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Abstract

We consider an optimal stopping problem of a linear diffusion under Poisson constraint
where the agent can adjust the arrival rate of new stopping opportunities. We assume that
the agent may switch the rate of the Poisson process between two values. Maintaining
the lower rate incurs no cost, whereas the higher rate requires effort that is captured by a
cost function c. We study a broad class of payoff functions, cost functions and diffusion
dynamics, for which we explicitly characterize the solution to the constrained stopping
problem. We also characterize the case where switching to the higher rate is always
suboptimal. The results are illustrated with two examples.
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1. Introduction

Consider an agent with an option to invest in the style of [30]. That is, the agent can make
an irreversible investment in a project, where the returns follow a continuous-time stochastic
process. In standard models of this style it is often assumed that the option can be exercised
at any time. This reflects the idea that the agent is attentive to the relevant state variable at
all times. In practice, this type of constant attention can be very costly, even prohibitively
so. The issue of costly information acquisition and/or limited information processing capacity
in economic decision making is addressed in the economics literature under the title ‘ratio-
nal inattention’. Rational inattention can be described so that when there is uncertainty about
future events regarding a decision making problem and obtaining and processing information
comes with a cost (at least a utility or an opportunity cost), it is rational for agents to update
their information and strategies only sporadically. We refer the reader to the recent survey
by Maćkowiak, Matĕjka and Wiederholt [29] for a comprehensive overview on the rational
inattention literature.
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Mathematical models of rational inattention can be roughly divided into two main cate-
gories: structural models and models of reduced type. In structural models the information
constraint is modelled directly and its effects on the resulting decision making problem are
studied; see, e.g., [36, 37]. In these papers the observations on the system are acquired through
a communication channel with a finite information processing capacity. As a result, rational
agents are not able to utilize all the available information instantaneously and, hence, cannot
optimally update their strategies in continuous time.

In models of reduced type one introduces a simplified proxy for attention into the model to
study its implications on the optimal strategies. The proxy is usually chosen to be a determinis-
tic or random discrete set of admissible decision making times. Papers of this type include, e.g.,
[17, 28, 32, 33]. In [32], estimation of an Ornstein–Uhlenbeck process with discrete periodic
noisy observations is considered. Expectation formation by consumers is studied in [33] in the
case where consumers update their plans only sporadically and remain inattentive otherwise.
A similar idea is adapted in [17], where portfolio selection with only discrete periodic news
updates is considered. Executive option valuation is considered in [28], where the proxy for
attention is an independent Poisson process and the option can be exercised only at the jump
times of this process.

Our study is related to the models of reduced type. Consider an agent observing the value
of a dynamic stochastic variable at discrete irregularly spaced time points. The agent is facing
an optimal stopping problem, where the objective is to maximize the expected present value
of the exercise payoff contingent on the observations. The irregular observations stem from
a linear diffusion process, which is observed at the arrival times of two independent Poisson
processes with rates λ1 <λ2. The observation mechanism is set up as follows. At the initial
time, the agent may stop or choose one of the Poisson processes and acquire the next obser-
vation of the diffusion at the first arrival of the chosen Poisson process. If the agent chooses
the Poisson process with higher rate, she has to pay a potentially state-dependent cost c. At
the arrival of the chosen Poisson process, the agent can choose between the following: she can
either stop, continue following the same Poisson process or switch to the other Poisson pro-
cess. The procedure is then repeated perpetually. The rate parameter of each Poisson process
is understood as the mean number of observations per unit time contingent on the agent’s deci-
sion. We call these parameters attention rates since they refer to the agent’s level of attention.
Lower attention can be maintained for free, whereas higher attention requires additional effort
that is modelled by the cost c.

The decision rule of our agent is seen to be two fold. It is a combination of the stopping
time and the sequence of decisions modulating the attention rate. Thus, our problem may be
cast as a problem of stochastic control with an additional optimal stopping component. These
types of problems are also known as stochastic control problems with discretionary stopping
and there exists a wealth of literature on them. We refer the interested reader to [7] for a recent
literature review. In most papers that have been written on the topic (such as [9, 18, 20]), the
controlling aspect is formulated as a control that directly affects either the state or the dynam-
ics of the underlying stochastic process. A notable exception is the cooperative game set-up
of [19] in which controlling is understood as choosing a probability measure under which the
expected payoff is calculated. Our model conforms to the latter framework since the atten-
tion rate control influences only the probability distribution of the next controlling/stopping
opportunity.

As an application of our model, consider the optimal liquidation of a reserve of a renewable
natural resource. The standard models (see, e.g., [4, 5, 38]) usually assume that the level of
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Optimal Stopping with Variable Attention 3

reserve is observable at all times. In practice, this quantity can be difficult to monitor due
to different physical constraints. For instance, the reserve can be distributed spatially over a
large area and it takes time and effort to quantify its level for decision making purposes. This
setting can be captured by the proposed models. The reserve level is no longer observable
continuously in time but rather for a given number of times per unit time on average. The
rate λ1 is the average number of observations per time unit that can be maintained without
additional costs, whereas maintaining a higher average number of observations λ2 incurs an
extra cost c.

The proposed model is related to the recent paper by Hobson and Zeng [15]. In [15] the
agent observes the diffusion and has the capacity to control the rate of the Poisson process
continuously in time. Moreover, maintaining a rate will incur an instantaneous cost that is
a function of the maintained rate; maintaining a higher rate is more costly than maintain-
ing a lower rate. We consider an irregularly spaced discrete time version of this problem,
where observations and rate adjustments are made only at the arrival times. However, in many
cases studied in [15] the optimal adjustment rule is to switch between two rates, from ‘low’ to
‘maximal’.

In this view, our restriction to modulate between two rates is reasonable. In [15] the authors
consider examples with Brownian motion and geometric Brownian motion (GBM), and note
that their results could be generalized to more general diffusions. The main contribution of the
study at hand is to present a broad class of models with easily verifiable conditions for which
the optimal solution can be characterized in terms of the minimal r-excessive functions of
the diffusion process. This complements the existing literature. We also characterize the case
where switching to the higher rate is always suboptimal.

Furthermore, models in which the underlying evolves in continuous time but the admissible
control times are restricted have been studied in the literature over the past two decades. They
are often called Poisson constrained optimal stopping problems. These problems were intro-
duced by [10], where the diffusion is a GBM and the exercise payoff is of an American call
option type. The results of [10] were extended in [23] to cover a broad class of payoff functions
and linear diffusion dynamics. Menaldi and Robin [31] provide further generalizations, going
so far as to have a not necessarily time-homogeneous Markov process with a locally compact
state space and independent and identically distributed intervention times. However, at this
level of generality not much can be said about the optimal stopping times besides the usual
characterization and well-posedness results. Other papers in this vein include [6, 11–16, 21,
24–27, 34]. Arai and Takenaka [6] study Poisson constrained optimal stopping with a regime
switching GBM. In [12], optimal stopping of the maximum of the GBM at Poisson arrivals is
considered. The shape properties of the value function for a class of Poisson stopping problems
with diffusion dynamics are analysed in [14]. In [21], optimal stopping with Poisson constraint
is considered for a multidimensional state variable. Optimal stopping games with Poisson con-
straints under various degrees of generality are addressed in [11, 16, 24–26]. Lastly, Liang
and Wei [27] study optimal switching at Poisson arrivals and Rogers and Zane [34] consider
portfolio optimization under the Poisson constraint. There is also a wide variety of Poisson-
constrained control problems that are not purely stopping problems. For a comprehensive and
recent review on this topic, see [35, Section 3.4]. We point out that in all these papers, the rate
of the Poisson process is not a decision variable.

The structure of the paper is as follows. In Section 2 we formulate the main stopping
problems. In Section 3 we derive the candidate value functions and associated policies. The
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candidate values are proved to be the actual values in Section 4. Section 5 contains a brief dis-
cussion on the asymptotic properties of the main stopping problem. The findings are illustrated
in Section 6.

2. Problem formulation

2.1. The dynamics

Let (�,F , F= (Ft)t≥0, P) be a filtered probability space supporting a diffusion X with a
state space I that is an interval in R such that I = [l, r],−∞ ≤ l< r≤ ∞. We denote by Px

the probability measure P conditioned on the event that the diffusion is started from the state
x ∈ I. The corresponding expectation is denoted by Ex[ · ]. We assume that the boundaries l, r
are natural. Thus, the lifetime of X

ζ = inf{t ≥ 0: Xt /∈ I}
satisfies ζ = ∞, P-almost surely. As usual, we denote by m and S the speed measure and the
scale function of X, which we assume to be absolutely continuous with respect to the Lebesgue
measure on I and twice continuously differentiable. The infinitesimal generator A : C2(I) →
Cb(I) of X can be written as

A= σ 2(x)

2

d2

dx2
+μ(x)

d

dx
,

and the infinitesimal parameters μ : I →R, σ 2 : I →R+ are defined by

m′(x) = 2

σ 2(x)
eB(x), S′(x) = e−B(x),

where B(x) = − ∫ x (2μ(y)/σ 2(y)) dy. Note that we use the convention R+ = (0,∞) here. Let
r> 0. We denote by ψr (ϕr) the unique increasing (decreasing) fundamental solution to the
ordinary differential equation Au = ru. These fundamental solutions can be identified as min-
imal r-excessive mappings for the diffusion X. Let L1

r (I) be the set of measurable functions
f : I →R such that

Ex

[∫ ∞

0
e−rs|f (Xs)| ds

]
<∞

and, for any f ∈ L1
r (I), define the resolvent Rr as

(Rrf )(x) =Ex

[∫ ∞

0
e−rsf (Xs) ds

]
. (1)

By combining the relevant identities from Sections I.2.7, II.1.4 and II.1.11 in [8] and making
use of Fubini’s theorem (which holds for the integral (Rrf ) when f ∈ L1

r (I)), we see that the
resolvent Rr can be expressed in terms of the minimal r-excessive functions ψ r and ϕr as

(Rrf )(x) = B−1
r

(
ϕr(x)(�rf )(x) +ψ r(x)(�rf )(x)

)
. (2)

Here, Br is the (constant) Wronskian

Br = ψ ′
r(x)ϕr(x) −ψ r(x)ϕ′

r(x)

S′(x)
(3)
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and the functionals �r and �r are defined as

(�rf )(x) =
∫ x

l
ψ r(z)f (z)m′(z) dz,

(�rf )(x) =
∫ r

x
ϕr(z)f (z)m′(z) dz.

We also recall the resolvent equation (see, e.g., [8, p. 4])

RqRr = Rr − Rq

q − r
, (4)

where q> r> 0.
Lastly, we make use of the formulae (see, e.g., [2, Corollary 3.2])

f ′(x)ψ r(x) −ψ ′
r(x)f (x)

S′(x)
=
∫ x

l
ψ r(z)((A− r)f )(z)m′(z) dz, (5)

ϕ′
r(x)h(x) − h′(x)ϕr(x)

S′(x)
=
∫ r

x
ϕr(z)((A− r)h)(z)m′(z) dz, (6)

which hold for functions f , h ∈ C2(I) such that limx↓l f (x)/ϕr(x) = limx↑r h(x)/ψ r(x) = 0 and
(A− r)f , (A− r)h ∈ L1

r (I). Note that the last two conditions are equivalent to the integrability
conditions of [2, Cor. 3.2]. On the other hand, the lower boundary l was assumed to be natural
so limx↓l ϕr(x) = ∞ and limx↓l f (x)/ϕr(x) = 0 may be used in the proof of [2, Corollary 3.2]
instead of the condition |f (0 + )|<∞.

