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Abstract

Mixed-level orthogonal arrays are basic structures in experimental design. We develop
three algorithms that compute Rao- and Gilbert–Varshamov-type bounds for mixed-level
orthogonal arrays. The computational complexity of the terms involved in the original
combinatorial representations of these bounds can grow fast as the parameters of the arrays
increase and this justifies the construction of these algorithms. The first is a recursive
algorithm that computes the bounds exactly, the second is based on an asymptotic analysis,
and the third is a simulation algorithm. They are all based on the representation of the
combinatorial expressions that appear in the bounds as expectations involving a symmetric
random walk. The Markov property of the underlying random walk gives the recursive
formula to compute the expectations. A large deviation (LD) analysis of the expectations
provides the asymptotic algorithm. The asymptotically optimal importance sampling (IS)
of the same expectation provides the simulation algorithm. Both the LD analysis and
the construction of the IS algorithm use a representation of these problems as a sequence
of stochastic optimal control problems converging to a limit calculus of a variations
problem. The construction of the IS algorithm uses a recently discovered method of
using subsolutions to the Hamilton–Jacobi–Bellman equations associated with the limit
problem.
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1. Introduction

Mixed-level orthogonal arrays (OAs) are fundamental to experimental design. Each row of
an array is thought of as a run of an experiment; each entry of the row is the value of a variable
of the system being tested. The goal of the experiment is to test as wide a range of variable
values of the system as possible. The number of blocks σ , and the block and alphabet sizes
li , si , i = 1, 2, 3, . . . , σ , of an OA are determined by the number of variables in the system
being tested and which values these variables can take. The remaining parameters of an OA
are its number of rows N and its strength t . The strength of an OA is t when the OA is capable
of exploring all possible interactions for up to t variables of the system (see Definition 1); N

is the number of experiments that the OA describes. A high t and a low N is desirable. The
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following bound, called the Rao bound, gives a lower bound on N in terms of t :

N ≥
t/2∑
i=0

∑
u1,u2,...,uσ ≥0,

∑
um=i

σ∏
m=1

(
lm

um

)
(sm − 1)um. (1)

The Rao bound was first proved for fixed-level orthogonal arrays by Rao [31]; for the proof
of the general case, see [25, p. 201]. Our first object of study is this bound and the goal is to
develop algorithms that compute its right-hand side exactly and approximately.

The Rao bound is a necessary bound, all OAs satisfy it. There are also sufficient bounds
that arise from constructions. One well-known construction method for ordinary OAs is by
taking the dual of error correcting codes [25]. Feng et al. [17] generalized this idea by defining
error-block codes, which are error-correcting codes in which one can specify the alphabet to
be used for each entry of the code word. Furthermore, Feng et al. [17] noted that the duals of
error-block codes are mixed-level orthogonal arrays. This idea and construction of error-block
codes were used in [26] to construct orthogonal arrays whose parameters satisfy the following
Gilbert–Varshamov-type (GV-type) bound:

Nq ≥
t−1∑
i=0

∑
u1,u2,...,uσ ,

∑
um=i

sσ

(
lσ − 1

uσ − 1

)
(sσ − 1)uσ −1

σ−1∏
m=1

(
lm

um

)
(sm − 1)um ≥ N. (2)

Our second object of study is this bound.
In Subsection 2.2 we calculate the computational complexity of directly computing the Rao

bound (1) and the GV bound (2). We see that this complexity is polynomial in the strength
parameter, and the degree of the polynomial is one more than the number of different types of
alphabet used in the OA. If many different types of alphabet are used in an OA, which is typical
in real-life experimental designs, the Rao and the GV bounds become inefficient to compute
directly from their original representations (1) and (2). This potentially high complexity of
the direct computation of these bounds justifies the construction of new algorithms to compute
them. In the present paper we develop three algorithms for this purpose. The fact that underlies
these is an expectation representation of the Rao and the GV bounds that we derive in Sections 3
and 6. The expectation is that of a function of a random walk whose increments are either 0 or
1 with equal probability. The walk takes n steps, the row length of the OA, and accumulates a
cost throughout its excursion as follows: if the walk goes up at the ith step, the accumulated
cost increases by a factor of one less than the alphabet size of the ith variable of the OA. The
aforementioned representation is the expectation of this accumulated cost over sample paths
which are less than t/2 at the last step of the random walk for the Rao bound and less than t −1
for the GV bound.

Once these expectation representations are available, it is possible to use them in several
ways to obtain algorithms to compute the bounds. The Markov property of the underlying walk
gives the recursive formula (7). The complexity of this formula is a second-order polynomial in
the strength parameter and is far less than the original formulae when the number of alphabets
is large.

The analysis of the asymptotic behavior of bounds such as the Rao and the GV bounds is of
basic interest. Typically, the number of elements in an error correcting code or an orthogonal
array grows exponentially in the size of the code or the array [27], [28]. Therefore, in the
asymptotic analysis of the size of these structures, the exponential growth rate is the natural
asymptotic quantity to study [28, Chapter 17]. Ling and Özbudak [26] carried out an asymptotic
analysis to compute the exponential growth rate of the GV bound for orthogonal arrays with two
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alphabets. To the authors’ knowledge, no results concerning the asymptotic behavior of either
the GV or the Rao bound for general mixed-level orthogonal arrays is available in the current
literature. With our expectation representation, an asymptotic analysis of these bounds becomes
what is called a large deviation (LD) analysis in probability theory and we use the methods of
LD theory to carry it out. In Section 4 we use the stochastic optimal control approach to LDs [8],
[18], [20], to show that the right-hand side of the Rao bound (1) grows exponentially in the row
length n and identify the growth rate. Following [8], we use a relative entropy representation
of our expectation of interest to write it as a discrete-time stochastic optimal control problem.
After a 1/n log transform, this control problem converges to a limit deterministic calculus of
variations problem. Similar to [15] and [32], the connection between the prelimit and the limit
problems is established using the Hamilton–Jacobi–Bellman (HJB) equation associated with
the limit problem (see Section 4 for the Rao bound and Section 6 for the GV bound). This
analysis provides our second approximation algorithm. To the authors’ knowledge, the idea of
using the limit HJB equation to compute LD limits first appeared in [18] in the context of the
analysis of queueing systems.

The asymptotic analysis gives good approximations in an exponential scale. More accurate
approximations can be obtained using simulation, which is possible because we have the
expectation representations (6) and (44). However, these are expectations over sets with small
probabilities (i.e. rare) for reasonable values of the strength parameter t . For such expectations,
ordinary simulation would require a great number of samples for reliable estimates. A remedy
to this is importance sampling (IS) whereby the sampling distribution is altered so that the
set over which the expectation is computed is not rare anymore. We modify the estimator by
multiplying it with a likelihood ratio to counteract the change in the sampling distribution. IS
is a well-known idea, going back at least to 1949; see, for example, [9], [21], [24], [35], and
the references therein.

