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AN EXACTLY SOLVABLE TWO COMPONENT
CLASSICAL COULOMB SYSTEM
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Abstract

A two component classical Coulomb system is considered, in which particles of charge
+ q and +2q are constrained to lie on a circle and interact via the two-dimensional
Coulomb potential. At a special value of the coupling constant the correlation functions
are calculated exactly and the asymptotic form of the truncated charge-charge correlation
is found to obey Jancovici's sum rule.

1. Introduction

On the basis of a screening argument, Jancovici [4] has derived a sum rule
applicable to n component classical Coulomb systems with charge species qa,
a = 1,2,...,«, in dimension v = 2 or 3 and confined to half space domains. The
sum rule states that the asymptotic expansion of the truncated charge-charge
correlation function C2

r, defined in terms of the usual one and two particle
correlations by

C2
r(x,x') = 2 qaPa(x')8(x - x') + 2 2 MppZA*' x')> 0-0

for large separations \y — y'\ along a plane wall, must contain the term

'f\y-y'
The function/(x, x') is further specified (see [4]).
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Application of Jancovici's argument to two dimensional strip domains by
Forrester et al. [2] gives a similar sum rule. In particular, in the zero strip width
limit the sum rule says the asymptotic expansion of C2

r( y) must contain the term

ic T

where y is now the particle separation on the line.
In [4] and [2] the sum rule has been tested on the few known exactly solvable

Coulomb systems—special cases of the two dimensional one component plasma
—and found to hold. Further it is expected that above a certain temperature,
when the system is in a disordered fluid state, the term given by Jancovici will be
the leading term (see [2]).

In this paper, for a special temperature, we evaluate C2
r( y) in the case of a two

component system interacting via the 2-dimensional Coulomb potential and
confined to a line. We find the term (1.3) is indeed the leading order term in the
asymptotic expansion of C2

r. We also verify another sum rule—the perfect
screening sum rule—which in physical terms says around each charge in the
system a screening cloud of equal and opposite charge is formed.

2. Calculation of the partition function

Let there be aN particles of charge + q and bN particles of charge +2q,
labelled 0,, 62,...,6aN and 6aN+u 9aN+2,...,$ia+b)N respectively, interacting on
the circle of radius R via the two dimensional Coulomb potential

j , 6k) = -<klog*|exp(tf,) - exp(/0j | . (2.1)

To obtain thermodynamic stability we would also require a neutralizing back-
ground charge density, but since for circular domains this only contributes a
constant term to the Hamiltonian this is irrelevant for the purposes of calculating
correlation functions. Thus we may take for the Hamiltonian

-q2 2 Iog|exp(j6l.)-exp(/^)p* (2.2)

where q):= 1, 1 < j *s aN, and 9, = 2, aN + 1 ^j^(a + b)N. Further, making
the special choice of temperature given by

r-£-i. (2.3)
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131 Solvable Coulomb system 121

and letting v+1(0) and v+1{6) be arbitrary integrable functions, we have the two
particle distribution functions given by

= lim
2TTQ

Sv+a(ea)8v+p(6b)\ Z(0,0)
Z(o+,,o+2)

(2.4)

where qQ = q(2b + a)N/2irR is the total charge density, and either a=.fi = 1,
a = /? = 2 o r a = 1, /? = 2. In (2.4) ^ denotes functional differentation and

a + b)N aN n
X |exp(/0,.)-exp(/0y)|^. (2.5)

We now transform (2.5) using a method due to Dyson and Mehta [5, Chapter
5]. Since the integrand is symmetric in 9t> I = 1,2,...,aN, we can order those
integrations 0 *s 0, < 02 < • • • < 0aN < 2i7 provided we multiply by (aN)\. We
can now use the identity

|exp(/0,) - exp(/0y) | - |

to write

X

X

But we can write

n

a)N -

+ a)iV - 2])

(exp(i»y.) - exp(i*,))'*.

(2-6)

(2.7)
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as a confluent alternate determinant [5, page 208] of dimension (2 b + a)N, with
rowy, 1 «£y < aN, consisting of powers of

l,exp(i6J),exp(2i0j),...,exp{[N(2b + a) -

rows aN + (2y - 1), 1 *&j < bN the powers of exp(i0aN+j), while the rows
aN + 2j, 1 <y «£ bN consist of the derivative with respect to exp(idaN+J) of the
(aN + (2j — l))th row. Hence from the definition of a determinant we have

l(2b+a)NV. aN
> = 2 <P) II exp(/(P(/) - 1)6,)

j P = \ /=1

X [I (P(aN + 21) - \)exp(i6aN+l(P(aN + 21) + P(aN + 21 - 1) - 3)),
i=\

(2.8)

where e(P) denotes the parity of the permutation P of {1, 2 , . . . ,(2b + a)N}.
Substitution of (2.8) and (2.7) into (2.5) (with the specified order of integration)

shows the integrand is now anti-symmetric in 0,, 62>.. -,9aN. However if we first
integrate over 0U 62,...,8aN^x [5, pages 51-52] (it is thus convenient to take iV
even) the integrand is symmetric in the integration variables 62, 0A,..-,0aN so we
can drop the ordering constraint and divide by (a7V/2)!. Hence