2.2. The stopping problem

In this section we set up the optimal stopping problem. We start by recalling the Poisson
stopping problem discussed in [23]. Let N be a Poisson process with rate λ> 0 and assume
that the filtration F carries information on both X and N. Define the discrete-time filtration
G0 = (Gn)n≥0 as Gn =FTn , where T0 = 0 and (Tn − Tn−1) ∼ Exp(λ) for all n ∈N. We call the
times Tn arrival times because they model the arrival of new stopping opportunities. Define the
admissible stopping times S0 for a Poisson stopping problem as mappings τ : �→ {Tn : n ≥ 0}
such that

(i) for all x ∈ I,Ex[τ ]<∞;

(ii) for all n ≥ 0, {τ = Tn} ∈ Gn.

Then the value function of the Poisson stopping problem is defined as

Vλ0 (x) = supτ∈S0
Ex
[
e−rτg(Xτ )

]
, (7)

where the function g is the payoff. This Poisson stopping problem can be solved under mild
assumptions and the value function (7) can be written in a semi-explicit form in terms of the
minimal r-excessive functions; see [23].

We extend the idea above to accommodate rate controls. Let 0<λ1 <λ2 and denote by Na,
where a = 1, 2, a Poisson process with rate λi. Denote the arrival times of Na as Ta

n , a = 1, 2.
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We assume that the filtration F is rich enough to carry the processes X, N1 and N2, and that X,
N1 and N2 are independent. Now the agent has two arrival processes at her disposal and can
switch between these over time. The switching decisions are expressed as sequences of ran-
dom variables A = (An)n≥0; we call such A attention sequences. We define attention sequences
inductively as follows. Let A0 be F0-measurable such that A0(ω) ∈ {λ1, λ2} for all ω ∈�. The
value of A0 indicates which arrival process the agent is following at time 0. Let TA

0 = 0 and
define

TA
n = TA

n−1 + UAn−1, (UAn−1 |An−1 = λi) ∼ Exp(λi) for n ≥ 1.

The variables UAm model the time remaining until the next arrival, conditional on the agent’s
mth choice. Using this, we define An as a FTA

n −-measurable random variable taking values in
{λ1, λ2} for n ≥ 1. These variables indicate which arrival process the agent chooses to follow
at the nth time of choosing. If An = λa for a given n, we say that the agent in maintaining λa

attention, a = 1, 2.
Define the discrete time filtration G

A
0 = (GA

n )n≥0 recursively by

GA
n = GA

n−1

∨
FTA

n−1+UAn−1 , GA
0 =F0.

For a fixed sequence A, we define the admissible stopping times as mappings τ : �→ {TA
n :

n ≥ 0} such that

(i) for all x ∈ I,Ex[τ ]<∞;

(ii) for all n ≥ 0, {τ = TA
n } ∈ GA

n .

Let SA
0 be the class of stopping times that are admissible with respect to the attention

sequence A. We define an auxiliary stopping problem as

VA
0 (x) = supτ∈SA

0
Ex

[
e−rτg(Xτ ) −

∞∑
n=0

e−rTA
n c(XTA

n
)1(An = λ2)1(TA

n < τ )

]
,

where g is the exercise payoff and c is the period cost function. The function c is the cost
the agent must pay in order to wait for a single arrival with the higher rate λ2. Now our main
stopping problem reads as

V0(x) = supA VA
0 (x). (8)

We also set up constrained stopping problems, where immediate stopping is not possible;
this corresponds to the situation where immediate observation of X is not available but the
future observations occur according to our model. To this end, we define two sets of stopping
times as follows. Let SA

a , where a = 1, 2, be the set of mappings τ : �→ {TA
n : n ≥ 0} such that

(i) for all x ∈ I,Ex[τ ]<∞;

(ii) for all n ≥ 1, {τ = TA
n } ∈ GA

n ;

(iii) P(τ = TA
0 ) = 0, A0 = λa.

We define, for a fixed A with A0 = λa, the auxiliary stopping problem

VA
a (x) = supτ∈SA

a
Ex

[
e−rτg(Xτ ) −

∞∑
n=0

e−rTA
n c(XTA

n
)1(An = λ2)1(TA

n < τ )

]
.
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Thus, the version of the main stopping problem where immediate stopping is not allowed
reads as

Va(x) = supA VA
a (x), a ∈ {1, 2}. (9)

The function (9) can be interpreted as the value of the future stopping potentiality contingent
on the level of attention and the state of diffusion X. This function is related to the value of the
stopping problem in between the arrival times. In our proposed model we assume that the state
of X is not observed between the arrivals. However, this does not prohibit us from devising this
function and using it in our analysis. In the following, we refer to this function as the value of
future stopping potentiality.

We study the problems (8) and (9) under the following assumptions.

Assumption 1. Let

p(x) = λ2(Rrc)(x) + c(x), P(x) = g(x) + p(x),

yλ2,c = inf

{
y ∈ I :

P(y)

ψ(y)
>

(�r+λ2 P)(y)

(�r+λ2ψ r)(y)

}
,

lg = inf{x ∈ I : g(x)> 0}.
We assume the following assertions hold.

(i) The period cost c is non-negative, non-decreasing and r excessive. Furthermore, c ∈
L1

r (I) ∩ C2(I), (r −A)c ∈ L1
r (I), limx↓l p(x)/ϕr(x) = limx↑r p(x)/ψ r(x) = 0 and p/ψr is

strictly decreasing.

(ii) The payoff g is non-negative, non-decreasing and piecewise C2. The left and right
derivatives d±g(x)/dx, d2±g(x)/dx2 are assumed to be finite for all x ∈ I. Furthermore,
g ∈ L1

r (I) ∩ C0(I), (r −A)g ∈ L1
r (I), limx↓l g(x)/ϕr(x) = limx↑r g(x)/ψ r(x) = 0 and

there exists a unique state

y∞ = argmaxx∈(lg,r)
{
g(x)/ψ r(x)

}
such that g/ψ r is non-decreasing on (lg, y∞) and non-increasing on (y∞, r).

(iii) The function (g − λ2(Rr+λ2 g) + c)/ϕr+λ2
is strictly increasing on (yλ2,c, r). Moreover,

the function (g − λ1(Rr+λ1 g))/ϕr+λ1
is strictly increasing on (yλ1 , r) and

P(x)

ψ r(x)
<

(�r+λ2 P)(x)

(�r+λ2ψ r)(x)
for x ∈ (lg, yλ2,c).

Remark 1. Assumption 1(i) and 1(ii) contain relevant regularity and monotonicity assump-
tions on the period cost and the payoff. It is interesting to note that r excessivity of the cost
function c follows from the other assumptions for the examples we consider in Section 6. In
particular, positive constants are trivially r excessive and if c(x) = kx for some k> 0, the dif-
fusion is a GBM and the payoff is g(x) = xθ − η with 0< θ < 1<η, then r excessivity of c
follows from (r −A)g ∈ L1

r (I). The specific reason we require the cost to be r excessive is that
in certain points of the proofs in Appendix A we encounter integrals that need to be of a certain
sign. These signs behave as they should if (A− r)c(x) ≤ 0 for all x ∈ I, i.e. if c is r excessive.

On the other hand, in Assumption 1(iii) the monotonicity assumptions are related to the
classical stopping problem studied, for example, in [1]. These are typical assumptions that
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guarantee that a unique point splits the state space to the continuation region and the stopping
region. Together with the limit assumptions for g/ψr, these correspond to the assumptions
made in [23] for the Poisson stopping problem.

Assumption 1 (iii) is connected to two Poisson stopping problems: one with the attention
rate λ1 and one with the attention rate λ2 and period cost c. From a technical point of view
it is needed to prove uniqueness of the optimal solution in our case. We also observe that
Assumption 1(iii) is closely connected to typical superharmonicity assumptions for twice con-
tinuously differentiable payoffs. More precisely, assume for a moment that g ∈ C2(I) and that
there exists a unique x̂ ∈ I such that ((A− r)g)(x) � 0, when x � x̂ (see [3, 22]). These type of
conditions imply the monotonicity conditions in Assumption 1(ii) and are easily verified. In
our case, making use of (5) and (6), we find that

P(x) − λ2(Rr+λ2 P)(x)

ϕr+λ2
(x)

= B−1
r+λ2

(
(�r+λ2 (r −A)P)(x) + ϕr+λ2

(x)

ψ r+λ2
(x)

(�r+λ2 (r −A)P)(x)

)
,

which is strictly increasing if and only if (�r+λ2 (A− r)P)(x)< 0. Also,

P(y)

ψ r(y)
<

(�r+λ2 P)(y)

(�r+λ2ψ r)(y)

if and only if

ψ r(y)

ϕr+λ2
(y)

(�r+λ2 (A− r)P)(y) + (�r(A− r)P)(y)> 0.

Hence, it is evident that, for twice continuously differentiable payoffs, Assumption 1(iii) is
closely connected to the sign of (A− r)g.

We use the standard Poisson stopping problem (7) as a point of reference in our study.
Indeed, we know from [23] and Remark 1 that under Assumption 1, the value function in (7)
reads as

Vλ0 (x) =
⎧⎨
⎩

g(x), x ≥ yλ,
g(yλ)

ψ r(yλ)
ψ r(x), x ≤ yλ,

(10)

where the level yλ < y∞ is characterized uniquely by the condition

g(yλ)(�r+λψ r)(yλ) =ψ r(yλ)(�r+λg)(yλ).

We close this section with certain technical calculations that will be useful in the later
sections.

Lemma 1. Let λ> 0, and x ∈ I. Then

1. 1

Br

(
(�r+λϕr)(x)(�r(r −A)p)(x) + (�r+λψ r)(x)(�r(r −A)p)(x)

)
= (�r+λp)(x) + λ−1(�r+λ(r −A)p)(x),

1

Br

(
(�r+λϕr)(x)(�r(r −A)p)(x) + (�r+λψ r)(x)(�r(r −A)p)(x)

)
= (�r+λp)(x) + λ−1(�r+λ(r −A)p)(x);
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2. ∣∣∣∣∣∣
p ψ r ϕr

(�r+λp)(�r+λψ r)(�r+λϕr)
(�r+λp)(�r+λψ r)(�r+λϕr)

∣∣∣∣∣∣ (x) = BrBr+λ
λ2 (c(x) + (λ2 − λ)(Rrc)(x)) .

Proof. See Appendix A.

3. Necessary conditions

For brevity, we use from here on the following notation for the relevant resolvents,
fundamental solutions and functionals:

Ra: = Rr+λa , R0: = Rr, ψa: =ψ r+λa
, ϕa: = ϕr+λa

, ψ0: =ψ r, ϕ0: = ϕr,

�a: =�r+λa , �a: =�r+λa , �0: =�r, �0: =�r,

for a = 1, 2.
The purpose of this section is to derive a solution candidate for the problem (8) under

Assumption 1. Since the diffusion X is time homogeneous and the functions g and c are non-
decreasing, we make the working assumption that the optimal policy is a threshold rule with
two constant thresholds x∗ and y∗. The policy is as follows.

(A1) Assume that the agent is maintaining λ1 attention. Let T̂1 be the next N1-arrival time.
If XT̂1 < x∗ then the agent maintains the λ1 rate. If XT̂1 ≥ x∗ then the agent either switches to
rate λ2 or stops. Stopping occurs if XT̂1 ≥ y∗.

(A2) Assume that the agent is maintaining λ2 attention. Let T̂2 be the next N2-arrival time.
If XT̂2 < x∗ then the agent switches to the λ1 rate. If XT̂2 ≥ x∗ then the agent either maintains
the λ2 rate or stops. Stopping occurs if XT̂2 ≥ y∗.

If x∗ > y∗ then the main problem (8) reduces to the Poisson stopping problem (7). We
assume in the following that x∗ < y∗ unless otherwise stated.