For our problem, an IS distribution will be one under which our random walk remains below
t − 1 or t/2 at its final step with high probability. There are many such distributions. Among
these, we would like to choose a distribution that minimizes the variance of the IS estimator.
It is well known that obtaining an exact solution to this optimization problem is as difficult as
directly computing the expectation [23]. In situations such as the one covered in this paper
where the object of study is a sequence of expectations decaying or growing exponentially in
a parameter, a compromise is to choose a sequence of estimators whose variances decay or
grow exponentially at a rate twice the asymptotic decay or growth rate of the expectation itself.
Such a sequence is called asymptotically optimal; see [9], [35], and the references therein. To
obtain such a sequence, we will follow [9] and [15], and represent the variance minimization
problems in IS, once again, as a sequence of stochastic optimal control problems. Under proper
scaling, these also converge to the same limit control problem as that which emerges in the
LD analysis. Theorem 3 of Subsection 5.4 asserts that a simple change of measure based on a
piecewise linear subsolution of the HJB equation of the limit control problem is asymptotically
optimal. Throughout a simulation, the proposed change of measure depends only on the current
block being simulated; thus, within each block it can be thought of as a static exponential tilt
of the original independent and identically distributed (i.i.d.) distribution. The idea of using
subsolutions to construct IS algorithms is from [11], [12], [15], and [32], and is called the
subsolution approach to IS.

Another way to say that an IS estimator of the Rao bound is asymptotically optimal is to say
that its coefficient of variation, which is the ratio of the standard deviation of the estimator to the
bound itself, grows subexponentially in the row length. It is well known that, in the context of
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the estimation of tail probabilities of the sample mean of a sequence of i.i.d. random variables,
the coefficient of variation of the static IS change of measure based on exponential tilting grows
at rate n1/4 [3]. In Subsection 5.5 we provide numerical evidence that the coefficient of variation
of the IS estimator of Subsection 5.4 exhibits the same growth behavior. We also comment on
methods that may be useful in the proof of this observation.

The use of randomized algorithms for counting is one of the central ideas in statistics. The
use of IS for this purpose seems to be relatively new. The paper by Chen et al. [6] is the first that
we are aware of that uses IS for purposes of counting. More recent articles since [6] include [1],
[4], and [5]. The present work seems to be the first to use the subsolution method to construct
IS algorithms for counting.

The plan of this paper is as follows. In Section 2 we give the definition of an OA and restate
the Rao and GV bounds. We also compute a lower bound on the computational complexity
of the original combinatorial representations of these bounds. In Section 3 we derive the
expectation representation of the Rao bound and state the exact recursive algorithm to compute
it (see (7)). In Section 4 we carry out the LD analysis of the expectation representation of the
Rao bound. The final result here is Theorem 2 which characterizes the growth rate of the bound
as a finite-dimensional concave maximization problem. The dimension of the problem is the
number of alphabets used in the OA. In Section 5 we use the ideas in the above paragraphs to
construct an asymptotically optimal IS algorithm to estimate the Rao bound; the final result is
Theorem 3. In Section 6 we do for the GV bound what we do for the Rao bound in Sections 4
and 5. This generalization requires only minor modifications. Section 7 provides numerical
results which give evidence that the constructed algorithms are effective in practice as well.

2. Definitions and bounds

We begin with the following definition from [25].

Definition 1. A matrix A is said to be an OA(N, s
l1
1 s

l2
2 , . . . , s

lσ
σ , t) if it has the following

structure.

1. A has N rows.

2. The row length of A is l1 + l2 + · · · + lσ ; the first l1 components of each row are from
the alphabet Zs1 , the second l2 components are from Zs2 , . . . , the last lσ components are
from Zsσ .

3. Take any t columns ci1 , ci2 , . . . , cit of A and call the matrix formed by these columns A′.
Take any string s of length t such that the j th letter of s comes from the alphabet
corresponding to column ij . Count the number times s occurs as a row of A′. This count
is the same for all s.

Item 3 of Definition 1 is the orthogonality property, and t is the strength of the orthogonal
array. These types of array are called mixed-level because the columns are allowed to be from
different alphabets (property 2 of Definition 1).

The parameters of any mixed-level orthogonal array have to satisfy the Rao bound:

N ≥
t/2∑
i=0

∑
u1,u2,...,uσ ≥0,

∑
um=i

σ∏
m=1

(
lm

um

)
(sm − 1)um. (3)
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This bound corresponds to the sphere packing bound for error-block codes. As indicated in
the introduction, for σ = 1, (3) was proved in [31]; for the proof of the general case, see [25,
p. 201].

2.1. Sufficient bounds

The duality idea mentioned in the introduction and block-error code constructions implied by
Theorem 3.1 of [26] give mixed-level orthogonal arrays whose parameters satisfy the following
conditions: si = qmi , where q is a prime power,

Nq ≥
t−1∑
i=0

∑
u1,u2,...,uσ ,

∑
um=i

sσ

(
lσ − 1

uσ − 1

)
(sσ − 1)uσ −1

σ−1∏
m=1

(
lm

um

)
(sm − 1)um ≥ N. (4)

This is a sufficient bound, that is, it is known that OAs with these parameters do exist. Bounds
like (4) are called GV-type bounds in coding theory. Using methods from algebraic geometry,
it has been shown that it is possible to beat asymptotic GV bounds but only over relatively large
alphabets. For small alphabet sizes, the asymptotic GV bound is still the best-known bound.
We refer the reader to [29] and the references therein for more on these.

The right-hand side of (4) has essentially the same structure as that of (3). The key difference
between these bounds is the upper limit of the outer sum: (3) goes up to t/2 whereas (4) goes
up to t − 1.

2.2. Computational complexity of evaluating (3) and (4)

It follows from their definitions that the evaluations of (3) and (4) have the same computa-
tional complexity. Therefore, it is enough to consider one of them.

The right-hand side of (3) involves a partitioning of each i less than t/2 into a sum of σ

integers. The number of such partitions is
(
σ+i−1
σ−1

)
. Then the number of operations needed to

compute the right-hand side of (3) is bounded below by

t/2∑
i=0

σ

(
σ + i − 1

σ − 1

)
≥

t/2−1∑
i=0

iσ ≥ C

(
t

2

)σ+1

, (5)

where C is a constant that depends only on σ . If the strength parameter t grows linearly in n,
i.e. if t = µn, where µ ∈ (0, 1), a direct computation of (3) requires �(nσ+1) operations. The
present paper provides methods that compute (3) and (4) much more efficiently.

The next section presents a probabilistic representation of (3), which forms the basis for all
of the results and algorithms presented in this paper.

3. Expectation representation

Let Xi be i.i.d. Bernoulli random variables with P(Xi = 1) = P(Xi = 0) = 1
2 . Let Sk :=

X1 + X2 + · · · + Xk . Define the following ‘running cost’:

r(x, j) :=
{

1 if x = 0,

si − 1 if x = 1 and
∑i−1

k=1 lk + 1 ≤ j ≤ ∑i
k=1 lk.