Z(v+i,v+2)
t xr \ i l(a + 2b)N]\

= ( )aN/2_iaN)L V E(P)

aN/2
/ V

(aAT/2)! F

aN/

X II / Vd62l(l + v+l(62l))exp(ie2l{P(2l) - N(b + a/2)) - 1/2)

- \)-N(b + a/2)-\/2))

bN
X II / mddaN+l{\ + v+2(6aN+l))(P(aN + 21) - 1)

i=iJo

X exp(i$aN+l[P(aN + 21) + P(aN + 2/ - 1) - 1 - N(2b + a)]). (2.9)

Consider all permutations such that P(2l)>P(2l— 1) for each / = 1, 2 , . . . ,
N(b + a/2). Denote the set of such permutations by X. From A'we can construct
all permutations P by interchanges, which have the effect of changing the sign of
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e(P) for each interchange. In fact [5, pages 194-195]

< N\\
 aN/2

Z(v+i,v+2) = (-0aN/2-^l U M
(b+a/2)N

X II *P(2/-
l=\+aN/2

where

f 2 l i ( 2 l , ( +l2l
Xexp(^2/_,(i)(2/ - 1) - N(b + a/2) - 1/2)

+ idv{P{2l) - N(b + a/2) - 1/2)) (2.11)

and

(P(aN + 21) ~ P{aN + 21- 1))

v+2(6aN+l))

X exp(iOaN+l(P(aN + 21) + P(aN + 2/ - 1) - 1 - N(2b + a))) (2.12)

We can now evaluate the partition function. Since

T/>(2/- l),/»(2/)(0)

2ir ( 1 1

- 1) - N(b + a/2) - 1/2 P(2l)-N(b + a/2)-\/2}'

0, otherwise,

and

27r(P(aN + 21) - /'(a^V + 21- 1)),

if J»(oJV + 2 / ) + J»(oiV + 2 / - 1) = N(2b + a) + 1,

0, otherwise, (2.14)

and the only permutations satisfying P(2l) + P(2l - 1) = N(2b + a) + 1 and
P(2l) > P(2l - 1) for each / = 1,2,... ,(b + a/2)N are

(2-15)
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where Q(l) is a permutation of {\,2,...,N(b + a/2)},we have after straight-
forward manipulation

z(00) = < ° * > ^ y ^ ( l 6 , r / » " s n wo - i/tf,
(2.16)

where the sum is over all combinations of {1,2,.. .,N(b + a/2)} taken bN at a
time.

3. Application of a local limit theorem

When taking the thermodynamic limit we will require an asymptotic formula
for the sum in (2.16). This can be achieved by first noting the required sum is the
coefficient of xNa/2 in the polynomial

(x + (l/2)2)(x + (3/2)2) • • • ( * + (N(b + a/2) - 1/2)2). (3.1)

The problem is now analogous to finding the same type of asymptotic formula for
the Stirling numbers of the first kind. It was shown by Bender that the asymptotic
formula for the Stirling numbers of the first kind can easily be obtained [1, page
105] after first proving a local limit theorem [1, page 100, Theorem 2]. Using the
same local limit theorem, and following Bender's procedure there is no difficulty
in showing

2 g Mi) - i/2)! j f l ' - + »(» + «/q+J/») *•"•"», (3.2)
Nah1

where if v is the unique positive solution of the equation

a _ arctan v
W+~a~ T~' ( 3 J>

then

I- a/2)N
a = (3.4)
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and

, > = < * •

a/2)N I arctan v _
i \ ;

(3.5)

From the definition (2.4) it remains to take the appropriate functional deriva-
tives of (2.10) before taking the thermodynamic limit to evaluate the correlation
functions. We will illustrate the procedure for p+ 1 +2(0a, 9b). The calculation of
p+\ +i and p+2 +2 proceeds similarly, so we will omit the details and only present
the results.