Next we construct the value function candidate associated with the strategy described in
(A1) and (A2). Denote as G1 the associated candidate value of future stopping potentiality
while maintaining λ1 attention; function G2 has an analogous definition. Moreover, we denote
as G0 the associated candidate value at the arrival times. We let A∗ = (A∗

n)n≥0 and τ ∗ denote
the attention sequence and the stopping time associated with the strategy described in (A1) and
(A2) when the problem is started at an arrival time. Note that A∗

n and τ ∗ are measurable since
their values are determined by collections of sets of the form {XTm ∈ Bm} ⊆�, where m ≥ 0
and Bm are measurable subsets of the state space I. Looking at the right-hand side of (8), we
get an explicit expression for G0:

G0(x) =Ex

[
e−rτ∗

g(Xτ∗ ) −
∞∑

n=0

e−rTA∗
n c(XTA∗

n
)1(A∗

n = λ2)1(TA∗
n < τ ∗)

]
. (11)

Expressions for G1 and G2 may be obtained analogously. Supposing further that the dynamic
programming principle (DPP) holds for G0 and making use of the memoryless property of the
exponential distribution, we get

G0(x) = max{g(x),G1(x),G2(x)},
G1(x) =Ex

[
e−rU1 G0(XU1 )

]
,

G2(x) =Ex
[
e−rU2 G0(XU2 )

]− c(x),

(12)
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where independent random variables Ua ∼ Exp(λa) for a = 1, 2. It should be noted that in
this section the DPP (12) is used to derive certain necessary conditions (described by the
pair of equations (22)), that an optimal strategy conforming to (A1) and (A2) must satisfy.
In Proposition 1 we prove that there exist three uniquely determined functions satisfying the
DPP (12) and the mentioned necessary conditions. In Section 4 we prove that these three func-
tions coincide with the three value functions defined in (8) and (9), verifying the optimality of
the strategy outlined in (A1) and (A2).

We may write the candidates G1,G2 alternatively as

G1(x) = G0(x) +Ex
[
e−rU1 G0(XU1 )

]− G0(x),

G2(x) = G0(x) +Ex
[
e−rU2 G0(XU2 )

]− c(x) − G0(x).
(13)

Equations (13) are mathematically trivial in relation to (12), but their significance is to highlight
the relations between the candidates conceptually rather than technically. Indeed, keeping in
mind the DPP of (12), condition (13) states that, for i = 1, 2, the candidate Gi is obtained
from G0 by subtracting the loss incurred from being forced to initially wait for an arrival with
attention rate λi. We also have the following equivalence result for the smoothness properties
of G0, G1 and G2.

Lemma 2. Suppose that Assumption 1 holds and the infinitesimal parameter σ 2 satisfies σ 2 ∈
C0(I). Then the conditions G1 ∈ C2(I) and G2 ∈ C2(I) are equivalent to G0 ∈ C0(I).

Proof. Recall that c ∈ C2(I) by our assumptions and note that it follows from (1) and (12)
that

G1(x) =Ex
[
e−rU1 G0(XU1 )

]= λ1(R1G0)(x),

G2(x) =Ex
[
e−rU2 G0(XU2 )

]− c(x) = λ2(R2G0)(x) − c(x).

Representation (2) implies that the mappings (RiG0), i ∈ {1, 2}, are continuously differentiable
so that G1,G2 ∈ C1(I). Calculating the second derivatives gives

G′′
1(x) = λ1

B1

(
ϕ′′

1 (x) (�1G0) (x) +ψ ′′
1 (x) (�1G0) (x)

)− 2λ1

σ 2(x)
G0(x),

G′′
2(x) = λ2

B2

(
ϕ′′

2 (x) (�2G0) (x) +ψ ′′
2 (x) (�2G0) (x)

)− 2λ2

σ 2(x)
G0(x) − c′′(x),

proving the claim.

The rest of this section is devoted to finding an analytical rather than probabilistic expres-
sion for G0 and deriving necessary optimality conditions for x∗ and y∗. By (A1) and (12), we
find that G0(x) = G1(x) = λ1(R1G0)(x) for x< x∗. Now [23, Lemma 2.1] implies that G1 is
r-harmonic for x< x∗. We find similarly that the function x �→ G0(x) + p(x) is r harmonic on
[x∗, y∗). Since we are looking for a candidate that is finite at the lower boundary l, we find that
G0(x) = C1ψ0(x) for x< x∗ and some fixed C1 ∈R+. By (12) we have

λ1C1(R1ψ0)(x) = C1ψ0(x) = λ1C1(R1G0)(x) for x< x∗.

Hence,

C1(�1ψ0)(x∗) = (�1G0)(x∗). (14)
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Let x ∈ [x∗, y∗). Then G0(x) + p(x) = C2ψ0(x) + C3ϕ0(x) for some C2,C3 ∈R+. We can
now expand condition (14) as

C1(�1ψ0)(x∗) =
∫ y∗

x∗
ϕ1(z)(C2ψ0(z) + C3ϕ0(z) − p(z))m′(z) dz + (�1g)(y∗).

Conversely, the condition

λ2(R2(C2ψ0 + C3ϕ0))(x) = C2ψ0(x) + C3ϕ0(x)

= G0(x) + p(x)

= λ2(R2(G0 + p))(x)

holds and it can be rewritten as

ϕ2(x)(�2(C2ψ0 + C3ϕ0))(x∗) +ψ2(x)(�2(C2ψ0 + C3ϕ0))(y∗)

= ϕ2(x)(�2(C1ψ0 + p))(x∗) +ψ2(x)(�2(P))(y∗).

Since the functions ψ2 and ϕ2 are linearly independent on open intervals, the previous equality
yields the pair of equations

(�2(C2ψ0 + C3ϕ0)(y∗) = (�2P)(y∗),

(�2(C2ψ0 + C3ϕ0)(x∗) = (�2(C1ψ0 + p))(x∗). (15)

We see from the considerations above that the candidate G0 contains a total of five unknown
variables (C1,C2,C3, x∗, y∗) that need to be determined. Conditions (14) and (15) contain
three equations and the last two are given by the boundary conditions imposed by the continuity
of G0:

C2ψ0(x∗) + C3ϕ0(x∗) − p(x∗) = C1ψ0(x∗),

C2ψ0(y∗) + C3ϕ0(y∗) = P(y∗). (16)

The system of equations consisting of (14), (15) and (16) can be rewritten as

C1(�1ψ0)(x∗) + C2((�1ψ0)(y∗) − (�1ψ0)(x∗))

+ C3((�1ϕ0)(y∗) − (�1ϕ0)(x∗)) = (�1P)(y∗) − (�1p)(x∗), (17a)

C2(�2ψ0)(y∗) + C3(�2ϕ0)(y∗) = (�2P)(y∗), (17b)

(C2 − C1)(�2ψ0)(x∗) + C3(�2ϕ0)(x∗) = (�2p)(x∗), (17c)

C2ψ0(x∗) + C3ϕ0(x∗) − p(x∗) = C1ψ0(x∗), (17d)

C2ψ0(y∗) + C3ϕ0(y∗) = P(y∗). (17e)

Next we reduce the system (17) to a pair of equations where the only variables are x∗ and
y∗. The constants C2 and C3 can be solved from (17b) and (17e), yielding

C3 = (�2ψ0)(y∗)P(y∗) − (�2P)(y∗)ψ0(y∗)

(�2ψ0)(y∗)ϕ0(y∗) − (�2ϕ0)(y∗)ψ0(y∗)
,

C2 = (�2P)(y∗) − (�2ϕ0)(y∗)C3

(�2ψ0)(y∗)
.

(18)
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Solving for C1 in (17d) gives

C1 = C2 + ϕ0(x∗)

ψ0(x∗)
C3 − p(x∗)

ψ0(x∗)
, (19)

and lastly solving C3 from (17a) and (17c) yields the condition

H1(x∗) = H2(y∗) = f (x∗, y∗), (20)

where

H1(x) = p(x)(�2ψ0)(x) −ψ0(x)(�2p)(x)

ϕ0(x)(�2ψ0)(x) −ψ0(x)(�2ϕ0)(x)
,

H2(x) = P(x)(�2ψ0)(x) −ψ0(x)(�2P)(x)

ϕ0(x)(�2ψ0)(x) −ψ0(x)(�2ϕ0)(x)
,

f (x, y) = ((�2P)(y)/(�2ψ0)(y))(�1ψ0)(y)−(�1P)(y)−(p(x)/ψ0(x))(�1ψ0)(x)+(�1p)(x)

((�2ϕ0)(y)/(�2ψ0)(y))(�1ψ0)(y)−(�1ϕ0)(y)−(ϕ0(x)/ψ0(x))(�1ψ0)(x)+(�1ϕ0)(x)
.

Even though the pair of equations (20) is nonlinear, it can be solved under our assumptions.
We begin by deriving an additional constraint on the pair (20) that rules out degenerate cases,
where the candidate G0 reduces to the value function of the Poisson stopping problem (10).

Lemma 3. If H1(yλ1 ) ≤ H2(yλ1 ) then G0 = Vyλ1

0 and if H1(yλ1 )>H2(yλ1 ) then the thresholds
x∗ and y∗ satisfy x∗ < yλ1 < y∗.

Proof. See Appendix A.

In light of Lemma 3, we now assume that

H1(yλ1 )>H2(yλ1 ) (21)

for the remainder of this section. Despite its technical appearance, condition (21) is closely
connected to the structure of the optimal strategy. We prove in Theorem 2 that choosing to
wait for the next arrival time with λ2 attention is suboptimal for all initial states x ∈ I precisely
when H1(yλ1 ) ≤ H2(yλ1 ). This is in line with the implication of Lemma 3 stating that the value
function candidate G0 coincides with the value function of the Poisson stopping problem (10)
precisely when H1(yλ1 ) ≤ H2(yλ1 ).

To further simplify the pair (20), we can use the condition H1(x∗) = H2(y∗) to separate
the parts depending on x∗ and y∗ in the other equation. Then we end up with the equivalent
necessary conditions

H1(x∗) = H2(y∗),

K1(x∗) = K2(y∗), (22)

where

K1(x) = p(x)

ψ0(x)
(�1ψ0)(x) − (�1p)(x) − H1(x)

(
ϕ0(x)

ψ0(x)
(�1ψ0)(x) − (�1ϕ0)(x)

)
,

K2(x) = (�2P)(x)

(�2ψ0)(x)
(�1ψ0)(x) − (�1P)(x)

− H2(x)

(
(�2ϕ0)(x)

(�2ψ0)(x)
(�1ψ0)(x) − (�1ϕ0)(x)

)
.

https://doi.org/10.1017/apr.2025.10022 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10022


Optimal Stopping with Variable Attention 13

Remark 2. If g ∈ C2(I), we can simplify the functions Hi,Ki further by expressing them in
terms of the generator A. Defining

F2(x) = ϕ0(x)(�2P)(x) − P(x)(�2ϕ0)(x)

ϕ0(x)(�2ψ0)(x) −ψ0(x)(�2ϕ0)(x)

we have the relations

P(x) = H2(x)ϕ0(x) + F2(x)ψ0(x),

(�2P)(x) = H2(x)(�2ϕ0)(x) + F2(x), (�2ψ0)(x),

and, thus,

K2(x) = P(x)

ψ0(x)
(�1ψ0)(x) − (�1P)(x) − H2(x)

(
ϕ0(x)

ψ0(x)
(�1ψ0)(x) − (�1ϕ0)(x)

)
.

