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ON A tf-WEYL SUM

YOSHINOBU NAKAI

0°. We treat the sum θ{a'\γ\ N,X) = Σ « » « + * e((2a)-\n + γ)2),
where a and γ are real with a positive.*) This sum was treated first
by Hardy and Littlewood [4], and after them, by Behnke [1] and [2],
Mordell [9], Wilton [11] and others. The reader will find its history in
[7] and in the comments of the Collected Papers [4]. Here we show
that the sum can be expressed explicitly, together with an error term
O(N1/2)> using the regular continued fraction expansion of a. As the
statements have complications we will divide them into two theorems.
In the followings all letters except -9,i,σ,ζ,χ and those in 3° are real,
N is a positive real, and always k,n,a,A,B,C,D and E denote integers.
The author expresses his thanks to Professor Tikao Tatuzawa and
Professor Tomio Kubota for their encouragements.

1°. LEMMA 1. Let a,a',γ and f be reals such that

a'1 = ar~λ mod. 1

and

{2aY\\ + 2γ) = (2a/Y1d + 2f) mod. 1 ,

then we have

(2a)-\n + γ)2 = (2a'Y\n + f)2 + (2aYιf - {2a'Yψ mod. 1

for any integer n.

Proof. It is easy.

LEMMA 2 (Hardy-Littlewood, Mordell and Wilton). // 0 < ω < 2,

Received June 26, 1973.
*> In this note e(a) means e2πίa for real a. N is the set of positive integers. Z is

the set of all integers. The implied positive numerical constants in the symbol " < "
in the statements and proofs of (Case 2) of Theorem 1 can be given arbitrarily. Other
implied constants in the symbols " < " , "O( )" and "ft" are absolute or can be explicitly
calculated.
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164 YOSHINOBU NAKAI

—i < # < i> N' — ̂  < ωN + x < N' + ̂  with integral N and N', then
we have

+ xn) = β φ ω~1/2 f ] ' e(-\ω~ι{n - x)2) + $(S + 2ω~1/2),

where \-9\ < 1. ίίerβ 27 mecms that the first and last terms of the sum
are to be halved.

Proof. This is the Theorem in [11].

LEMMA 3. Let aQ, No and Xo be reals with α0 ̂  i> No Ξ> 0 and No ;> 2a0.
Expand a0 as a0 = a0 + aϊ1 with an integer a0. Here we suppose a0 not
to be an integer. Let γQ and γ1 be reals with \a0 — γ0 = aϊ1γι mod. 1. Put
Xx — aόKX0 + To) and Nλ = αί"W0. Then, for ε = ± 1 , we have

OiεaQ1, γ0 No, Zo)

γd)'θcy2'θ{-ε^\γι)Nl9Xι) + 0(1 + αf) .

Proof. This can be obtained from Lemmas 1 and 2.

LEMMA 4 (van der Corput). Let fix) be a real valued function on
the interval [Z, Y], whose first derivative fix) is monotonic, not decreas-
ing and such that 0 < fix) <jr on the interval. Then we have

Σ e(f(n)) = e(f(u))-du + #(-L + ± + (± + -L) ) ,
X^Π^Y Jx \2 π \4 π / /

where \<9\ < 1.

Proof. This is "Satz 1" in [5]. A little less precise statements can
be found in [10], Chap. 4.

LEMMA 5. Let aQ, No and Xo be reals with a0 > 0, No > 0 and \aQ ^ NQ.
Let γ0 be given. Choose f0 so that f0 = γ0 mod. a0 and that the interval
[αfo-̂ Zo + fQ)yaQ1iX0 + fo + ̂ o)l is contained in the interval [—f,f].
for ε — ± 1 , we have

Proof. This is obtained from Lemmas 1 and 4.
We regard θiεaό1, γ0 N0,X0) to be ΣJO^^O+ΛΓO1 f o r ô = +°°

Lemma 5 holds also for a0 = + oo.
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LEMMA 6. Let a0, γ0, NQ and Xo be reals with a0 > 0, iV0 > 0 and

2aQ ^ No :> -Jα0. Then, for ε = ± 1 , we

Proof. If 1 > a0 > 0, the result is obvious. Suppose we have aQ ^ 4.