From the definition of functional differentiation we have

8v+i(6a)8v+2(0b)

'aN/2 hN

7=1 k=i

V+l=V + 2 =

X

v ' (aN/2)\

- P(aN + 2k- 1))

1
P(2j) - N(b + a/2) - 1/2 P(2j - 1) - N(b + a/2) - 1/2

Xexp(/0a(i>(2;) + P(2j - 1) - N(2b + a) - 1))

Xexp{iOb(P(aN + 2k) + P(aN + 2k - 1) - N(2b + a) - 1))

aN/2

n $p(2/-l),P(2/)

(a/2 + b)N

(o) n <t> (o)
l=aN/2+\

(3.6)

For non-zero contribution in the sum over permutations, from (2.13) and (2.14)
we require condition (2.15) for each / = 1, 2,...,(fl/2 + b)N, I =£j, aN/2 + k,
where Q is now a permutation on {1,2,... ,N(b + a/2)} — {p, q}, 1 «sp, q <
N{b + a/2). The permutations P(2j - 1), P(2j), P(aN + 2k - 1), P(aN + 2k)
are free to assume the values as given by the following table, subject to the
constraint in the column labelled "comment" and with associated parity e(P):

P{2j - 1)

q
p
q

N(2b + a)-p

P

N(2b
N(2b

N(2b

+ a)
+ a)
P

+ a)

- q
- q

- q

P(aN

N(2b

+ 2k

P
q

+ a)
q

- i )

~ p

P(aN -

N(2b +
N(2b +
N(2b +

P

1- 2k)

a)-p
a)-p
a)-q

e{P)

+ 1
-1

+ 1
+ 1

comment

p
p

P
P

^q
^ q
>q
>q
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Hence after some straightforward manipulation

= 2(4*)"
8v+i(0a)8v+2(6h)

N(b+a/2)

X 2
p.q=\

,.2 Z(0,0)

- 1/2)2

- {N(2b + a) + l - p - q)2exp(i0ab(p - q))

-{p- q)2cos6ab(N(2b + a)-p-q+\)]

Nb- 1

x s n (cV)-1/2). <3-7)
c' / = 1

where c' is the set of all combinations of {1,2,...,(ft + a/2)N) — {p,q} taken
(Nb — 1) at a time. Again using the local limit theorem [1, page 100, Theorem 2]
we can easily show

l V 2 «%nff,(c(/)- 1/2)2
, 2 2 w 2 2s • (3.8)

( 2 + 2 ) ( 2 + )
Substituting (3.8) in (3.7) and then dividing by Z(0,0) gives the desired

expression for p + 1 + 2 in the finite system. Noting

qQ denoting the total charge density and y the particle separation on the line, we
observe the sums in (3.7) become Riemann integrals in the thermodynamic limit.
Further we can evaluate the first of the integrals resulting from (3.7). We thus
have the evaluation

O \ V } J0 /_] \\/vl + tl)\\/vL + SZ)\\/vl + tl)\\/vL + SZ)

(3.10)

where p+ 1 is the particle density of the +q charges and p + 2 the particle density of
the +2q charges.

Proceeding similarly we can show
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191 Solvable Coulomb system 127

and

We recall v is the unique positive solution of the equation
a _ arctan v

2b + a v

and p+ 1 = aN/(2vR), p+2 = bN/(2irR).

(3.12)

(3.3)

4. Verification of the sum rules

The perfect screening sum rule [3] states in the present case

C dy{p\h + x{y) + 2pT
+h+2(y)) = - P + 1 (4.1)

"'-00

and

r 2pT
+2i+2) = - 2 P + 2 . (4.2)r"'-

To evaluate the above integrals using the expressions (3.10)—(3.12) we interchange
the order of integration so that the ^-integration is being performed first. When
the integrand is cos tryQ(t + s) this gives a delta function which reduces the
double integrals with respect to s and t to a single integral. In the case the
integrand is sin mQ \y \ t we introduce a convergence factor e"**1 which allows the
integrations to be separated. Following this procedure we readily find the sum
rule is obeyed.

To verify Jancovici's sum rule we require expansions of the truncated two
particle correlation function for large y. To obtain the expansions we note the
double integrals in (3.10)-(3.12) can all be separated into products of single
integrals. The expansions of the single integrals can be obtained by integration by
parts. Thus

+ O(\/y4\ (4.3)

•+0(1//), (4.4)
v2

2(7ry)V + I)
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(4.5)
2 2

) V + 1)
Hence from the definition of the truncated charge-charge correlation function
(1.1) and recalling the calculation was performed at the temperature given by
(2.3) we have

^ o o , (4.6)

which is precisely (1.3) so Jancovici's sum rule holds.
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