Now we can use (5) and (6) to obtain

H1(x) = 1

B0

(
−ψ0(x)

ψ2(x)
(�2(r −A)p)(x) + (�0(r −A)p)(x)

)
,

H2(x) = 1

B0

(
ψ0(x)

ϕ2(x)
(�2(r −A)P)(x) + (�0(r −A)P)(x)

)
,

K1(x) = 1

λ1

(
ϕ1(x)

ψ2(x)
(�2(r −A)p)(x) + (�1(r −A)p)(x)

)
,

K2(x) = 1

λ1

(
−ϕ1(x)

ϕ2(x)
(�2(r −A)P)(x) + (�1(r −A)P)(x)

)
.

Recalling that p(x) = c(x) + λ2(Rrc)(x), we see that in this case the monotonicity properties of
Hi and Ki can be easily determined by studying the behaviour of the functions (r −A)p(x) =
(r + λ2 −A)c(x) and (r −A)g(x).

We now prove some auxiliary results regarding the functions H1, H2, K1 and K2 to study
the solvability of the equation pair (22).

Lemma 4. The functions Hi and Ki have opposite signs of derivative everywhere for i = 1, 2
and the curves H1(x) and H2(x) intersect at least once in the interval (yλ1 ∨ yλ2,c, yλ2 ). We
denote the smallest such intersection point by ŷ. Furthermore,

(i) H1(x)> 0, H′
1(x)> 0, limx↓l H1(x) = 0;

(ii) K1(x)> 0, K′
1(x)< 0, limx↓l K1(x) = ∞;

(iii) H2 is positive and strictly increasing on (yλ2,c, r);

(iv) K2 is positive and strictly decreasing on (yλ2,c, ŷ);

(v) K2(ŷ)>K1(ŷ).

Proof. See Appendix A.

The reader is advised to refer to Figure 1 in order to discern how the functions Hi,Ki will
look under our assumptions in a typical example.
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FIGURE 1. A prototype plot of the functions H1, H2, K1, K2 and the thresholds x∗, y∗, yλ1 , yλ2 .

We can now prove our main proposition about the existence and uniqueness of solutions to
the pair of equations (22).

Proposition 1. Let Assumption 1 hold and suppose that H1(yλ1 )>H2(yλ1 ). Then the pair (22)
has a unique solution (x∗, y∗) such that x∗ ∈ (l, ŷ), y∗ ∈ (yλ2,c, ŷ), and x∗ < yλ1 < y∗.

Proof. See Appendix A.

To close the section, we collect our findings on the solution candidate to the next propo-
sition. The purpose of Proposition 2 is to show that there exist three uniquely determined
functions that satisfy the necessary conditions described by the equation pair (22) and a DPP
of the form (12). In Section 4 we prove that the three functions given by Proposition 2 coincide
with the three value functions defined in (8) and (9).

Proposition 2. Let Assumption 1 hold and suppose that H1(yλ1 )>H2(yλ1 ). Then the functions

K0(x) =

⎧⎪⎨
⎪⎩

g(x), x ≥ y∗,
C2ψ0(x) + C3ϕ0(x) − c(x) − λ2(R0c)(x), x∗ ≤ x< y∗,
C1ψ0(x), x< x∗,

K1(x) = λ1(R1K0)(x),

K2(x) = λ2(R2K0)(x) − c(x),

(23)

where the constants C2,C3 are given by (18), the constant C1 is given by (19), and the
thresholds x∗ and y∗ are given by Proposition 1, satisfy the DPP

K0(x) = max{g(x),K1(x),K2(x)},
K1(x) =Ex

[
e−rU1K0(XU1 )

]
,

K2(x) =Ex
[
e−rU2K0(XU2 )

]− c(x),

(24)
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where independent random variables Ua ∼ Exp(λa) for a = 1, 2. Moreover, the function K0 is
continuous and the functions K1 and K2 are in C2(I) if and only if σ 2 ∈ C0(I).

Proof. See Appendix A.

4. Sufficient conditions

The purpose of this section is to prove the following theorem, which is our main result on
the stopping problem (8).

Theorem 1. Let Assumption 1 hold and suppose that H1(yλ1 )>H2(yλ1 ). Let (x∗, y∗) be the
solution to (22) given by Proposition 1. Then the values (8) and (9) read as V0 =K0, V1 =K1
and V2 =K2, where the functions K0, K1 and K2 are given in Proposition 2. The optimal
policy can be described as follows.

(a) Assume that the agent is maintaining λ1 attention If the process is in the region [y∗, r)
at the next λ1 arrival, stop. If the process is in the region [x∗, y∗) at the next λ1 arrival,
switch to λ2 attention. If the process is in the region (l, x∗) at the next λ1 arrival,
maintain λ1-attention.

(b) Assume that the agent is maintaining λ2 attention. If the process is in the region [y∗, r)
at the next λ2 arrival, stop. If the process is in the region [x∗, y∗) at the next λ2 arrival,
maintain λ2 attention. If the process is in the region (l, x∗) at the next λ2 arrival, switch
to λ1 attention.

Remark 3. Recall that Vλ2
0 is the value of the Poisson stopping problem (7) with arrival rate λ2

and the representation (10) holds under Assumption 1. The cost c is a nonnegative function so
it follows from the first paragraph in the proof of Lemma 3 that (using the proof’s notation)

K0(x) = V0(x) ≤ supA supτ∈SA
0
Ex
[
e−rτg(Xτ )

]= G0,0(x) = Vλ2
0 (x).

We need the following result on uniform integrability to prove Theorem 1.

Lemma 5. For a fixed attention sequence A, the process

SA = (SA
n ; GA

n )n≥0,

SA
n = e−rTA

n K0(XTA
n

) −
∞∑

n=0

e−rTA
n c(XTA

n
)1(An = λ2)1(TA

n < τ )

is a uniformly integrable supermartingale.

Proof. Fix the attention sequence A and let Ua ∼ Exp(λa), a ∈ {1, 2}. Then

K0(x) ≥ max{K1(x),K2(x)}
=K1(x)1(A0 = 1) +K2(x)1(A0 = 2)

=Ex
[
e−rU1K0(XU1 )1(A0 = 1) + (e−rU2K0(XU2 ) − c(x)

)
1(A0 = 2)

]
.

Hence, SA has the claimed supermartingale property.

To prove uniform integrability, define the process

LA =
(

LA
n ;GA

n

)
n≥0

, LA
n = e−rTA

n
ψ0(XTA

n
)

ψ0(x)
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Since the boundary r is natural, we find that

Ex[LA
1 ] = 1

ψ0(x)
Ex
[
e−rU2ψ0(XU2 )1(A0 = 2) + e−rU1ψ0(XU1 )1(A0 = 1)

]= 1.

This implies that Ex[LA
n ] = 1 for all n. Define now the measure

P
A
x,n(B) =Ex[LA

n 1(B)] for B ∈F .

By Remark 3 we find that

0 ≤ Ex[SA
n 1(B)]

ψ0(x)

≤Ex

[
K0(XTA

n
)

ψ0(XTA
n

)
LA

n 1(B)

]

≤Ex

[
g(yλ2 )

ψ0(yλ2 )
LA

n 1(B)1(XTA
n

≤ yλ2 )

]
+Ex

[
g(XTA

n
)

ψ0(XTA
n

)
LA

n 1(B)1(XTA
n

≥ yλ2 )

]

≤ g(y∞)

ψ0(y∞)
P

A
x,n(B) (25)

for all B ∈F . By taking B =�, we find that supn Ex[SA
n ]<∞. On the other hand, we

observe that if Px(B) → 0 then P
A
x,n(B) → 0 for all n ≥ 0. Thus, inequality (25) implies that

supn Ex[SA
n 1(B)] → 0 as Px(B) → 0. This yields the claimed uniform integrability.

Proof of Theorem 1. Fix the attention sequence A and let Ua ∼ Exp(λa), a ∈ {1, 2}. Then
optional sampling implies that

K0(x) ≥Ex

[
e−rτK0(Xτ ) −

∞∑
n=0

e−rTA
n c(XTA

n
)1(An = λ2)1(TA

n < τ )

]

≥Ex

[
e−rτg(Xτ ) −

∞∑
n=0

e−rTA
n c(XTA

n
)1(An = λ2)1(TA

n < τ )

]
for all τ ∈ SA

0 .

This implies that K0 ≥ VA
0 for all A and, consequently, K0 ≥ V0.

To prove the opposite inequality, we consider the admissible stopping/switching rule that
produced the candidate K0. Denote the associated (random) attention sequence as A∗ and the
stopping time as τ ∗ ∈ SA∗

0 . To prove the results, we show that the stopped process

Q = (Qn; GA∗
n )n≥0,

Qn = e−r(τ∗∧Tn)K0(Xτ∗∧Tn ) −
∞∑

n=0

e−rTA∗
n c(XTA∗

n
)1(A∗

n = λ2)1(TA∗
n < τ ∗ ∧ Tn)

is a martingale. To this end, let n ≥ 1. Then

Ex

[
Qn | GA∗

n−1

]
=Ex

[
SA∗

n 1(τ ∗ ≥ TA∗
n ) | GA∗

n−1

]
+

n−1∑
k=0

SA∗
k 1(τ ∗ = TA∗

k ).
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Consider the first term on right-hand side: by the strong Markov property and the dynamic
programming equation (24), we find that

Ex

[
SA∗

n 1(τ ∗ ≥ TA∗
n ) | GA∗

n−1

]
=
{

e−rTA∗
n−1EX

TA∗
n−1

[
e−rU1K0(XU1 )1(A∗

n−1 = 1)

+
(

e−rU2K0(XU2 ) − c(XTA∗
n−1

)
)

1(A∗
n−1 = 2)

]

−
n−1∑
k=0

e−rTA∗
k c(XTA∗

k
)1(A∗

k = λ2)

}
1(τ ∗ ≥ TA∗

n )

=
{

e−rTA∗
n−1

(
K1(XTA∗

n−1
)1(A∗

n−1 = 1) +K2(XTA∗
n−1

)1(A∗
n−1 = 2)

)

−
n−1∑
k=0

e−rTA∗
k c(XTA∗

k
)1(A∗

k = λ2)

}
1(τ ∗ ≥ TA∗

n ).

Thus, we obtain

Ex[Qn|GA∗
n−1] = SA∗

n−11(τ ∗ ≥ TA∗
n ) +

n−1∑
k=0

SA∗
k 1(τ ∗ = TA∗

k ) = Qn−1

and optional sampling on Q with respect to τ ∗ gives

K0(x) =Ex

[
e−rτ∗K0(Xτ∗ ) −

∞∑
n=0

e−rTA∗
n c(XTA∗

n
)1(A∗

n = λ2)1(TA∗
n < τ ∗)

]

=Ex

[
e−rτ∗

g(Xτ∗ ) −
∞∑

n=0

e−rTA∗
n c(XTA∗

n
)1(A∗

n = λ2)1(TA∗
n < τ ∗)

]
.

On the other hand, A∗ is an admissible attention sequence and τ ∗ ∈ SA∗
0 so we have the

inequality K0 ≤ supA VA
0 = V0, proving that K0 = V0.

Next we prove K1 = V1 and K2 = V2. Conditions (24) and optional sampling imply that,
for a fixed A,

K1(x) = λ1(R1K0)(x)

≥Ex

[
e−rτg(Xτ ) −

∞∑
n=0

e−rTA
n c(XTA

n
)1(An = λ2)1(TA

n < τ )

]
for all τ ∈ SA

1 .