We express the interval [XQ, Xo + No] as a union of at most 0(1) sub-

intervals, each of length <̂  \aQ and > a0. In each subinterval we can

apply Lemma 5. The contribution of the terms containing integrals are

O(VW> by the convergence of the integral e(u2)du, and so we have
J -oo

the result.

2°. We define several numbers concerning continued fraction ex-

pansion of a. Let a be positive. Choose ocQ uniquely so that a^1 = a'1 mod. 1

and +oo ;> a0 > 1. Expand aQ as ak — ak + (α^+i)"1 with akeN and

+ oo ^ # fc+1 > 1, beginning with ft = 0. If ak+1 = +oo for some ft, we

stop the expansion at this ft. Define integers Ak, Bk and Cf+1) as follows:

A_j = 1, Ao = a0 and Afc = ^ A ^ j + Ak_2 for ft ^ 1 S_! = 0, Bo — 1 and

+ Cf+

+

2

1} for ft - 1 ^ ^ 0. Define a matrix ζfc to be

This belongs to SL(2,Z), as can be seen from (2) of Lemma 7. Define

Ξk and Hk as follows: Ξk = 0 or 1 with 5^ = AfcJ?fcmod. 2 for ft ^ — 1

and Hk = (—1)*^*.! for ft ^ 0. We have the following lemmas.

LEMMA 7. (1) Afc and Bk increase monotonically as ft increases.

(2) A.B,. ! - Ak_xBk = (-iy+ι and (Ak,Bk) = 1 /or ft ^ 0.

(3) Cf+1) = J5fe and C{

o

k+1) = Afe /or ft ^ - 1 .

(4) A* + αϊiiA*.! = ak αr0,

^Λ + oik-\1Bk_x = ak - aίf for ft ^ 0, and

5 , - ^ A , = (- l ) f c fe + 1 tfo)~Λ for ft ^ ~ 1 .

(5) ak-ak+1>2 for ft ^ 0.

(6) ak+1 ar0 ft Afc+1 /or ft ^ - 1 .

LEMMA 8 (best approximation). Lei α0 &# > 1> ttnd mαfte Ak and Bk

from aQ as above. Let also a rational number B~ιA be given, where B

and A are its irreducible denominator and numerator respectively, so

that, for any rationals Bf~ιAr with 0 < Bf < B and Br~ιAr ψ B~ιA, we
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have \Ba0 — A\ < \B'a0 — A'\. Then the pair (A9B) is equal to (Ak,Bk)

for some k.

Proof. All statements of Lemmas 7 and 8 are well-known or can

be easily shown. See, for instance, [6]. Lemma 8 is included here to

suggest the nature of Ak and Bk.

LEMMA 9. We have

Σ («*+i och+2y%-ah) . . (-*,)} = (-1)*+WC?+1>

for 0 < j < k + 1, where ak+1 ah+2.= 1 for h = k and (—ah) (—ccj)

= 1 for h — j — 1.

Proo/. If we put 3$*+1> - Σ . ; ^ ^ , - i («t+i cch+2)-ι{(-ah) . . ( - ^ )},

we have δf+1) = - α ^ * . ^ + ^+V} for fc - 2 ^ ^ 0. Also δ&V* = 1 and

3j*+1) = —αfc. Thus (—l)*+ 1-^*+ 1 ) has the same properties as Cf+1). Hence

they are identical.