Equation (3) can be written in the form

N ≥ 2nE

[
1{Sn≤t/2}

n∏
j=1

r(Xj , j)

]
= E

[
1{Sn≤t/2}

n∏
j=1

2r(Xj , j)

]
. (6)
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This is an expectation over the trajectories of Sk that stay below the level t/2 at step n. Each
trajectory of Sk has probability 2−n and the term 2n in front of the first expectation in (6) cancels
this probability. At each step the random walk accumulates a running cost 2r; the cost depends
on the step number and the current step. The random walk can be thought of as a scan of the
letters of a row of the array. At each step we flip a coin to decide whether the current letter
will be included in the computation. If the decision is yes, i.e. if Xi = 1 and the random walk
goes up, then the current bound is multiplied with 2(si − 1), where si is the alphabet size of
the letter we are going over (this is the term 2r in (6)). The first sum in (3) groups trajectories
according to their positions at step n. For position i ≤ t/2, the second sum in (3) partitions
these i up-steps into different cost regions and the binomial coefficients count the number of
possible ways um up-steps can be taken in lm steps.

3.1. A simple recursive algorithm to compute the Rao bound

For integers 0 ≤ x ≤ t/2 and 0 ≤ k ≤ n, define

M(x, k) = E

[
1{x+Sn−j ≤t/2}

n∏
j=k+1

2r(Xi, j)

]
.

The Rao bound (3) in terms of M is N ≥ M(0, 0). Because the Xi are i.i.d. and the Si are their
sum, M satisfies

M(x, k) = M(x + 1, k + 1)r(x, k) + M(x, k + 1) (7)

for x < t/2 and k < n. In addition, we have the boundary conditions M(x, n) = 0 for x ≤ t/2
and M(t/2, k) = 0 for k ≤ n. These give an algorithm that takes only tn/2 steps to compute
the Rao bound. If we write the strength parameter t as a fraction µ of n, i.e. t = µn, then the
complexity analysis in the previous chapter implies that the direct evaluation of (3) will take
at least �(nσ+1) operations. Whereas the computation of the same bound using (7) will only
take O(n2) operations.

4. Large deviation analysis

The goal of this section is an asymptotic analysis of the right-hand side of (6) as n → ∞.
In order for this analysis to be meaningful, t and li need to grow with n. Therefore, we assume
that

t = µn, µ ∈ (0, 1), li = nai,
∑

ai = 1. (8)

The asymptotic analysis of (3) now consists of evaluating

lim
n

1

n
log E

[
1{Sn≤t/2}

n∏
j=1

2r(Xj , j)

]
. (9)

For the evaluation of (9), we will follow [8] and begin by representing the log E[· · · ] term
in it as a discrete-time stochastic optimal control problem as follows.

Proposition 1. The identity

log E

[
1{Sn≤t/2}

n∏
j=1

2r(Xj , j)

]
= sup

p̄(· | ·,·)
P̄(Sn≤µn/2)=1

Ē

[ n∑
j=1

log r(Xj , j) − log p̄(Xj | j, Sj−1)

]

(10)
holds, where the sup is over all transition probabilities p̄(· | ·, ·) : Z2 × N × N → [0, 1] that
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give the probability of the steps 0 and 1 given the current position and the current step number
of the random walk S, and P̄ is the probability distribution defined by these measures on the
path space of the random walk.

The proof of this result is similar to that of Proposition 1.4.2 of [8, p. 31], and is thus omitted.
The sup on the right-hand side of (10) is over all Markov chains on the sample paths of Sk such
that the nth step is less than t/2 with probability 1. The log term inside the sup corresponds to
the entropy of p̄(· | ·, ·). Define Ai := ∑i

j=1 aj and

r̃(t) := log(si − 1), Ai ≤ t < Ai+1,

and let

H(θ) := −θ log θ − (1 − θ) log(1 − θ)

be the entropy function. As observed earlier, the right-hand side of (10) is a stochastic optimal
control problem. Upon dividing it by n, scaling the time and space parameters with 1/n, and
sending n to ∞, we obtain the following limit deterministic optimal control problem:

sup
θ(·)

∫ 1

0
[r̃(t)θ + H(θ)] dt. (11)

Here the sup is over all measurable functions on [0, 1] with values in [0, 1] such that
∫ 1

0 θ(t) dt ≤
µ/2. The rigorous connection between this optimal control problem and (10) can be established
in several ways. For example, we can use the weak convergence approach of [8]. Another
approach is via the HJB equation associated with the limit control problem (11) and a verification
argument, which is followed in [15]. In this paper we will take this second path because the
same method will also allow us to prove the asymptotic optimality of an IS estimator based on
a subsolution of the limit HJB equation.

4.1. Solution to the limit control problem

For Ai ≤ t ≤ Ai+1, r̃(t)θ + H(θ) = log(si − 1)θ + H(θ) is a strictly concave function
with no t dependence. This and Jensen’s inequality imply that, between times Ai and Ai+1, the
optimal trajectory of (11) is a straight line. Therefore, it is enough to consider the optimization
problem (11) over piecewise linear continuous paths and the sup in (11) equals

sup

{ σ∑
i=1

ai(θi log(si − 1) + H(θi))

}
, (12)

where the sup is subject to

θi ∈ (0, 1), 〈a, θ〉 ≤ 1
2µ. (13)

The objective function of this finite-dimensional constrained optimization problem is strictly
concave and its constraints linear. Therefore, the use of a Lagrange multiplier converts the
problem to one of root finding of a one-dimensional monotone function.

In the next subsection we will prove that a function defined based on (12) satisfies an HJB
equation. We will use this fact to prove the convergence of (9) to (12).
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4.2. The limit HJB equation

Let us generalize the problem in (11) so that the problem starts from any initial point x ≤ µ/2
at any time t ∈ [0, 1]:

V (x, t) := sup
θ

∫ 1

t

[r̃(s)θ(s) + H(θ(s))] ds. (14)

Here the sup is over all measurable θ(·) ≥ 0 such that x + ∫ 1
t

θ(s) ds ≤ µ/2. The sup in (11)
equals V (0, 0). Generalizing (12), for Ai ≤ t < Ai+1, we have

V (x, t) = sup

{
(Ai+1 − t)(θi log(si −1)+H(θi))+

σ∑
j=i+1

aj (θj log(sj −1)+H(θj ))

}
, (15)

where the sup is subject to

θj ∈ (0, 1), x + θi(Ai+1 − t) +
σ∑

j=i+1

aj θj ≤ µ

2
. (16)

Let us now write V more explicitly. Firstly, the absolute maximizer of (15) without the
constraints in (16) is

θ∗
j = sj − 1

sj
. (17)

If the θ∗
j satisfy (16), i.e. if

x + θ∗
i (Ai+1 − t) +

σ∑
j=i+1

aj θ
∗
j ≤ µ

2
, (18)

then V equals

V (x, t) = (Ai+1 − t)

[
si − 1

si
log(si − 1) + H

(
si − 1

si

)]

+
σ∑

j=i+1

aj

[
sj − 1

sj
log(sj − 1) + H

(
sj − 1

sj

)]
.