Consequently K1 ≥ V1. To prove the opposite inequality, let τ ∗ and A∗ be as before. Recall
that if τ and A are an admissible stopping time and an attention sequence for V0, then U1 + τ ◦
θU1 and (1, A) are admissible for V1. Here θ denotes the usual shift operator that acts on the
process X as θU1 (Xt) = XU1+t. Let τ 1 = U1 + τ ∗ ◦ θU1 and A1 = (1, A∗). Conditioning on the
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first arrival time and using the strong Markov property yields

K1(x) =Ex

[
e−rU1EXU1

[
e−rτ∗

g(Xτ∗ ) −
∞∑

n=0

e−rTA∗
n c(XTA∗

n
)1(A∗

n = λ2)1(TA∗
n < τ ∗)

]]

=Ex

[
e−rτ 1

g(Xτ 1 ) −
∞∑

n=0

e−rTA1
n c(X

TA1
n

)1(A1
n = λ2)1(TA1

n < τ 1)

]
,

and since the stopping time and attention sequence associated with K1 are admissible for
V1, we have K1 ≤ supA VA

1 = V1 and, hence, K1 = V1. The proof of K2 = V2 is completely
analogous.

The following theorem presents an easily verifiable condition determining whether the main
problem (8) reduces to the Poisson stopping problem (10). It also gives further clarification for
the assumption H1(yλ1 )>H2(yλ1 ) made in Section 3. There the condition was shown to be
connected to the order of the thresholds x∗ and y∗. Here the proof of Theorem 2 indicates that
H1(yλ1 ) ≤ H2(yλ1 ) if and only if waiting with the higher attention rate is suboptimal everywhere
in the state space I.

Theorem 2. The function V0 = Vλ1
0 if and only if λ2(R2(Vλ1

0 + p))(yλ1 ) ≤ Vλ1
0 (yλ1 ) + p(yλ1 )

and the inequality is equivalent to H1(yλ1 ) ≤ H2(yλ1 ), where Hi are given by (22).

Proof. Let V0 = Vλ1
0 . Waiting with λ2 attention is always suboptimal so

λ2(R2(Vλ1
0 + p))(x) ≤ Vλ1

0 (x) + p(x) for all x ∈ I.

Now suppose that the inequality holds for x = yλ1 . Noting that a2(x)ϕ2(x) = −b(x)ψ2(x) for
all x ∈ I, we get

λ2(R2(Vλ1
0 + p))(yλ1 ) ≤ Vλ1

0 (yλ1 ) + p(yλ1 )

⇔ λ2

B2

(
ϕ2

(
�2

(
g(yλ1 )

ψ0(yλ1 )
+ p

))
+ψ2(�2P)

)
(yλ1 ) ≤ P(yλ1 )

⇔ (ϕ2(�2p) +ψ2(�2P)) (yλ1 ) ≤
(

B2

λ2
P − g

ψ0
(�2ψ0)ϕ2

)
(yλ1 )

⇔
(

p

ψ0
(�2ψr) − (�2p)

)
(yλ1 )ϕ2(yλ1 ) ≥

(
(�2P) − P

ψ0
(�2ψ0)

)
(yλ1 )ψ2(yλ1 )

⇔ H1(yλ1 ) ≤ H2(yλ1 ).

Now Lemma 3 implies that Vλ1
0 satisfies the DPP

Vλ1
0 = max{g, λ1(R1Vλ1

0 ), λ2(R2(Vλ1
0 + p)) − p}.

We can employ the same arguments as in the proof of Lemma 5 and Theorem 1 to show
that Vλ1

0 ≥ VA
0 for any fixed attention sequence A and, consequently, that Vλ1

0 ≥ V0. But the

optimal stopping rule corresponding to Vλ1
0 is admissible for V0 as well, so Vλ1

0 ≤ V0 and, thus,

Vλ1
0 = V0.
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5. A note on asymptotics

In this section we briefly discuss various asymptotic properties of the stopping problem (8).
We recall the proof of Lemma 3, where it was stated that if c is the cost function of the main
problem (8) and α ≥ 0, then αc is the cost function of another similar problem. It was also
proven that in the vanishing period cost limit, i.e. when α = 0 (or c is identically zero), we
have V0 = Vλ2

0 meaning that the problem (8) reduces to the usual Poisson stopping problem (7)
with attention rate λ2. On the other hand, if c is not identically zero then there exists a critical
value αc for the scaling coefficient α, such that the problem (8) reduces to the Poisson stopping
problem (7) with attention rate λ1. A natural interpretation for these reduction results is that
if choosing the attention rate λ2 results in a nonzero period cost, then it is optimal to choose
the smaller but free attention rate λ1 far away from the stopping region. In this case removing
the period cost outweighs the opportunity cost that results from choosing the smaller attention
rate. On the other hand, if the period cost is sufficiently large, the cost of choosing the higher
attention rate λ2 will outweigh its benefits.

It is also interesting to study the asymptotic properties of the problem with respect to the
attention rates. Recalling the analysis of Sections 3 and 4, we have by monotone convergence
limλ1↓0 K1 = 0 and limλ2↓0 K2 = −c. Thus, limλ1↓0 V0 = Vλ2,c

0 and limλ2↓0 V0 = Vλ1
0 , where

Vλ2,c
0 = max{g,K2}. Here Vλ2,c

0 may also be shown to be the value function of a Poisson
stopping problem with an attention rate λ2 and a cost function c by utilizing the verification
arguments of Section 4. We also have limλ1↑λ2 V0 = Vλ2

0 since at the limit the agent can choose
to stop or to continue with either a free or a costly attention rate λ2, the last option being always
suboptimal.

In order to determine the limit limλ1↑∞ V0 we have to remove the assumption λ1 <λ2. Let
Ṽ be the value function of the optimal stopping problem in continuous time, i.e.

Ṽ(x) = supτ∈T Ex
[
e−rτg(Xτ )1{τ<∞}

]
, (26)

where x ∈ I and T is the set of stopping times of X. Here, V0 ≥ max{Vλ1
0 , Vλ2,c

0 } and

Assumption 1, Remark 1 and Proposition 2.6 in [23] imply that limλ1↑∞ Vλ1
0 = Ṽ and Vλ2,c

0 ≤
Vλ2

0 ≤ Ṽ , so limλ1↑∞ V0 ≥ Ṽ . But Ṽ is an r-excessive majorant of g, so V0 ≤ Ṽ for all positive
λ1. Thus, limλ1↑∞ V0 = Ṽ . The result is intuitively clear, since letting λ1 ↑ ∞ allows the agent
to get rid of the period cost and the Poisson constraint at the same time.

Determining the last limit limλ2↑∞ V0 is not so straightforward. At the limit, an agent may
either choose to stop, continue with free Poisson arrivals having an attention rate λ1, or con-
tinue in continuous time while paying a running cost c. This is a completely different type of
problem since the optimal stopping strategy may be a mixture of Poisson and continuous-time
stopping strategies. As such, the problem lies beyond the scope of the present paper and is
therefore left for future research.

6. Illustration

We illustrate the general results obtained in the previous sections with two examples. In
the first example the underlying is taken to be a GBM and the period cost is assumed to be
proportional to the state of the process. In the second example we study a logistic diffusion
process with a fixed period cost.
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6.1. Geometric Brownian motion and proportional period cost

In this example we assume that the underlying is a GBM, the payoff is g(x) = xθ − η, where
0< θ < 1<η, and the period cost is c(x) = kx where k> 0. The infinitesimal generator of the
diffusion reads as

A= 1

2
σ 2x2 d2

dx2
+μx

d

dx
,

where μ ∈R+ and σ ∈R+ are given constants. we make the additional assumption that r>μ.
Furthermore, the scale density and the density of the speed measure read as

S′(x) = x−2μ/σ 2
, m′(x) = 2

σ 2
x(2μ/σ 2)−2.

Denote

βi = 1

2
− μ

σ 2
+
√√√√( 1

2
− μ

σ 2

) 2

+ 2(r + λi)

σ 2
,

αi = 1

2
− μ

σ 2
−
√√√√( 1

2
− μ

σ 2

) 2

+ 2(r + λi)

σ 2
.

Then the minimal r-excessive functions for X read as

ψi(x) = xβi , ϕi(x) = xαi .

It is worth emphasizing that now βi > 1> θ > 0>αi and it is a straightforward exercise to
show that the conditions of Assumption 1 are satisfied.

Since the payoff is twice continuously differentiable everywhere, we can write the pair of
equations as in Remark 2. The auxiliary functionals

(�i(r + λ2 −A)c)(x) = 2k(r + λ2 −μ)

σ 2(βi − 1)
x1−βi ,

(�i(r + λ2 −A)c)(x) = 2k(r + λ2 −μ)

σ 2(1 − αi)
x1−αi ,

(�i(r −A)g)(x) = 2

σ 2

(
r −μθ − σ 2

2 θ (θ − 1)

βi − θ
xθ−βi − rη

βi − 1
x−βi

)
,

(�i(r −A)g)(x) = 2

σ 2

(
r −μθ − σ 2

2 θ (θ − 1)

θ − α
xθ−αi − rη

1 − αi
x−αi

)

can be used to write an explicit form for the equation pair.
Next we investigate the condition H1(yλ1 )>H2(yλ1 ) that guarantees that our solution does

not reduce to a Poisson stopping problem with rate λ1. We know from Theorem 2 that this
condition is equivalent to λ2(R2(Vλ1

0 + p)(yλ1 ) ≥ g(yλ1 ) + p(yλ1 ). Expanding the resolvent with
the help of (2) and using the resolvent identity (4) on the period cost terms, we see that the
stated condition is equivalent to

λ2

B2
ψ0(yλ1 )

(
�2

(
g − g(yλ1 )

ψ0(yλ1 )
ψ0

))
(yλ1 ) ≥ c(yλ1 ),
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FIGURE 2. Optimal thresholds as a function of attention rate λ1. The other parameters are chosen to be
μ= 0.02, σ = √

0.3, r = 0.05, k = 0.001, λ2 = 4.0, θ = 0.67, η= 1.5.

where yλ1 is the unique root of the equation ψ0(yλ1 )(�1g)(yλ1 ) = g(yλ1 )(�1ψ0)(yλ1 ) and it can
be calculated to be

yλ1 =
(
β0(β1 − θ )

β1(β0 − θ )
η

)1/θ

.

If the proportional period cost parameter k exceeds the critical value

k∗ = λ2

B2yλ1
ψ0(yλ1 )

(
�2

(
g − g(yλ1 )

ψ0(yλ1 )
ψ0

))
(yλ1 )

= 2λ2ηβ0(β2 − β1)

B2σ 2yλ1β1β2(β2 − β0)(β2 − θ )
,

then V0 = Vλ1
0 and the problem reduces to the standard Poisson stopping problem. The value

k∗ has a natural interpretation in terms of the cost parameters η and k. Since θ ∈ (0, 1), η > 1
and k∗ is always positive when λ1 <λ2, we find that increasing η or k enough will reduce the
problem to Poisson stopping when other parameters are fixed. Indeed, increasing either cost
parameter results in a smaller realized payoff when the process is stopped.

Regarding the attention rates, we find that if λ1 = λ2 then k∗ = 0 and the problem reduces
to the standard Poisson stopping problem. Likewise, because yλ1 is increasing in λ1, we see
that increasing λ1 will decrease k∗ and make the agent less likely to swap to λ2. This is again
in line with the intuition that it is never optimal to swap to λ2 and pay the cost c(x) if the rate
λ1 is high enough. These observations are further illustrated in Figures 2 and 3. In Figure 2
we see that there exists a critical threshold λ̂1 for the attention rate λ1, where eventually the
optimal thresholds x∗, y∗ and yλ1 are the same (in this case about 2.6). When λ1 < λ̂1, the
optimal strategy is to switch to higher attention rate, but when λ1 > λ̂1, switching is always
suboptimal. In Figure 3 we see a rather similar situation. In this case if λ2 is below the critical
threshold λ̂2 (about 1.15 in the figure), it is suboptimal to switch, but when λ2 is above the
threshold, we see that switching is optimal.
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FIGURE 3. Optimal thresholds as a function of attention rate λ2. The other parameters are chosen to be
μ= 0.02, σ = √

0.3, r = 0.05, k = 0.001, λ1 = 1.0, θ = 0.67, η= 1.5.