Let a real 7 be given. Using ak9 ak etc., we define γk as follows: γ0 is

any real number satisfying

(2^0)-1(l - 2γ0) = (2a)~Kl - 2γ) mod. 1 ,

and

Tk+1 = (~iy^ak+1(Bkγ0 - ±Sk) + (-l)k+1Bk_ιΪ0 + \Uk

for k >̂ 0. Given a real X, we define X* inductively by Xo = Z and

Z , + 1 - αίHJC* + r») for fc ^ 0.

LEMMA 10. TFe have the following equalities:

( 1 ) akllϊk+1 = ~γk + ±ak + (-l)kDk

for k >̂ 0, where Dk is an integer defined by

Dk = i(Ξk - akΞk.x + {-iYHh_λ + (-1

Xk+i = ( « « • • • α

+ (-D*

for k7>0, where Ek is an integer defined by
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Proof. The fact that Ξk - akΞk_λ + (--ΐ)kHk^ + ( - l ) * " 1 ^ is an even

integer follows from the definitions and (2) of Lemma 7. Therefore Dk

and Ek are integers. The number akl1γk+1 is equal to

-i(-l)k+1Ξk-iakHk.

The last sum is equal to — γk + \Hk_λ — %(—ί)k+1Ξk — \akHk, by Hk =

(_l)fcig
ί

A;_i# Thus the right hand side of (1) is easily obtained. As for

(2), we see, by direct calculations, that Xk+2 is equal to (aQ α:fc+2)~
1X0

+ βk+2, where βk+2 is akl{fk+l + (ak+ιak)~ιγk + + (ak+1 ^"Yo Then

βk+2 is equal to

Σ G**+i * * ̂ + 2 )~ 1 {(-^) * * (-αi)}( —7Ό + i«o - i)

/(-1)*D* + + (-ly-'Dj^ ^Σzj χ («*« Ό "

+ X {(-αft) (-a,)} + + Do Σ (α*+i αft+s)"11
\ ft;42ft2°

By Lemma 9, this sum is equal to

for fc ^ 0. Substituting the third formula of (4) of Lemma 7 with
(ak+1 tfo)"1 in the second term of the above sum, we have the result (2).

The formula (2) of Lemma 7 and the fact that Ek is an integer are
fundamental.

3°. Let τ be a complex variable whose imaginary part is positive.

Let x and y be any complex numbers, and σ = ία Λ be any matrix in

SL(2,Z). Define σ<Y> to be (ατ + 5)(cτ + d)~\ Then we see that

is equal to
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168 YOSHINOBU NAKAI

χ(σ).e<*i/2)iv<as+bv)-ξ(cχ+dv)}.(cr + d)-1/2θ(σζτ> ax + by - iξ,cx + dy - \η) ,

where ξ = ab mod. 2 and η = ccZ mod. 2. Also χ(σ) is a certain eighth root

of the unity which does not depend on x, y and τ. This formula is well-

known. See, for instance, [3], pp. 47-66.

We restrict ζ, η and the branch of (cτ + d)ι/2 as follows: ξ = 0 or 1,

η = 0 or ± 1 where the signature in ± 1 is given in advance for each σ,

and, as for (cτ + d)1/2,

(cτ + d)ι/2 = 1 if c = 0 and d = 1 ,

(cτ + d)1/2 = e(1/2)πί if c = 0 and d = - 1 ,

0 < arg (cτ + d)1/2 <π/2 if c > 0 ,

and

0 > arg (cτ + d)1/2 > - π / 2 if c < 0 .

Then we can write χ(σ) explicitly in terms of a,b,c and d, if we use

the Jacobi symbol. The reader will find some of them, that is, those

for σ = (Q A or L A mod. 2, in [8], for instance.

Rewriting the 0-formula, we have

κ> — X,\yJ\^τ i wJ & & / ί & 9

mez mez

where γσ is (dγ + \η) — (σ(τ})-ι(bγ + Jf).