If the absolute maximizers (17) do not satisfy (16) then we can use a Lagrange multiplier λ to
solve (15):

log(sj − 1) + log
(1 − θj )

θj

= λ, j ≥ i.

Then

θ∗
j (λ) = sj − 1

eλ + sj − 1
. (19)

For these to give a solution to (15), they must satisfy (16) with equality:

(Ai+1 − t)
si − 1

eλ + si − 1
+

σ∑
j=i+1

aj

sj − 1

eλ + sj − 1
= µ

2
− x. (20)
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For λ = 0, the left-hand side of (20) is by assumption greater than µ/2 − x and, for λ = ∞,
it is 0. Because it is monotone in λ, there exists a unique λ∗(t, x) for which (20) is satisfied.
By the implicit function theorem, λ∗(t, x) is twice differentiable in both t and x with bounded
derivatives for t 
= Aj . For t = Aj , λ has left and right derivatives in t , and an ordinary
derivative in x. Because the function that is optimized in (15) is strictly concave, the stationary
point given by λ∗ is actually a global maximizer. Define

Ṽ (t, λ) := (Ai+1 − t)

[
si − 1

eλ + si − 1
log(si − 1) + H

(
si − 1

eλ + si − 1

)]

+
σ∑

j=i+1

aj

[
sj − 1

eλ + sj − 1
log(sj − 1) + H

(
sj − 1

eλ + sj − 1

)]
.

In light of the above computations, V (x, t) of (15) can be written more explicitly as

V (x, t) =
{

Ṽ (t, 0) if (18) holds,

Ṽ (t, λ∗(x, t)) otherwise.

We obtain the following proposition by calculus and implicit differentiation.

Proposition 2. The function V is twice differentiable except for t = Ai where it has directional
derivative Vt (x, t) which is defined as Vt (x, t) = limh↘0(V (x, t + h) − V (x, t))/h. Higher
order t partial derivatives similarly exist. In particular, for any t and x, we have

V (x + δ, t + h) = V (x, t) + δVx(x, t) + hVt (x, t) + c(x, t)(δ2 + h2),

where supx,t |c(x, t)| = C < ∞.

Now we state the HJB equation satisfied by V .

Theorem 1. The following dynamic programming equation holds:

0 = sup
θ∈[0,1]

{r̃(t)θ + H(θ) + Vx(x, t)θ + Vt (x, t)} (21)

for (x, t) ∈ [0, µ/2) × [0, 1).

Proof. Take (x, t) ∈ [0, µ/2)×[0, 1), a small δ > 0, and θ ∈ [0, 1]. Equation (14) implies
that

V (x, t) ≥
∫ t+δ

t

[r̃(s)θ + H(θ)] ds + V (x + θδ, t + δ),

V (x, t) − V (x + θδ, t + δ) ≥ [log(si − 1) + H(θ)]δ.
Because Vt and Vx exist, dividing both sides of the last display by δ and letting δ → 0 gives

−Vt − θVx ≥ log(si − 1) + H(θ).

Because this is true for all θ ∈ [0, 1], we have

0 ≥ sup
θ∈[0,1]

{r̃(t)θ + H(θ) + Vx(x, t)θ + Vt (x, t)}.

We replace ‘≥’ with ‘=’ by taking θ to be the optimal control θ∗(λ∗(x, t)).
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4.3. Convergence analysis

In this subsection we formally connect the sequence of stochastic optimal control problems
in (10) to the limit control problem (11) and its solution developed in the previous subsection.

Figure 1 gives the level curves of V (x, t) and V60(�nx, �nt), where

Vn(x, i) = 1

n
log E

[
1{x+Sn≤µn/2}

n∏
j=i

2r(Xj , j)

]

for a1 = a2 = a3 = 1
3 , s1 = 2, s2 = 30, s3 = 100, and µ = 0.1. This figure suggests that

Vn(nx, nt) → V (x, t) for all values of (x, t). Our main convergence theorem, which we state
and prove next, concerns the special case when (x, t) = (0, 0).

Theorem 2. The large deviations limit in (9) equals V (0, 0), i.e.

lim
n

1

n
log 2nE

[
1{Sn≤tn/2}

n∏
j=1

r(Xj , j)

]
= sup

{ σ∑
i=1

ai(θi log(si − 1) + H(θi))

}
, (22)

where the sup is over
θi ∈ (0, 1), 〈a, θ〉 ≤ 1

2µ. (23)

Proof. The proof will be a verification argument using V and the HJB equation (21). By
Proposition 1, there exists p̄n(· | ·, ·) such that

log E

[
1{Sn≤t/2}

n∏
j=1

2r(Xj , j)

]
= Ē

[ n∑
j=1

log r(Xj , j) − log p̄n(Xj | j, Sj−1)

]
+ ε(n),

where ε(n) → 0 and Ē is the expectation with respect to p̄n(· | ·, ·). We have

V (0, 0) = Ē

[
V (0, 0) − V

(
Sn

n
, 1

)]
=

n−1∑
j=0

Ē

[
V

(
Sj

n
,
j

n

)
− V

(
Sj+1

n
,
j + 1

n

)]
.
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Figure 1: The level curves of V (x, t) and V60.
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By Proposition 2, this equals

C(n)

n
+

n∑
j=1

Ē

[
−Vx

(
Sj

n
,
j

n

)
Xj

n
− Vt

(
Sj

n
,
j

n

)
1

n

]
,

where supn |C(n)| < ∞. We can condition the last expectation on Sj to rewrite it as

C(n)

n
+ 1

n

n∑
j=1

Ē

[
−Vx

(
Sj

n
,
j

n

)
p̄n

(
1

∣∣∣∣ Sj

n
,
j

n

)
− Vt

(
Sj

n
,
j

n

)]
.

By Theorem 1, this last sum is greater than

C(n)

n
+

n∑
j=1

Ē

[
r̃

(
j

n

)
p̄n

(
1

∣∣∣∣ Sj

n
,
j

n

)
+ H(p̄n(1 | Sj , j))

]
,

which equals
C(n)

n
+ 1

n

n∑
j=1

Ē[log r(Xj , j) − log(p̄n(Xj | Sj , j))].

Letting n go to ∞ yields

V (0, 0) ≥ lim sup
1

n
Ē

n
[ n∑

j=1

log r(Xj , j) − log p̄n(Xj | Sj , j)

]

≥ lim sup
1

n
log E

[
1{Sn≤tn/2}

n∏
j=1

2r(Xj , j)

]
− ε.