The effects of r, μ and σ are not as direct and straightforward to see, but differentiations
show that their effects are not linear, and instead usually for high and low values of these
parameters the problem tends to reduce to Poisson stopping with attention rate λ1.

6.2. Logistic diffusion

Let the underlying follow a standard logistic diffusion driven by the stochastic differential
equation

dXt =μXt(1 − γXt)dt + σXtdWt, X0 = x ∈R+,

where μ, γ, σ > 0. The scale density and the density of the speed measure read as

S′(x) = x−2μ/σ 2
e2μγ x/σ 2

, m′(x) = 2

σ 2
x(2μ/σ 2)−2e−2μγ x/σ 2

.

The minimal r-excessive functions are

ϕr(x) = xαU
(
α, 1 + α − β,

2μγ

σ 2
x
)
, ψr(x) = xαM

(
α, 1 + α− β,

2μγ

σ 2
x
)
,

where M and U denote, respectively, the confluent hypergeometric functions of first and second
kind and

α = 1

2
− μ

σ 2
+
√√√√( 1

2
− μ

σ 2

) 2

+ 2r

σ 2
,

β = 1

2
− μ

σ 2
−
√√√√( 1

2
− μ

σ 2

) 2

+ 2r

σ 2
.
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TABLE 1. Optimal thresholds with various attention rates. The other parameters are chosen to be μ=
0.01, σ = √

0.1, r = 0.05, γ = 0.5, k = 0.01 and η= 2.0.

λ1 = 0.05 λ1 = 0.1 λ1 = 0.5

λ2 = 1.0 x∗ = 0.87, y∗ = 3.59 x∗ = 1.01, y∗ = 3.60 x∗ = 1.81, y∗ = 3.65
λ2 = 2.0 x∗ = 0.95, y∗ = 3.62 x∗ = 1.10, y∗ = 3.65 x∗ = 1.78, y∗ = 3.75

TABLE 2. Optimal thresholds with various costs for higher attention rate. The other parameters are chosen
to be μ= 0.01, σ = √

0.1, r = 0.05, γ = 0.5, λ1 = 0.1, λ2 = 1.0 and η= 2.0.

k = 0.001 k = 0.01 k = 0.1

x∗ = 0.88, y∗ = 3.80 x∗ = 1.01, y∗ = 3.60 x∗ = 2.21, y∗ = 2.67

We choose the payoff to be linear g(x) = x − η, η ∈R
+ and the cost to be constant c(x) = k ∈

R
+.
Unfortunately, due to the complicated nature of the minimal r-excessive functions in this

example, the integral functionals such as (�r+λlψ0)(x) and (�r+λl P)(x) cannot be calculated
explicitly. Consequently, the pair of equations for the optimal thresholds cannot be simplified
from their original integral forms in any meaningful way, and are thus left unstated. Hence, we
demonstrate the results numerically.

In Table 1 we demonstrate how the optimal thresholds behave when the attention rates λ1
and λ2 are changed. We observe that increasing the rate λ2 increases the stopping threshold y∗,
but interestingly the switching threshold x∗ can increase or decrease. In Table 2 the effect of
increasing the constant cost of higher attention rate is studied. As is intuitively clear, increasing
the cost postpones the switching decision by increasing threshold x∗.

Appendix A. Proofs of technical results

A.1. Proof of Lemma 1

(i) We present a proof for the first condition, the second one is completely analogous. Using
(5) and (6) yields

1

Br

(
(�r+λϕr)(x)(�r(r −A)p)(x) + (�r+λψ r)(x)(�r(r −A)p)(x)

)
= 1

λBrS′(x)2
(ψ ′

r(x)ϕr(x) −ψ r(x)ϕ′
r(x))(ψ ′

r+λ(x)p(x) −ψ r+λ(x)p′(x))

= (�r+λp)(x) + λ−1(�r+λ(r −A)p)(x).

(ii) A straightforward calculation yields∣∣∣∣∣∣
p ψ r ϕr

(�r+λp)(�r+λψ r)(�r+λϕr)
(�r+λp)(�r+λψ r)(�r+λϕr)

∣∣∣∣∣∣ (x)

= p(x)

λ2S′(x)2

(
(ψ ′

rϕr −ψ rϕ
′
r)(ψ ′

r+λϕr+λ −ψ r+λϕ′
r+λ)
)

(x)
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−
((

(�r+λp)

λS′ ψ r+λ + (�r+λp)

λS′ ψ r+λ
)

(ψ ′
rϕr −ψ rϕ

′
r)

)
(x)

= BrBr+λ
λ2 (p(x) − λ(Rr+λp)(x))

= BrBr+λ
λ2 (c(x) + λ2(Rrc)(x) − λ(Rr+λc)(x))

− BrBr+λ
λ2

λλ2(Rr+λRrc)(x)

= BrBr+λ
λ2 (c(x) + (λ2 − λ)(Rrc)(x)) ,

where the first equality follows by using (5) and (6), and the second equality is obtained
by recalling the representations (2) and (3) for the resolvent and the Wronskian. The
third equality follows from the definition of p and the last step is achieved by apply-
ing the resolvent equation (4). In particular, we may use (5) and (6) on (�r+λψ r) and
(�r+λϕr) because

lim
x↓l

ϕr(x)

ϕr+λ(x)
= lim

x↑r
ψ r(x)

ψ r+λ(x)
= 0

by the proof of Lemma 2.1 in [23]. The said proof contains the result
limx↑r ψ r(x)/ψ r+λ(x) = 0 for the choice r= ∞, but proving the condition for some
other r ∈R or the condition limx↓l ϕr(x)/ϕr+λ(x) = 0 is completely analogous.

A.2. Proof of Lemma 3

We introduce a nonnegative scaling coefficient on the cost function in order to prove the
result. Let α ≥ 0. Since c ∈ L1

r (I), we also have that αc ∈ L1
r (I). Let

G2,α(x) =Ex

[
e−rUλ2 G0,α(XUλ2 )

]
− αc(x),

G0,α(x) = max{g(x),G1(x),G2,α(x)},
and let x∗

α, y∗
α be the corresponding thresholds. Here G0,α is continuous with respect to α so x∗

α

and y∗
α are continuous functions of α as well. We naturally have

G0,0(x) = max{max{g(x), λ1(R1G0,0)(x)},max{g(x), λ2(R2G0,0)(x)}} for all x ∈ I.

Under Assumption 1, the Poisson stopping problem (10) satisfies the DPP Vλ1
0 =

max{g, λ1(R1G0,0)} (see Remark 1 and the proof of [23, Theorem 1.1]). Thus, G0,0 =
max{Vλ1

0 , Vλ2
0 }. On the other hand, we assumed that λ1 <λ2 so that g(yλ1 )/ψ0(yλ1 )<

g(yλ2 )/ψ0(yλ2 ) and, consequently, Vλ1
0 ≤ Vλ2

0 . Thus, G0,0 = Vλ2
0 , meaning that limα↓0 x∗

α = lg
and y∗

0 = yλ2 .

Next we show that there exists a critical value αc > 0 for the scale such that G0,α = Vλ1
0

for α ≥ αc and x∗
α < yλ1 < y∗

α for α < αc. To see this, note that, for all x ∈ I, G2,α(x) is
strictly decreasing with respect to α with limα↑∞ G2,α(x) = −∞. Consequently, x∗

α is strictly
increasing and y∗

α is strictly decreasing with respect to α and limα↑∞ G0,α = Vλ1
0 .

Consider now a critically scaled (i.e. the cost function is αcc) version of the pair (20). We
know that x∗

αc
= yλ1 = y∗

αc
and it is an easy exercise to show that H2(yλ1 ) = f (yλ1, yλ1 ). The
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remaining equation H1(yλ1 ) = H2(yλ1 ) yields an expression for the critical scale,

αc =
g(yλ1 )(�2ψ0)(yλ1 ) −ψ0(yλ1 )(�2g)(yλ1 )

ϕ0(yλ1 )(�2ψ0)(yλ1 ) −ψ0(yλ1 )(�2ϕ0)(yλ1 )

H1(yλ1 ) − p(yλ1 )(�2ψ0)(yλ1 ) −ψ0(yλ1 )(�2p)(yλ1 )

ϕ0(yλ1 )(�2ψ0)(yλ1 ) −ψ0(yλ1 )(�2ϕ0)(yλ1 )

,

from which we can conclude that

αc ≷ 1 ⇔ H1(yλ1 ) ≷ H2(yλ1 ).

The result follows since G0 = G0,1, x∗ = x∗
1 and y∗ = y∗

1.

A.3. Proof of Lemma 4

We may write the condition (21) as H1(yλ1 )>H2(yλ1 ) and if yλ1 < yλ2,c then H2(yλ2,c) =
0<H1(yλ2,c). On the other hand, a direct calculation shows that H1(yλ2 ) − H2(yλ2 )< 0 if and
only if ∣∣∣∣∣∣

p ψ0 ϕ0
(�2p)(�2ψ0)(�2ϕ0)
(�2p)(�2ψ0)(�2ϕ0)

∣∣∣∣∣∣ (yλ2 )> 0, (27)

which follows from Lemma 1(ii). Recalling that yλ2,c ≤ yλ2 , we see that Hi (i = 1, 2) have
opposite order at yλ1 ∨ yλ2,c and yλ2 . Consequently, by continuity the curves H1(x) and H2(x)
must intersect at least once in the interval (yλ1 ∨ yλ2,c, yλ2 ). Next we prove parts (i)–(v) of
Lemma 4.

Part (i): H1 is positive everywhere in I since p/ψ0 and ϕ0/ψ0 are strictly decreasing.
Standard differentiation and conditions λ2(R2ψ0)(x) =ψ0(x) and λ2(R2ϕ0)(x) = ϕ0(x) imply
that the inequality H′

1(x)> 0 follows by the first equation of Lemma 1(i). At the lower boundary
of I we get

lim
x↓l H1(x) = lim

x↓l
(p/ψ0)

′ (x)

(ϕ0/ψ0)
′ (x)

= lim
x↓l B−1

0 (�0(r + λ2 −A)c)(x) = 0,

where the last equality follows since c, (r −A)c ∈ L1
r (I) by Assumption 1.

Part (ii): conditions (5), (6) and Lemma 1 imply that the inequality K1(x)> 0 is equivalent
to

c(x)

ψ2(x)
(�2ϕ1)(x) + (�1c)(x)> 0,

which holds by the nonnegativity of c. We also have

K′
1(x) = −

(
(�2ϕ0)(x)

(�2ψ0)(x)
(�1ψ0)(x) − (�1ϕ0)(x)

)
H′

1(x),

so that K′
1(x)< 0 follows from part (i). Moreover, defining a function F1 : I →R+ by

F1(x) = ϕ0(x)(�2p)(x) − p(x)(�2ϕ0)(x)

ϕ0(x)(�2ψ0)(x) −ψ0(x)(�2ϕ0)(x)
,
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we can write K1 as

K1(x) = H1(x)(�1ϕ0)(x) + F1(x)(�1ψ0)(x) − (�1p)(x).

Consequently, the limit of K1 at the lower boundary of the state space can be seen to be

lim
x↓l K1(x) = lim

x↓l ((�1ϕ0)(x)B−1
0 (�0(r −A)p)(x) + (�1ψ0)(x)B−1

0 (�0(r −A)p)(x)

− (�1(r −A)p)(x))

= lim
x↓l

1

λ1B0
(�1(r −A)p)(x)

= lim
x↓l

1

λ1B0

(
c′(x)ϕ1(x) − c(x)ϕ′

1(x)

S′(x)
+ (λ2 − λ1)(�1c)(x)

)
=∞.