LEMMA 11. Let σ be ζk, that is, (, -4*, , -tΰ+io V Choose

a,γ,ξ and η to be aό1 + i O + , ?Ό> ̂  α ^ ^Λ respectively, with the

notations defined in 2°. Then we have

σ(aoΊ + i O +> = ( - 1 ) * + ^ + f .0 +

and

Here 0+ or 0± stands for a sufficiently small positive or a real number

respectively.

Proof. It is easy to check the assertion about o(a^ + i 0 + > by the

third formula of (4) of Lemma 7. Then the other part clearly holds.

4°. Now we proceed to the sum θ(a~\γ; N, X). We suppose that
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N is not smaller than 1. We use those notations in 2° relating to a, γ

and X. Also we put Nk+1 = (<xk αo)-W with No = JV. If N, < J, we

define fc0 to be — 1 . But, if 2VΊ :> | , there is, by (5) of Lemma 7, some

kQ with 0 ^ fc0 < logN so that 2VΛo+1 ^ \ but 0 < 2Vfco+2 < J. We divide

the statements into two theorems. We suppose a > 0 and that #0 Φ +° °

THEOREM 1. (Case 1) // kQ = — 1 , we

ί(a-S r N, X) = e((2a)~V2 - (2ao)"If§) e((2a())-
1M2)dM + 0(1) ,

J X+70

where f0 is so chosen that f0 Ξ f0 mod. a0 aticί ί/^aί the interval

is contained in the interval [—f,f].
(Case 2) // k0 ;> — 1 and i/ iVfco+1 « 1 or Nko+2 > 1, ί/ien we have

Proof. If k0 — —1 the result is obtained from Lemma 5 and Lemma

1. If k0 ^ 0 but if Njfco+i < 1, we can apply Lemma 3 repeatedly (k0 + 1)

times, as is ensured by (1) of Lemma 10, and can use the fact that

θ((~iy^a^+lfγk0+1;Nk0+uXk0+ι) = 0(1) .

We have an estimate 0(1 + Σ£o

=o (<*o cch)
1/2)9 which is 0(1 + (a0 ako)

1/2)

by (5) of Lemma 7. But a0 ako \\ N, so we have done in this case. If

k0 ^ 0 and if Λ^o+2 > 1, we again apply Lemma 3 repeatedly (fe0 + 1)

times and Lemma 6 after that. We have 0(1 + (α0 oίko+1)
ί/2) as an

estimate in this case, which is 0(Nι/2) again.

THEOREM 2. (Case 3) // k0 ^ 0, Nko+1 > 2 and 0 < Nko+2 < £, we

have

θ(a-\γ;N,X) - χ(ζko)'e
ΓXkQ + 1+rτcQ + i+Nic +χ

X (a, «*0)
I/2 e((-l)*°+1(2a ίo+1)-V) (Z%

+ 0(1 +

where Jko is
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Also ζkQ is ί (__!)*«$ χ (—ϊ)*o+*φ )> a n d t h e v a l u e °f z(C*β)
 i s

3° corresponding to ξ = S^, 37 = iϊfco cmd t/&e branch of (cτ + d)1/2 is

restricted as is stated there. The value fko+1 is so chosen that fko+1 =

γko+ιmod.akQ+ι and that the interval [a^+1(Xko+ι + ffco+1), a^+1(Xko+ι + γkΰ+ι

+ Nko+1)] is contained in the interval [—f,f].

(Case 4) // k0 ̂ > 0 ?mί iVΛo+2 — 0, ίfeβ^, with the same χ(ζko) as above,

we have

X Σ edBkJo - iBJn) + 0(1

where ΔkQ is

(BkJ<! -

In this case aQ is Bk*AkQ with Ako < 2N.