For the reverse inequality, we first note that the result of the optimization in (22) is continuous
in the strength parameter µ which appears in constraint (23). Let θ∗

i be the optimizers of (22)
when the µ in (23) is replaced with µ − 4ε, where ε > 0 is a small constant. Let

p̄∗(1 | x, j) = θ∗
i if Ai ≤ j/n ≤ Ai+1, (24)

and let P̄
∗

be the measure on the path space of (S, X) corresponding to p̄∗. By definition, Xj

is i.i.d. for Ai ≤ j/n < Ai+1. Therefore, the law of large numbers is applicable and gives

P̄
∗
(

Sn

n
>

µ

2
− ε

)
→ 0. (25)

Let p∗
n = P̄

∗
(Sn ≤ µn/2), and define

P̄
∗,c = 1

p∗
n

1{Sn≤µn/2} P̄
∗
. (26)

Under P̄
∗,c

, (Xn, Sn) is a Markov chain whose transition probabilities are determined by

p̄∗,c(1 | x, j) = p̄∗(1 | x, j)
P̄

∗
(Sn ≤ µn/2 | Sn−j = x + 1)

P̄
∗
(Sn ≤ µn/2 | Sn−j−1 = x)

. (27)
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We have P̄
∗,c

(Sn ≤ µn/2) = 1 and, therefore, by Proposition 1,

1

n
log 2nE

[
1{Sn≤t/2}

n∏
j=1

r(Xj , j)

]
≥ 1

n
Ē

∗,c
[ n∑

j=1

log r(Xj , j) − log p̄∗,c(Xj | Sj−1, j)

]
.

By (26) and (27), this equals

1

p∗
n

1

n
Ē

∗
[

1{Sn≤µn/2}
n∑

j=1

log r(Xj , j) − log p̄∗(Xj | Sj−1, j)

]
+ 1

n
log p∗

n. (28)

Note that θ∗
i and r are all positive and bounded. Therefore, there exists a positive C such that

(28) ≥ 1

p∗
n

1

n
Ē

∗
[ n∑

j=1

log r(Xj , j) − log p̄∗(Xj | Sj−1, j)

]
+ 1

n
log p∗

n − C(1 − p∗
n)

p∗
n

= 1

p∗
n

1

n

σ∑
i=1

li (θ
∗
i log(si − 1) + H(θ∗

i )) + 1

n
log p∗

n − C(1 − p∗
n)

p∗
n

.

Equation (25) implies that p∗
n → 1. This, the last sequence of inequalities, and the definition

of li give

lim inf
1

n
log 2nE

[
1{Sn≤t/2}

n∏
j=1

r(Xj , j)

]
≥

σ∑
i=1

ai(θ
∗
i log(si − 1) + H(θ∗

i )) = V (0, 0) − δ,

where δ is a small number that goes to 0 with ε. This inequality concludes the proof of this
theorem.

5. Importance sampling

The expectation representation (6) of the Rao bound brings to mind the possibility of
estimating it using simulation. The aforementioned expectation is over the set {Sn ≤ t/2}.
If we take t = µn with µ ≤ 1, as n goes to ∞, the probability of Sn being less than t/2 goes to
0 exponentially. This makes a direct simulation infeasible. However, as this section explains,
it is possible to construct fast and accurate IS algorithms to compute the Rao bound.

5.1. IS review

Take a probability space (�, F , P) and a measurable integrable function f : � → R.
Suppose that P̂ is a probability measure on (�, F ) with respect to which P is absolutely
continuous. We have the basic identity

E[f ] =
∫

�

f (ω) dP(ω) =
∫

�

f (ω)
dP

dP̂
(ω) dP̂(ω) = Ê

[
f

dP

dP̂

]
, (29)

where dP/dP̂ is the Radon–Nikodým derivative of P with respect to P̂, and E and Ê are
the expectations with respect to P and P̂, respectively. Identity (29) suggests the following
simulation algorithm to compute E[f ]. Simulate i.i.d. copies ω1, ω2, …, ωN of ω from P̂
and use the following to estimate E[f ]: ŝN = (1/N)

∑N
i=1 f̂ (i), f̂ (i) := f (ωi) dP(ωi)/dP̂.

By the law of large numbers, ŝN → Ê[f dP/dP̂], which, by (29), equals E[f ]. Furthermore,
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the linearity of the expectation and (29) imply that Ê[ŝN ] = Ê[f̂ (1)] = E[f ]. Therefore, ŝN
is an unbiased estimator of E[f ] and it converges to this value as N → ∞. This method of
estimating E[f ] is called importance sampling (IS). IS is a well-known method for estimating
small probabilities; a partial list of articles and books on the subject is [9], [15], [21], [23], [24],
[30], [32], and [35].

Because ŝN is unbiased, its variance depends on P̂ only through its second moment, which
equals Ê[f̂ 2(1)]/N . Here N is the number of samples used in the estimation and is taken to be
a constant. Therefore, to find a good IS estimator, we try to solve the optimization problem

inf
P̂

Ê[f̂ 2(1)] = inf
P̂

Ê

[(
f

dP

dP̂

)2]
= inf

P̂
E

[
f 2 dP

dP̂

]
, (30)

where the inf is over all P̂ with respect to which 1{f 
=0} dP is absolutely continuous.

5.1.1. Asymptotic analysis. Suppose now that instead of a single random variable there is a
sequence {fn} of random variables satisfying

lim
1

n
log E[fn] =: γ > 0. (31)

Jensen’s inequality and the unbiasedness of f̂n(1) imply that

lim inf
n

1

n
log Ê[f̂ 2

n (1)] ≥ lim inf
n

2

n
log Ê[f̂n(1)] ≡ 2γ.

A sequence of IS estimators to estimate E[fn] is said to be asymptotically optimal if the
corresponding lower bound is achieved, i.e. if

lim sup
n

1

n
log Ê[f̂ 2

n (1)] = lim sup
n

1

n
log E

[
f 2

n

dP

dP̂∗
n

]
≤ 2γ. (32)

5.2. The IS problem for the Rao bound

To estimate the expectation representation (6) of the Rao bound using IS, we set fn in (31)
to

fn = 1{Sn≤t/2}
n∏

j=1

2r(Xj , j),

where Sj is the symmetric random walk with increments Xj defined earlier. Theorem 2 says
that the γ in (31) for this sequence is V (0, 0) > 0. In order to simulate X and S using IS, we
specify a sampling distribution p̂(v | x, i), v ∈ {0, 1} and x ∈ Zi , and execute the following
steps: set S0 = 0; at step i of the simulation, sample the increment Xi from the distribution
p̂(· | Si, i) and set Si+1 = Xi +Si . Note that the distribution of the increment Xi is allowed to
depend on the current position of the random walk S. Let P̂ denote the probability measure on
the sample paths of Sn defined by p̂(· | x, i). The Radon–Nikodým derivative dP/dP̂ equals∏n

i=1 0.5/p̂(Xk
j | Sk

j , j). Then, the IS estimator of E[fn] using K sample paths is

1

K

K∑
k=1

f̂n(k), f̂n(k) := 1{Sk
n≤t/2}

n∏
j=1

r(Xk
j , j)

p̂(Xk
j | Sk

j , j)
, (33)

where Sk denotes the kth independent sample path used in the simulation. The increments
{Xk} are i.i.d. copies of the increment process X sampled from p̂. Then, by Theorem 2, the
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optimality condition (32) for the IS estimator (33) is

lim sup
1

n
log E

[
1{Sn≤t/2}

n∏
j=1

2r(Xj , j)2

p̂(Xj | Sj , j)

]
≤ 2V (0, 0). (34)

5.3. Connection between IS and LDs

The connection between IS and LDs has been known, at least heuristically, for a long
time; see, for example, [30] in the context of queueing networks. A more rigorous and clear
connection has been established recently in [9], [10], [15], [32], and [33].