In the above calculation, the second equality follows from Lemma 1 and the last equality is true
because c is nondecreasing, l is a natural boundary (which implies that limx↓l ϕ′

1(x)/S′(x) =
∞), and λ1 <λ2.

Part (iii): by Assumption 1 we know that H2 > 0 at least on the interval (yλ2,c, r).
Assumption 1(iii) implies that H2 is strictly increasing on this interval, because H2 can be
written as

H2(x) = (�2ψ0)(x)(�2P)(x) − (�2P)(x)(�2ψ0)(x) + (�2ψ0)(x)((P(x) − λ2(R2P)(x))/ϕ2(x))

(�2ψ0)(x)(�2ϕ0)(x) − (�2ϕ0)(x)(�2ψ0)(x)
,

and thus,

d

dx
((�2ψ0)(x)(�2ϕ0)(x) − (�2ϕ0)(x)(�2ψ0)(x)) = 0,

d

dx
((�2ψ0)(x)(�2P)(x) − (�2P)(x)(�2ψ0)(x))

= −P(x) − λ2(R2P)(x)

ϕ2(x)

d

dx
(�2ψ0)(x),

so that the monotonicity of H2 is determined by the monotonicity of (P − λ2(R2P))/ϕ2. Using
the resolvent identity (4) on p gives the form used in Assumption 1(iii).

Parts (iv) and (v): we have

lim
ε↓0

K2(x + ε) − K2(x)

ε
= −
(

(�2ϕ0)(x)

(�2ψ0)(x)
(�1ψ0)(x) − (�1ϕ0)(x)

)
lim
ε↓0

H2(x + ε) − H2(x)

ε

and similarly for limε↓0 ε
−1(K2(x) − K2(x − ε)). The monotonicity of K2 follows by part (iii).

Finally, we may prove part (v) and the positivity of K2 on (yλ2,c, ŷ) simultaneously with the
help of parts (ii) and (iv). Indeed, ŷ ≥ yλ1 implies that

K2(ŷ) − K1(ŷ) = H2(ŷ)(�1ψ0)(ŷ)

(
ϕ0(ŷ)

ψ0(ŷ)
− (�2ϕ0)(ŷ)

(�2ψ0)(ŷ)

)

+ (�1ψ0)(ŷ)

(
(�2p)(ŷ)

(�2ψ0)(ŷ)
− p(ŷ)

ψ0(ŷ)

)
− (�1g)(ŷ) + g(ŷ)

ψ0(ŷ)
(�1ψ0)(ŷ)
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= (�1ψ0)(ŷ)

(
g(ŷ)

ψ0(ŷ)
− (�1g)(ŷ)

(�1ψ0)(ŷ)

)

> 0,

and we know that K1(ŷ)> 0 by part (ii). Now the monotonicity of K2 on (yλ2,c, ŷ) implies that
K2 is positive on this interval as well.

A.4. Proof of Proposition 1

The proof is divided into four parts that we label (i), (ii), (iii) and (iv). In part (i) we construct
a certain auxiliary function � and show that there is a correspondence between solutions to
(22) and fixed points of �. In part (ii) we show that � has a fixed point and in part (iii) the
fixed point is found to be unique. We prove that the obtained solution (x∗, y∗) to (22) satisfies
x∗ < yλ1 < y∗ in part (iv).

1. The function H1 is strictly increasing on (l, ŷ) and, by Assumption 1, H2 is strictly
increasing on (yλ2,c, ŷ). We also have H1(l) = 0 = H2(yλ2,c) and H1(ŷ) = H2(ŷ), so
that H−1

2 is continuous and strictly increasing on (0,H1(ŷ)) and (H−1
2 ◦ H1): [l, ŷ] →

[yλ2,c, ŷ] is a well-defined, continuous and strictly increasing function. The monotonic-
ity properties of K1 imply that K−1

1 is positive, continuous and strictly decreasing
everywhere on I. The ordering K1(ŷ)<K2(ŷ)<K2(yλ2,c)<K1(l) now implies that the
restriction of (K−1

1 ◦ K2) to [yλ2,c, ŷ] is a well-defined, continuous, strictly increasing
function with the codomain [l, ŷ]. Thus, the mapping � defined by

�(x) = (K−1
1 ◦ K2 ◦ H−1

2 ◦ H1)(x)

is a well-defined, continuous, strictly increasing function � : [l, ŷ] → [l, ŷ].
Differentiating � yields

lim
ε↓0

�(x + ε) − �(x)

ε
= (((�2ϕ0)/(�2ψ0))(�1ψ0) − (�1ϕ0))((H−1

2 ◦ H1)(x))

(((�2ϕ0)/(�2ψ0))(�1ψ0) − (�1ϕ0))(�(x))
> 0,

and limε↓0 ε
−1(�(x) − �(x − ε)) gives the same result. Thus, � ∈ C1(I) even though

H2,K2 ∈ C0(I). It is also evident that �′(x)> 0 for all x ∈ I. We now see that the pair
(22) has a solution (x∗, y∗) with x∗ ∈ [l, ŷ), y∗ ∈ ([yλ2,c, ŷ) if and only if x∗ is a fixed
point of the mapping � and y∗ = (H−1

2 ◦ H1)(x∗). Thus, it suffices to prove that � has a
unique fixed point x∗ ∈ (l, ŷ).

2. First note that �(ŷ)< ŷ since H1(ŷ) = H2(ŷ), K1(ŷ)<K2(ŷ) and K1 is strictly decreasing.
We also have �(l)> l because (H−1

2 ◦ H1)(l) = yλ2,c and K2(yλ2,c)<K1(l). Combining
these observations with the monotonicity of � implies that � must have a fixed point
x∗ ∈ (l, ŷ). Moreover, it is given by limn↑∞ �n(ŷ).

3. We continue by proving x∗ < y∗ = (H−1
2 ◦ H1)(x∗) as an intermediate step. Note that if

yλ1 ≤ yλ2,c then H1(x)>H2(x) for x ∈ [yλ2,c, ŷ) and, consequently, x∗ < (H−1
2 ◦ H1)(x∗).

Now suppose that yλ1 > yλ2,c. We have H2(yλ2,c) = 0<H1(yλ2,c). If H1 and H2 do
not intersect on (yλ2,c, yλ1 ), then again H1(x)>H2(x) for x ∈ [yλ2,c, ŷ) and x∗ < (H−1

2 ◦
H1)(x∗). Now suppose that H1 and H2 do intersect on (yλ2,c, yλ1 ) and denote the largest
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such intersection point as y̆. We have

K2(y̆) − K1(y̆) = (�1ψ0)(y̆)

(
g(y̆)

ψ0(y̆)
− (�1g)(y̆)

(�1ψ0)(y̆)

)
< 0

since y̆< yλ1 . It follows that �(y̆)> y̆ and, consequently, x∗ > y̆. But the definition
of y̆ implies that H1(x)>H2(x) for x ∈ [y̆, ŷ) and so x∗ < (H−1

2 ◦ H1)(x∗). Thus, the
inequality x∗ < (H−1

2 ◦ H1)(x∗) holds for all fixed points x∗ of the function �.

Now suppose that x′ ∈ (l, ŷ) is a fixed point of �. Then y′ = (H−1
2 ◦ H1)(x′)> x′ and we have

�′(x′) = ((�2ϕ0)(y′)/(�2ψ0)(y′))(�1ψ0)(y′) − (�1ϕ0)(y′)
((�2ϕ0)(x′)/(�2ψ0)(x′))(�1ψ0)(x′) − (�1ϕ0)(x′)

= (�2ϕ0)(y′)(�1ψ0)(y′) − (�1ϕ0)(y′)(�2ψ0)(y′)
(�2ϕ0)(x′)(�1ψ0)(x′) − (�1ϕ0)(x′)(�2ψ0)(x′)

(�2ψ0)(x′)
(�2ψ0)(y′)

<
ϕ0(y′)(�1ψ0)(y′) −ψ0(y′)(�1ϕ0)(y′)
ϕ0(x′)(�1ψ0)(x′) −ψ0(x′)(�1ϕ0)(x′)

(�2ψ0)(x′)
(�2ψ0)(y′)

(�21)(y′)
(�21)(x′)

<
ϕ0(y′)(�1ψ0)(y′) −ψ0(y′)(�1ϕ0)(y′)
ϕ0(x′)(�1ψ0)(x′) −ψ0(x′)(�1ϕ0)(x′)

ψ0(x′)
ψ0(y′)

< 1.

In the last inequality we used the fact that the function x �→ ϕ0(x)(�1ψ0)(x) −
ψ0(x)(�1ϕ0)(x) is decreasing for all x. Thus, by continuity, whenever the function � inter-
sects the diagonal of R2 on (l, ŷ), the intersection must be from above. This implies that the
fixed point x∗ is unique in (l, ŷ).

4. Next we prove that x∗ and y∗ satisfy x∗ < yλ1 < y∗. In order to do this, we first define
T : (yλ2,c, ŷ) → (yλ2,c, ŷ) by T (x) = (H−1

2 ◦ H1 ◦ K−1
1 ◦ K2)(x). Using similar arguments

as with �, it can be shown that T is well-defined, continuous and strictly increasing and
y∗ is the unique fixed point of T . We also have T ′(y∗)< 1.

Now we reintroduce the cost scaling parameter α > 0 as in the proof of Lemma 3. Owing to
the uniqueness of x∗ and y∗ and �′(x∗), T ′(y∗)< 1, it suffices to show that d�α(yλ1 )/dα > 0
and dTα(yλ1 )/dα < 0 for all α ∈ (0, αc). Expanding the first derivative gives

d

dα
�α(yλ1 ) =

(−α−2K2,α((H−1
2,α ◦ H1,α)(yλ1 )) + α−1(d/dα)K2,α((H−1

2,α ◦ H1,α)(yλ1 ))

K′
1(K−1

1 ((K2,α ◦ H−1
2,α ◦ H1,α)(yλ1 )/α))

+ K′
2,α((H−1

2,α ◦ H1,α)(yλ1 ))

K′
1(K−1

1 ((K2,α ◦ H−1
2,α ◦ H1,α)(yλ1 )/α))

)
d

dα
(H−1

2,α ◦ H1,α)(yλ1 )

By Assumption 1, Lemma 4, and α < αc, we know that in the above expression the denomina-
tor and the numerator on the second line are negative. The numerator in the first line is negative
as well. To see this, note that

− α−2K2,α((H−1
2,α ◦ H1,α)(yλ1 )) + α−1 d

dα
K2,α((H−1

2,α ◦ H1,α)(yλ1 ))
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= −α−2
(

g

ψ0
(�1ψ0) − (�1g) − g(�2ψ0) −ψ0(�2g)

ϕ0(�2ψ0) −ψ0(�2ϕ0)

×
(
ϕ0

ψ0
(�1ψ0) − (�1ϕ0)

)
)((H−1

2,α ◦ H1,α)(yλ1 )).

ϕ0/ψ0 is strictly decreasing so

ϕ0(�2ψ0)(x) −ψ0(�2ϕ0)(x)> 0, ϕ0(�1ψ0)(x) −ψ0(�1ϕ0)(x)> 0.

On the other hand, α < αc is equivalent to yλ1 < (H−1
2,α ◦ H1,α)(yλ1 ) and we know that (H−1

2,α ◦
H1,α)(yλ1 ) ∈ (yλ2,c, ŷ) and ŷ< yλ2 so

(g(x)(�1ψ0)(x) −ψ0(x)(�1g)(x))((H−1
2,α ◦ H1,α)(yλ1 ))< 0,

(g(�2ψ0) −ψ0(�2g))((H−1
2,α ◦ H1,α)(yλ1 ))> 0.