Proof. (Case 3) Suppose Nko+2 Φ 0. We use Lemma 3 repeatedly

(kQ + 1) times and Lemma 5 after that. As γσ9 σ<V> and (cτ + d)1/2 for

σ = ζko and τ = OTO"1 + i 0+ are equal to ^ 0 + i + i 0 ± , (-Dko+1a£+1 + ί 0 +

and (α0 αfco + i 0±) 1 / 2 respectively, we have, from ^-formula in 3°,

the main term in the result. We have 0(1 + (α0 ak)
ι/2) as its errors,

which is 0(1 + AJ/0

2) by (6) of Lemma 7. (Case 4) Now we suppose iVfco+2

= 0, i.e., akQ+ί = +oo. We have ζ^ζμ^1 + i 0 + > = i 0 + . We rewrite

the ^-formula in 3° as follows:

meZ

mez

Then we obtain the result in this case also by the similar considerations.

In the integrals in Cases 1 and 3, a^+1(Xko+ί + fko+i) is to be deter-

mined mod. 1. But it is equal to XkQ+2 + ak^+1(fko+ι - γk(i+1) then Xko+2

and the integer ak^+1(fkQ+1 — γko+i) c a n be determined by (2) of Lemma 10.

5°. We fix an irrational number a0 arbitrarily which is larger than

1. Make those numbers defined in 2° from a = a0. Let ψ(fc) be a real

valued function on k = —1,0,1,2, , whose value is larger than 2. If

we suppose that iVfco+2 is larger than or equal to (2ψ(ko))~\ then we-have

.̂fco+i < Nψ(ko)9 as Λ f̂co+2 W NA£+1. Thus, by the convergence of | e(u2)
J —oo

•du, we have
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Let us, on the contrary, suppose that Nko+2 is smaller than (2ψ(fco))~
1.

Suppose also that we have a real βQ which satisfies the following con-

ditions, where {x} denotes the fractional part of x:

\{β0Ak} - i\ ^ ψ(fc)"1 if Ak + Bk is odd with k ^ 0,

( 2 ) min ({βQAk}, 1 - {β0Ak}) ^ ψ(k)~ι if k = - 1 or if Ak + Bk is even

with k ̂  0 .

Then, if we substitute Xo = 0 and p0 = aQβ0 in (2) of Lemma 10, the

interval [{XkQ+2},{Xko+2} + Nko+2] is contained in the interval [(2ψ(ko))~\

1 — (2ψ(kQ))~1] for &0 ̂  — 1. By the mean-value theorem on integrals,

we have

(rv ' ' ' rv V / 2 I ° ° oίίOn Λ~Ui2Λ . rloi /? (™ . . . ™. W 2

X (a )1/2(a Φ(k )~2>

Therefore, if we suppose the existence of a βQ satisfying the condition

(2), it follows, from (1) and (3) applied to Cases 1 or 3 and also from

Case 2 of Theorems 1 and 2, that

( 4 ) θ(ao\ aoβo 0, N) < Nι/2ψ(k0)

for any N ^ 1.

The measure of the set of β0 in the interval [0,1) which do not satisfy

(2) for some fc ̂  — 1 is obviously not larger than J^k=_12ψ(k)~\ There-

fore, if we suppose that

( 5 ) 2 2ψ(k)-χ < 1 ,

the measure of the set of βQ in [0,1) which satisfy the condition (2) for

every k ^ — 1 is not smaller than 1 — ΣΓ=_i 2ψ(k)~1 > 0. If we give ψ(k)

the values ck (log k)2 for k ̂  3 with a large positive constant c, and some

appropriate values for 2 ^ f c ^ — 1 , then the inequality (5) is satisfied.

But k0 = O(logiV). Therefore we have the following

THEOREM 3. // we are given any real irrational a0 which is larger

than 1, then there exists a set I of reals in the interval [0,1) whose
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measure is larger than J, so that we have

0(a;\ aφQ 0, N) « N^ (log ION) (log log 10Λ02 ,

for all β0 in Iao, where the implied constant is absolute.

This result is an improvement on the existence of an irrational

αo"Vo such that we have θ(aό\ γ0 0, N) < ΛΓ3/4, shown in [1], p. 294, Satz XV.
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