For the present case, the IS optimization problem (30) becomes

inf
p̂

log E

[
1{Sn≤t/2}

n∏
j=1

2r(Xj , j)2

p̂(Xj | Sj , j)

]
.

This equals

inf
p̂

sup
{p̄ : P̄(Sn≤tn/2)}

Ē

[ n∑
j=1

2 log r(Xj , j) − log p̂(Xj | Sj , j) − log p̄(Xj | Sj , j)

]
,

by a direct generalization of Proposition 1 to the present case. This expression is convex in p̂

and concave in p̄ and, therefore, the order of the inf and sup can be switched without affecting
the result. Once this is done, the optimization in p̂ gives the optimizer p̂∗ = p̄ and the problem
reduces to

sup
{p̄ : P̄(Sn≤tn/2)}

Ē

[ n∑
j=1

2 log r(Xj , j) − 2 log p̄(Xj | j, Sj )

]
,

and this is the same problem as in representation (10) except for a factor of 2. Thus, it is seen
that the IS and LD problems are represented by the same optimization problem. The difference
between them is that the LD is about the minimum value, whereas IS is about the optimizer.

5.4. An asymptotically optimal IS sampling measure based on LD analysis

There are many asymptotically optimal IS sampling measures to estimate (6). For example,
p̄∗ of (24). The problem with this change of measure is that it requires the solution of (20) at
every step of the random walk Sn. For large n, this is inefficient. A much preferable situation
is a fixed change of measure, i.e. a change of measure p̂ that does not depend on t and x. In the
estimation of the Rao bound, we expect such a change of measure to exist for two reasons: (i)
the underlying process is i.i.d. and one-dimensional and (ii) the probability of interest concerns
the exit from a region with only one boundary point. For more on these points, we refer the
reader to [9], [22], [30], [32], and [35]. Let us now construct a fixed change of measure for our
problem.

Let θ∗
i to be the unique minimizers of (12), and define

p̂∗(1 | x, j) = θ∗
i if Ai ≤ j/n < Ai+1. (35)

The transition probability p̂∗ is almost fixed in the sense that it depends only on the step
number j and not on the position x of the random walk Sn. The dependence on j is only
through the block that j is a member of: each block of the orthogonal array has its own fixed
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jump probability θ∗
i ; for the steps corresponding to the ith block, we use this fixed probability

to sample the increments of Sn.
Before we state and prove our theorem which asserts that an IS estimation based on (35) is

asymptotically optimal, we would like to set up several things that will be needed in the proof.
Let us begin with the computation of (35). We simply use (16) with t = 0 and x = 0, and (19).
Then

θ∗
i = si − 1

eλ∗ + si − 1
, (36)

where λ∗ is the unique solution of

σ∑
i=1

aj

sj − 1

eλ + sj − 1
= µ

2
. (37)

Therefore, we can compute the IS change of measure p̂∗ of (35) by solving the one-dimensional
problem (37) to identify λ∗ before the simulation begins. Throughout the simulation, no further
computation will be necessary to calculate p̂∗. This is a great advantage over an IS simulation
based on (24) which would require the solution of (37) at every step of the simulated random
walk Sj .

5.4.1. Subsolutions. A function V that satisfies

sup
θ∈[0,1]

{r̃(t)θ + H(θ) + Vx(x, t)θ + Vt (x, t)} ≥ 0

is called a subsolution to the partial differential equation (21). In the next paragraph we will
construct a subsolution to (21) and the proof of asymptotic optimality will be a control theoretic
verification argument based on this subsolution. This technique is from the ‘subsolution
approach’ to IS which was first developed in the context of queueing networks in [15] and
[32]. For a more general development, see [11] and [12]. The paper that precedes these articles
and which introduced many of the ideas that underlie the subsolution approach is [9]. Other
articles using the approach include [14], [33], and [34].

Usually, the subsolution approach is useful for constructing good IS algorithms. This is
the case in most of the aforementioned references. In the present case, we already have a
simple algorithm and we will use the approach to prove that our algorithm is optimal. For the
subsolution, let us call it W , we set the partial derivative Wx(x, t) = −2λ∗ for all (x, t) and
choose the partial derivative Wt so that W solves (21):

Wt(t, x) := 2λ∗θ∗
i − 2 log(si − 1)θ∗

i − 2H(θ∗
i ), Ai ≤ t < Ai+1. (38)

These define W up to an additive constant. This is sufficient for our needs since only the
increments and partial derivatives of W appear in a verification argument. By its construction,
W is piecewise affine, continuous, and in fact a solution (and, hence, a subsolution) to (21).

Remark 1. Note that W is a solution to (21) and, as already noted in Theorem 1, so is V defined
in (15). Evidently, W 
= V . This is a common situation in optimal control, that is, an HJB
equation may have many solutions. What makes V unique is that it is the maximal solution to
(21). For more on this, we refer the reader to [19].

In addition to being a solution to (21), here are two properties of W that play a key role in
the optimality proof.
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Lemma 1. We have Wx < 0 and W(µ/2, 1) − W(0, 0) = −2V (0, 0).

Proof. Let g(λ) denote the left-hand side of (37). The function g is decreasing in λ, with
limλ→∞ g(λ) = 0 and limλ→−∞ g(λ) = 1. Furthermore, (si − 1)/si ≥ 0.5, because each si
is an integer greater than 1. Then g(0) ≥ 0.5 > µ/2. It follows that λ∗ > 0. By definition,
Wx = −2λ∗ < 0, proving the first part of the lemma.

By their definition, the θ∗
i satisfy

∑σ
i=1 θ∗

i ai = µ/2; see (36) and (37). Let xj = ∑j
i=1 θ∗

i ai .
We can write W(µ/2, 1) − W(0, 0) as the following telescoping sum:

W

(
µ

2
, 1

)
− W(0, 0) =

σ∑
i=1

[W(xi, Ai) − W(xi−1, Ai−1)].

By definition, W is affine for t ∈ (Ai−1, Ai), with partial derivatives Wx = −2λ∗ and Wt given
in (38); therefore, this last sum equals∑

i=1

[Wx(xi−1, Ai−1)(xi − xi−1) + Wt(xi−1, Ai−1)(Ai − Ai−1)]

=
σ∑

i=1

[−2λ∗θ∗
i ai + 2λ∗θ∗

i ai − 2 log(si − 1)θ∗
i ai − H(θ∗

i )ai]

= −
σ∑

i=1

ai(2 log(si − 1)θ∗
i + 2H(θ∗

i )). (39)

The θ∗
i are the unique optimizers of (12); therefore,

(39) = −2 sup

{ σ∑
i=1

ai(log(si − 1)θi + H(θi))

}
,

where the sup is subject to (13). The last quantity equals −2V (0, 0) and this concludes the
proof of the second part of the lemma.