Next we show that d(H−1
2,α ◦ H1,α)(yλ1 )/dα < 0. Indeed, for x ∈ (yλ2,c, ŷ), we get

d

dα
(H−1

1,α ◦ H2,α)(x) = −α−2H2,α(x) + α−1(d/dα)H2,α(x)

H′
1

(
H−1

1

(
H2,α(x)/α

))

= −
g(x)(�2ψ0)(x)−ψ0(x)(�2g)(x)
ϕ0(x)(�2ψ0)(x)−ψ0(x)(�2ϕ0)(x)

α2H′
1

(
H−1

1

(
H2,α(x)/α

))
> 0

and H−1
1,α ◦ H2,α is strictly increasing on (yλ2,c, ŷ), so for all x ∈ (l, ŷ), we have

d

dα
(H−1

2,α ◦ H1,α)(x) = d

dα

(
(H−1

1,α ◦ H2,α)−1(x)
)
< 0

so that d(H−1
2,α ◦ H1,α)(yλ1 )/dα < 0. Combining the observations yields d�α(yλ1 )/dα > 0 for

α ∈ (0, αc) and, consequently, yλ1 = �αc (yλ1 )>�α(yλ1 ). But the unique fixed point x∗
α of �α

satisfies �′
α(x∗

α)< 1 so it must hold that x∗
α < yλ1 .

We may expand the derivative of Tα(yλ1 ) as

d

dα
Tα(yλ1 ) = d

dα
(H−1

2,α ◦ H1,α)((K−1
1,α ◦ K2,α)(yλ1 )) + (H−1

2,α ◦ H1,α)′((K−1
1,α ◦ K2,α)(yλ1 ))

× −α−2K2,α(yλ1 ) + α−1(d/dα)K2,α(yλ1 )

K′
1

(
K−1

1

(
K2,α(yλ1 )/α

)) (yλ1 ).

We have already seen that the first term is negative, the first half of the second term is positive
and the second half is negative. Hence, dTα(yλ1 )/dα < 0 for α ∈ (0, αc) and, consequently,
yλ1 = �αc(yλ1 )<�α(yλ1 ). But the unique fixed point y∗

α of Tα satisfies T ′
α(y∗

α)< 1 so it must
hold that y∗

α > yλ1 . The proof is now complete.

A.5. Proof of Proposition 2

First note that the properties of the constants C1,C2,C3 and the thresholds x∗, y∗ imply that
K0 ∈ C0(I). The rest of the proof is divided into four parts that we label (i), (ii), (iii) and (iv).
We begin by showing in part (i) that K0 satisfies the DPP (24) on [y∞, r). Parts (ii), (iii) and (iv)
contain the corresponding proofs for the intervals [y∗, y∞), [x∗, y∗) and (l, x∗), respectively.
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1. Let x ≥ y∞. Then K0(x) = g(x) = Ṽ(x), where Ṽ is the value function of the optimal
stopping problem in continuous time (26). Here Ṽ is r excessive and p(x) − λ2(R2p)(x) =
c(x) by (4) so K0(x) = max{g(x),K1(x),K2(x)}. Thus, the DPP holds on [y∞, r).

2. Let y∗ ≤ x< y∞. Now K0(x) = g(x) and making use of the strong Markov property of
linear diffusions, memoryless property of the exponential distribution, resolvent equa-
tion (4), and the assumption that (P − λ2(R2P))/ϕ2 is strictly increasing on (yλ2,c, y∞),
we get

g(x) −K2(x) =g(x) −Ex
[
e−rU2K0(XU2 )(1(U2 < τy∗) + 1(U2 ≥ τy∗ ))

]+ c(x)

=g(x) −Ex
[
e−rU2 g(XU2 )

]+ c(x)

+Ex

[
e−(r+λ2)τy∗

]
Ey∗
[
e−rU2 (g(XU2 ) −K0(XU2 ))

]
=g(x) − λ2(R2g)(x) + c(x) − g(y∗) − λ2(R2g)(y∗) + c(y∗)

ϕ2(y∗)
ϕ2(x)

≥0.

By similar arguments we obtain

g(x) −K1(x) = g(x) − λ1(R1g)(x) − K1(y∗) − λ1(R1g)(y∗)

ϕ1(y∗)
ϕ1(x)

≥ g(y∗) −K1(y∗)

ϕ1(y∗)
ϕ1(x).

Recalling that K1(x∗) = K2(y∗) and by Remark 2 and the proof of Lemma 4(ii), K1 and
K2 can be written as

K1(x) = F1(x)(φ1ψ0)(x) + H1(x)(φ1ϕ0)(x) − (φ1p)(x),

K2(x) = F2(x)(φ1ψ0)(x) + H2(x)(φ1ϕ0)(x) − (φ1P)(x).

We find that expanding the resolvent K1(y∗) = λ1(R1K0)(y∗) according to (2) yields

g(y∗) −K1(y∗) =g(y∗) − F2(y∗)ψ0(y∗) − H2(y∗)ϕ0(y∗) + λ1(R1p)(y∗)

+ F1(x∗)ψ0(x∗) + H1(x∗)ϕ1(x∗) − λ1(R1p)(x∗)

ϕ1(x∗)
ϕ1(y∗)

+ λ1

B1
K1(x∗)

(
ψ1(y∗) − ψ1(x∗)

ϕ1(x∗)
ϕ1(y∗)

)

=λ1(R1p)(y∗) − p(y∗) + p(x∗) − λ1(R1p)(x∗)

ϕ1(x∗)
ϕ1(y∗)

+ λ1

B1
K1(x∗)

(
ψ1(y∗) − ψ1(x∗)

ϕ1(x∗)
ϕ1(y∗)

)
.

Letting f (x) = c(x) + (λ2 − λ1)(R1c)(x) and invoking again the resolvent identity (4), we
see that the above expression is nonnegative if and only if

f (y∗)/ϕ1(y∗) − f (x∗)/ϕ1(x∗)

ψ1(y∗)/ϕ1(y∗) −ψ1(x∗)/ϕ1(x∗)
≤ λ1

B1
K1(x∗),
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The left-hand side is continuously differentiable and K1(x∗) may be written according
to Remark 2 as

K1(x∗) = λ2 − λ1

B1

(
c(x∗)

ψ2(x∗)
(�2ϕ1)(x∗) + (�1c)(x∗)

)
.

The Cauchy mean value theorem then implies that

f (y∗)/ϕ1(y∗) − f (x∗)/ϕ1(x∗)

ψ1(y∗)/ϕ1(y∗) −ψ1(x∗)/ϕ1(x∗)

≤ supx∈[x∗,y∗]
(f (x)/ϕ1(x))′

(ψ1(x)/ϕ1(x))′

= supx∈[x∗,y∗]
1

B1
((�1(r + λ1 −A)c)(x) + (λ2 − λ1)(�1c)(x))

= 1

B1
(�1(r + λ2 −A)c)(x∗).

But

(�1(r + λ2 −A)c)(x∗) ≤ λ2 − λ1

B1

(
c(x∗)

ψ2(x∗)
(�2ϕ1)(x∗) + (�1c)(x∗)

)

is equivalent to

c′(x∗)ψ2(x∗) − c(x∗)ψ ′
2(x∗) ≤ 0,

which is true since ψ0/ψ2 is strictly decreasing and c/ψ0 is strictly decreasing by
Assumption 1. This proves that g(y∗) ≥K1(y∗) and, hence, K0(x) ≥K1(x) for x ∈
[y∗, y∞).

3. Let x∗ ≤ x< y∗. Now K0(x) =K2(x). Denote by τ̂ the first exit time of X from the
interval (x∗, y∗). We recall from [2, p.272] that

Ex

[
e−(r+λ1)τ̂1(τx∗ < τ y∗

)
]
= ψ1(y∗)ϕ1(x) −ψ1(x)ϕ1(y∗)

ψ1(y∗)ϕ1(x∗) −ψ1(x∗)ϕ1(y∗)
,

Ex

[
e−(r+λ1)τ̂1(τx∗ > τ y∗

)
]
= ψ1(x)ϕ1(x∗) −ψ1(x∗)ϕ1(x)

ψ1(y∗)ϕ1(x∗) −ψ1(x∗)ϕ1(y∗)
.

Applying similar arguments as before, we see that K2(x) ≥K1(x) is equivalent to

− f (x) + f (x∗)
ψ1(y∗)ϕ1(x) −ψ1(x)ϕ1(y∗)

ψ1(y∗)ϕ1(x∗) −ψ1(x∗)ϕ1(y∗)

+ (f (y∗) + g(y∗) − G1(y∗))
ψ1(x)ϕ1(x∗) −ψ1(x∗)ϕ1(x)

ψ1(y∗)ϕ1(x∗) −ψ1(x∗)ϕ1(y∗)
≥ 0,

where again f (x) = c(x) + (λ2 − λ1)(R1c)(x). Expanding K1(y∗) as in part (ii), the above
condition is found to be equivalent to

f (x)/ϕ1(x) − f (x∗)/ϕ1(x∗)

ψ1(x)/ϕ1(x) −ψ1(x∗)/ϕ1(x∗)
≤ λ1

B1
K1(x∗),

which can be proven as in part (ii). Thus, K0(x) ≥K1(x) for x ∈ [x∗, y∗).
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In order to prove K2(x) ≥ g(x), we first note that the condition is equivalent to

F2(x) − F2(y∗)

H2(y∗) − H2(x)
≤ ϕ0(x)

ψ0(x)
.

On the other hand, ϕ0/ψ0 > (�2ϕ0)/(�2ψ0) so it suffices to show that

F2(x) − F2(y∗)

H2(y∗) − H2(x)
≤ (�2ϕ0)(x)

(�2ψ0)(x)
,

which in turn is equivalent to

(�2P)(x)/(�2ψ0)(x) − (�2P)(y∗)/(�2ψ0)(y∗)

(�2ϕ0)(x)/(�2ψ0)(x) − (�2ϕ0)(y∗)/(�2ψ0)(y∗)
<H2(y∗).

We know that lg < x∗ < x< y∗, H2(y) ≤ 0 for y ∈ (lg, yλ2,c) and H2 is strictly increasing on
(yλ2,c, y∗), so the Cauchy mean value theorem implies that

(�2P)(x)/(�2ψ0)(x) − (�2P)(y∗)/(�2ψ0)(y∗)

(�2ϕ0)(x)/(�2ψ0)(x) − (�2ϕ0)(y∗)/(�2ψ0)(y∗)

≤ supx∈[x∗,y∗)
((�2P)(x)/(�2ψ0)(x))′

((�2ϕ0)(x)/(�2ψ0)(x))′

= supx∈[x∗,y∗) H2(x)

= H2(y∗),

proving the condition K2(x) ≥ g(x) for x ∈ [x∗, y∗).

4. Let x< x∗. Now K0(x) =K1(x) and K1(x) ≥ g(x) is equivalent to

g(x)

ψ0(x)
≤ K1(x∗)

ψ0(x∗)
.

The above inequality is true because lg < x∗ < y∞ so g(x)/ψ0(x) ≤ g(x∗)/ψ0(x∗) by
Assumption 1 and g(x∗) ≤K1(x∗) by part (iii). On the other hand,

K1(x) −K2(x) = c(x) − c(x∗)

ψ2(x∗)
ψ2(x) ≥ 0,

where the inequality follows by Assumption 1, since ψ0/ψ2 is strictly decreasing.

Combining the observations made in parts (i)–(iv), we see that K0 = max{g,K1,K2} so that
K0 satisfies the DPP (24). Proving the smoothness properties of K1 and K2 is now completely
analogous to the proof of Lemma 2.
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