1.3960 0.8951 1.5600 0.1189
Significance codes: 0 ‘∗∗∗’, 0.001 ‘∗∗’, 0.01 ‘∗’, 0.05 ‘.’, 0.1 ‘ ’, 1

7. Conclusion
In this paper, we proposed a CTHMM framework for modelling trip-level vehicle telematics data,
enabling analysis and driving risk assessment at both trip and driver levels. Through a detailed dis-
cussion of the telematics data structure and challenges such as irregular time intervals and varying trip
lengths, we have highlighted the complexities involved in processing and modelling telematics data. We
stated and explained the key adjustments to the CTHMM and necessary preparation of the telematics
data to ensure effective modelling and analysis.

Moreover, the proposed anomaly detection method demonstrated the CTHMM’s ability to learn the
major, normal driving behaviour and identify outliers in behaviour and trips, even in the absence of direct
collision data. We introduced the anomaly index to quantify the level of anomalousness for each trip,
providing a measure of deviation from normal driving patterns. This method effectively detects anoma-
lous behaviour associated with higher driving risks. Across both controlled and real-world datasets, the
proposed model successfully identifies trips that produce claims for an individual or classifies dangerous
rentals within the portfolio. As our findings are based solely on telematics data, without the use of any
covariates, they highlight the value of telematics in trip risk evaluation, collision detection, and driver
risk classification.
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While the current work enhances our understanding of telematics-based risk assessment, it also sug-
gests directions for future research. One direction is to incorporate covariates into the transition rate
matrix and/or state-dependent distributions. This will allow the model to better capture the different driv-
ing behaviour and enhance model performance. With a larger pool of drivers or vehicles, we can include
covariates which control for driver and vehicle characteristics and unify the individual-specific models
into a single regression framework. Moreover, as telematics data become more detailed, including con-
textual features such as road and weather conditions can further refine the model to detect trip-specific
driving risks more effectively.

Another direction is to explore automatic methods for selecting the optimal number of states. In this
work, the number of states in the CTHMM was chosen based on expert judgement. Developing methods
for automated state selection will reduce dependence on manual tuning and improve model adaptability.

A further direction is to extend the current static/offline training approach by incorporating online
learning for HMMs. In this work, models were trained on trip data over relatively short periods of time,
such as a 3-day window for individual-specific models in the real data analysis. Future research can
allow the model to dynamically adapt to evolving individual and population driving behaviour. This
will enable continuous risk assessment over longer periods and provide more comprehensive insights
into long-term driving risks.

Finally, the proposed anomaly index presents a direction for integration into future ratemaking
frameworks to enhance insurance premium pricing. By leveraging telematics-based risk assessment
alongside traditional covariates, insurers can achieve more precise risk classification and fairer pricing,
improving underwriting profitability and customer satisfaction. Future research can explore the practical
implementation of these methods in ratemaking and evaluate their impact on premium determination.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2025.14.
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