It follows directly from the definitions of Wt and θ∗
i that

Wt + log

(
eWx (si − 1)2 1

θ∗
i

+ 1

1 − θ∗
i

)
= 0. (40)

Let Xi be a Bernoulli random variable with P(Xi = 1) = 0.5. For integers x and Ai−1n ≤
j < Ain, we can represent the previous display probabilistically as

E

[
eWxXi+Wt(x/n,j/n)(si − 1)2Xi

2

p̂∗(Xi | j, x)

]
= 1. (41)

Remark 2. The way it is presented above, (40) seems unmotivated. We should think of it as a
multiplicative representation of (21). We can derive (40) directly from (21) first representing
the optimization problem in that display as a trivial game and then using a representation result
similar to (10). For a similar argument, see [32, Lemma 2.5.2].

Theorem 3. The IS estimator based on p̂∗ of (35) is asymptotically optimal.

The following proof follows the same steps as the optimality proof given in [15]. It is simpler
because there is a fixed time horizon n, so no truncation of time is needed.
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Proof of Theorem 3. To ease notation, let 	Wi = W((Sj+1, (j + 1))/n) − W((Sj , j)/n).
Define

Mk =
k−1∏
i=1

en	Wi r(Xi, i)
2 2

p̂∗(Xi | Si, i)
.

It follows from (41) that Mk is a martingale and that

E

[
1{Sn≤tn/2}

n−1∏
i=1

en	Wi r(Xi, i)
2 2

p̂∗(Xi | Si, i)

]
= 1.

We saw in Lemma 1 that Wx < 0; therefore,

n−1∑
i=1

n	Wi = n

(
W

(
Sn

n
, 1

)
− W(0, 0)

)
> n

(
W

(
µ

2
, 1

)
− W(0, 0)

)
= −2nV (0, 0)

on {Sn < µn/2}. The last two displays imply that

e2nV (0,0) ≥ E

[
1{Sn≤tn/2}

n−1∏
i=1

r(Xi, i)
2 2

p̂∗(Xi | Si, i)

]
.

Taking the log of both sides, dividing by n, and letting n go to ∞ proves that (34) holds for the
change of measure p̂∗(· | ·, ·), i.e. the IS change algorithm defined by this change of measure
is asymptotically optimal, which is what we wanted to prove.

5.5. A numerical study of the coefficient of variation

A natural measure of the performance of an estimator E of an expectation α is the ratio√
var(E)/α, which is called the coefficient of variation of the estimator. If the estimator is

unbiased, as is the case for the estimators in the present paper,
√

E[E2]/α is another performance
measure that is equivalent to the coefficient of variation. With a slight abuse of notation, we
will refer to this last ratio as the coefficient of variation.

The asymptotic optimality of the IS estimator of the previous section implies that the
coefficient of variation of that estimator grows subexponentially in row length. We now present
numerical evidence that this ratio in fact grows like n1/4.

For integers 0 ≤ x ≤ t/2 and 0 ≤ k ≤ n, define

S(x, k) = E

[
1{x+Sn−j ≤t/2}

n∏
j=k+1

2r(Xj , j)2

p̂∗(Xj | Sj , j)

]
.

Note that the second moment of the IS estimator (33) using K = 1 samples and using the
change of measure (35) is S(0, 0). Similarly to the recursive formula (7) for the Rao bound,
we have the following recursion for S(x, k):

S(x, k) = S(x + 1, k + 1)
r2(x, k)

p̂∗(1 | x, k)
+ S(x, k + 1)

1

p̂∗(0 | x, k)
. (42)

Figure 2 depicts the coefficient of variation
√

S(0, 0)/M(0, 0) of the IS estimator based on (35)
as a function of the row length n for the parameter values

σ = 8, s = (15, 15, 10, 7, 5, 8, 12, 13),

a = 1
37 (5, 5, 5, 5, 5, 4, 4, 4), 37 ≤ n ≤ 9287.
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Figure 2: The coefficient of variation.

Figure 2(a) depicts the coefficient of variation
√

S(0, 0)/M(0, 0) itself, Figure 2(b) depicts
its fourth power, and Figure 2(c) depicts the discrete derivative of the fourth power (the discrete
derivative of a sequence of real numbers {xn} is {xn+1 − xn}). The values depicted were
computed with PARI/GP (see http://pari.math.u-bordeaux.fr/) using (7) and (42).

These computations suggest that the coefficient of variation of the IS estimator (33) with
p̂ = p̂∗ grows like n1/4 in the row length n when K = 1, i.e. when a single sample is used.
Assuming that this growth rate is accurate, the coefficient of variation of the same estimator as a
function of the row length n will stay bounded if a K = √

n number of independent samples are
used in the estimation. With

√
n many samples, the IS estimation requires O(n3/2) operations,

which is an improvement over the complexity O(n2) of the deterministic algorithm defined
by (7).

5.5.1. Comments on a rigorous derivation of the growth rate of the relative error. Any proof
that the coefficient of variation of the IS estimator defined by (35) grows like O(n1/4) will need
more precise asymptotics than provided by the LD analysis that the present work undertakes,
which computes exponential decay and growth rates. Therefore, a key ingredient of a proof of
this subpolynomial growth rate will involve a theorem analogous to that of Bahadur and Rao’s
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(see [7, Theorem 3.7.4]), which describes the exact asymptotics of P(Sn/n > α), where Sn

is a sum of a real-valued i.i.d. sequence. It appears possible to extend this result to cover the
problem in the present work. However, this extension does not seem trivial and the methods
involved are different from those used so far and, therefore, we have not attempted it in the
present work.

Assuming that a Bahadur–Rao-type result is available for the present problem, there are
several ways to proceed to obtain the O(n1/4) growth rate. The first is a new method developed
in [2] which is related to the subsolution method that we have used in our asymptotic analysis.
In that paper, the authors constructed Lyapunov functions from related subsolutions to obtain
refined asymptotics for the second moment of the IS estimator. When combined with the
Bahadur–Rao theorem, these asymptotics imply polynomial growth rates of the relative error
of the IS estimator. The problems studied in [2] have boundaries that make several exit directions
likely. This leads to subsolutions whose gradient is a weighted average of several vectors, and
Blanchet et al. [2] constructed its Lyapunov functions using these weights. On the other hand,
the expectation (6) studied in the present work concerns an exit problem with a single point of
exit and, therefore, no weights appear in the subsolution W given in (38). After an initial effort,
it did not appear immediately clear to us how to define a precise Lyapunov function from W

and we hope to look at this problem in a future work.
A second approach is to follow the argument in [3, Section 2], which proves the same

growth rate for a static estimator of the probability P(Sn/n > α). This argument is a direct
computation based on Bahadur–Rao exact asymptotics, LD asymptotics, and the simple static
nature of the IS estimator. It appears that this approach would yield the desired growth rate
once a Bahadur–Rao-type result becomes available.

6. The Gilbert–Varshamov bound

The results derived for the Rao bound (3) in Sections 3, 4, and 5 can be derived for the
Gilbert–Varshamov (GV) bound (4). The analysis and the results are essentially the same, the
main difference is that µ replaces µ/2 in (23) and other similar places.

The key quantity in (4) is

t−1∑
i=0

∑
u1,u2,...,uσ ,

∑
um=i

sσ

(
lσ − 1

uσ − 1

)
(sσ − 1)uσ −1

σ−1∏
m=1

(
lm

um

)
(sm − 1)um. (43)

Let Sn, Xi , and r be defined as in Section 3. The expectation representation of (43) is

sσ E

[
1{Sn−1≤t−1}

n−1∏
i=1

2r(Xi, i)

]
. (44)

This is exactly the same as (6), except for the following differences.

1. The expectation is over a random walk that takes n − 1 steps, rather than n.

2. There is a sσ factor in front.

3. The expectation is over those trajectories such that Sn−1 ≤ t − 1 rather than Sn ≤ t/2.

As in Section 4, the asymptotic analysis of (44) will involve a (1/n) log scaling. Under this
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scaling, the asymptotics of (44) are the same as that of

E

[
1{Sn≤t}

n∏
i=1

2r(Xi, i)

]
. (45)

Let li , ai , ti , and µ be as in (8). Theorem 2 implies that

lim
n

1

n
log E

[
1{Sn≤tn}

n∏
j=1

2r(Xj , j)

]
= sup

{ σ∑
i=1

ai(θi log(si − 1) + H(θi))

}
, (46)

where the sup is over
θi ∈ (0, 1), 〈a, θ〉 ≤ µ. (47)

If µ ∈ (0.5, 1), {Sn ≤ µn} is not a rare event and there is no need for IS to simulate (45)
effectively; we can use straightforward Monte Carlo for this purpose. Otherwise, Theorem 3
implies that the minimizers of (46) define an asymptotically optimal IS change of measure to
estimate (45).

7. Numerical examples

We used the Octave numerical computation environment [16] for the numerical computations
in this section.

7.1. The Rao bound

Example 1. Consider the following parameter values for an orthogonal array: σ = 4, alphabet
sizes s = [13, 10, 7, 5], block lengths l = [20, 20, 20, 20], and t = 4. Then n = 80, the scaled
strength parameter µ = 0.05, and length parameters a = [0.25, 0.25, 0.25, 0.25].

For this example, the exact Rao bound can be computed in two ways: using either the
original formula (3) or the recursive algorithm (7). Both of these algorithms very quickly yield
the value 190 051.

We solve (12) with the above parameter values to get the LD decay rate V (0, 0) = 0.1681.
Then the LD estimate of the Rao bound is eV (0,0)n = e13.44 = 689 760, which is about three
times larger than the actual bound found above. This type of inaccuracy is expected since an
LD analysis only identifies the exponential growth rate.

We know from Section 5 that if the optimizers of (12) are used as an IS change of measure
in (33), the resulting IS algorithm is asymptotically optimal. The optimizers of (12) for the
above parameter values is θ∗ = (0.0383, 0.0290, 0.0195, 0.0131). In Table 1 we present five
estimation results using this algorithm with K = 2000 sample paths. The standard error column

Table 1.

Estimation Estimate ŝK Standard error 95% confidence intervals Scaling

1 1.94 0.06 [1.82, 2.06] ×105

2 1.82 0.06 [1.70, 1.94] ×105

3 1.83 0.06 [1.71, 1.95] ×105

4 1.82 0.06 [1.70, 1.94] ×105

5 1.92 0.06 [1.80, 2.04] ×105

https://doi.org/10.1239/aap/1308662485 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662485


Approximation of bounds on orthogonal arrays 419

Table 2.

Estimation Estimate ŝK Standard error 95 % confidence intervals Scaling

1 2.49 0.14 [2.21, 2.77] ×1038

2 2.58 0.14 [2.30, 2.86] ×1038

3 2.43 0.14 [2.15, 2.71] ×1038

4 2.35 0.14 [2.07, 2.63] ×1038

5 2.55 0.14 [2.27, 2.83] ×1038

presents the estimated standard deviation σ̂ (ŝK). The informal 95% confidence intervals are
[ŝK − 2σ̂ (ŝK), ŝK + 2σ̂ (ŝK)].

The results of Table 1 suggest that the asymptotically optimal IS scheme derived in Section 5
also performs well in practice. All of the estimates are close to the actual value, the formal
confidence intervals are tight and they all happen to contain the exact Rao bound.

Example 2. Now consider σ = 40, alphabet sizes si = 20 + i, block lengths li = 20, i =
1, 2, . . . , 40, and strength parameter t = 20. Then n = 800, µ = 0.025, and ai = 0.025.

For this example, the complexity analysis (5) in Section 2 indicates that the direct computat-
ion of (3) would require about 1041 operations, which of course is not possible to perform in any
reasonable amount of time. The recursive algorithm (7) yields 2.57 × 1038 in a second or less.

The LD decay rate V (0, 0) turns out to be 0.113 for this problem and the corresponding LD
estimate of (3) is eV (0,0)n = e90.4 = 1.82 × 1038, which is, at the scale of 1038, close to the
exact value.

The optimizers of (12) is a forty-dimensional vector and is inconvenient to list explicitly.
The IS estimate based on (3) using these optimizers and K = 1000 samples are given in Table 2.

As in the first example, practical performance of the IS estimator is very good here. All the
estimates are close to the exact value, the confidence intervals are tight and they all happen to
contain the exact value. The run time for each estimation is around a second.

7.2. The GV bound

Let us continue with the previous parameter values. The computation for this bound is the
same as the Rao bound. In the example below, we calculate the expectation (44) rather than the
actual quantity (43), which is a multiple of the expectation. We can use our recursive algorithm
(7) to compute the exact GV bound (4) to be 3.13×1071. The LD growth rate V (0, 0) = 0.2088
and the LD estimate of the GV bound is eV (0,0)800 = 2.85 × 1071. The IS results are given in
Table 3. Once again, the simulation results are accurate and reliable.

Table 3.

Estimation Estimate ŝK Standard error 95 % confidence intervals Scaling

1 3.53 0.23 [3.07, 3.99] ×1071

2 3.47 0.23 [3.01, 3.93] ×1071

3 3.42 0.23 [2.96, 3.88] ×1071

4 3.28 0.22 [2.84, 3.72] ×1071

5 2.83 0.20 [2.44, 3.23] ×1071
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Figure 3: A comparison of the Rao and GV bounds.

7.3. A comparison

Set σ = 4, s1 = 2, s2 = 4, s3 = 8, s4 = 16, and ai = 0.25. Figure 3 depicts the graphs of
the Rao and the GV asymptotic bounds for these parameter values as a function of the strength
parameter µ ∈ [0, 1].

The large gap between them is due to the difference of a factor of 2 between the constraints
of the Rao and the GV bounds. The GV bound is flat for larger values of µ, because, for these
values of µ, the unique global maximizer of (46) satisfies constraint (47).
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