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After publication, the linear algebra of § 4.1 was found to contain a mistake. In the
derivation of (4.7), since l̂−1 · D̂ r̂−1, is nonzero in general, it must be retained to form
the correct expression for σ0. The subsequent argumentation can be amended to account
for this and ultimately, the term reappears in the (4.13) formula for σ1/2 (see below). The
fundamental conclusions of § 4.1 remain otherwise unchanged, save for the fact that point
(iii) in the method for assessing ill posedness given in the final paragraph, depends upon
the numerator of (4.13), which must be nonvanishing for O(k1/2) blow-up to occur. These
adjustments do not affect the remainder of the manuscript.

For ease of reading, an amended version of the subsection is printed here, in full. A few
minor typographical errors have also been corrected in the revised text.

A general framework for finding Hadamard instabilities
We return to the linear stability problem given in (3.5). A general procedure for detecting
the presence or absence of Hadamard instabilities is developed. Since it is cast as an
arbitrary matrix equation, there is no restriction on the dimensionality N of the system, so
our analysis in this subsection is applicable to models with any number of phases n = N/2.
Readers that would rather skip the linear algebra may proceed to the final paragraph of this
subsection, where the method for determining posedness is recapitulated.

First, we bring (3.5) into a simpler form for analysis. The matrix A must be invertible, in
order for there to be N independent time-evolving fields. Furthermore, we assume that the
matrix A−1D is diagonalisable, since this covers all the specific cases in this paper. Then,
the problem may be reformulated in terms of a basis {ê1, . . . , êN } with respect to which
A−1D is diagonal. Therefore, for each matrix M ∈ {B, C, D}, we define

M̂ = P −1A−1MP and v̂ = P −1v, (4.1a,b)
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for any vector v, where P is a basis change matrix that diagonalises A−1D. With respect
to this transformation, (3.5) becomes

σ r̂ + ikB̂ r̂ = Ĉ r̂ − k2D̂ r̂, (4.2)

with D̂ a diagonal matrix. At high wavenumber k � 1, we make the following asymptotic
expansions:

σ = −σ2k2 − iσ1k + σ0 + . . . , r̂ = r̂0 + k−1 r̂−1 + . . . , (4.3a,b)

substitute them into (4.2) and look for the leading-order terms. Therefore, at O(k2), the
problem reduces to

D̂ r̂0 = σ2 r̂0. (4.4)

Noting the sign convention in (4.3a,b), the eigenvalues σ2, which represent diffusion
coefficients for the linear problem, must each have non-negative real part in order to avoid
blow-up of Re(σ ). The growth of modes with σ2 = 0 is determined beyond this leading-
order balance. If D̂ is not full rank, it has i ∈ {1, . . . , N } zero eigenvalues. Without loss
of generality, we locate these in the first i diagonal values of D̂. The corresponding
eigenvectors are determined only up to an i-dimensional subspace (r̂0 ∈ span{ê1, . . . , êi }),
by (4.4).

Therefore, we proceed to the O(k) part of the asymptotic expansion of (4.2). When
σ2 = 0, this is

(B̂ − σ1I )r̂0 = iD̂ r̂−1. (4.5)

Since r̂0 ∈ span{ê1, . . . , êi }, only the first i columns of B̂ − σ1I enter into this system
of equations on the left-hand side. Furthermore, only the first i rows of (4.5) are needed
to determine r̂0 and these are rows for which the right-hand side is zero. Consequently,
the σ1 values are the eigenvalues of the matrix B̂ with the last N−i rows and columns
removed. We shall write Mred to denote any matrix M reduced in this way by deleting rows
and columns associated with the nullspace of the diagonal matrix D̂. Referring back to
(4.3a,b), we obtain a second criterion that must be met to avoid Hadamard instability: the
eigenvalues σ1 of B̂red must be real. If these values are also distinct, then the growth rates
stay bounded as k → ∞.

However, B̂red may have repeated eigenvalues, which can also lead to blow-up of Re(σ ).
To see why, we proceed to the O(1) equation with σ2 = 0, which reads

(σ0I − Ĉ )r̂0 + i(B̂ − σ1I )r̂−1 = −D̂ r̂−2. (4.6)

To eliminate dependence of the left-hand side on the unknown vector r̂−2, the left
eigenvectors, corresponding to the eigenproblem adjoint to (4.2), may be used. By
repeating the arguments used to determine r̂0, these may be expanded as l̂ = l̂0 +
k−1 l̂−1 + . . . and inferred to satisfy l̂

T
0 D̂ = 0 and l̂

T
0 (B̂ − σ1I ) = i l̂

T
−1D̂ (when σ2 = 0).

For any of the i modes, the dot product of the leading-order left eigenvector l̂0 may be
taken with (4.6) and on rearranging the result, the formula

σ0 = l̂0 · Ĉ r̂0 + l̂−1 · D̂ r̂−1

l̂0 · r̂0
(4.7)

is obtained. Note that the relevant components of l̂−1 and r̂−1 required to compute the
second term in the numerator are fully determined by inverting the final N−i rows of
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(4.5) and their adjoint counterparts. The left and right eigenvectors for B̂red are the vectors
l̂0, r̂0 with the last N−i entries (which are all zeros) deleted. When B̂red is diagonalisable,
these vectors form a biorthonormal set, with the left and right eigenvectors for each mode
satisfying l̂0 · r̂0 = 1, so the O(1) growth rate in (4.7) is well defined. However, if B̂red is
not diagonalisable, at least one of its eigenvalues is defective. Therefore, σ1 is a repeated
eigenvalue associated with one or more Jordan chains of length at least two. Then for the
full matrix B̂ there are two pairs of corresponding generalised left and right eigenvectors
l̂0,1, l̂0,2 and r̂0,1, r̂0,2 respectively (in span{ê1, . . . , êi }), which satisfy⎧⎨

⎩l̂
T
0,1(B̂ − σ1I ) = i l̂

T
−1D̂,

l̂
T
0,2(B̂ − σ1I ) = l̂

T
0,1 + χ̂

T
,

and

{
(B̂ − σ1I )r̂0,1 = iD̂ r̂−1,

(B̂ − σ1I )r̂0,2 = r̂0,1 + Γ̂ ,
(4.8a,b)

where r̂0,1 ≡ r̂0 and l̂0,1 ≡ l̂0 , and χ̂ , Γ̂ are unknown vectors in span{êi+1, . . . , êN }. In
this case, the formula in (4.7) is always singular, since projecting any left eigenvector onto
(4.8b) shows that l̂0 · r̂0 = 0. Physically, this singularity can be thought to emerge from a
resonance between two or more modes that collapse onto one another when B̂red becomes
defective. Examples of this are given below, in § 4.3.

The failure of (4.7) in these cases suggests the need for an alternative asymptotic
expansion. Anticipating growth of some intermediate order between O(k) and O(1), we
replace the expansions in (4.3a,b) with

σ = −iσ1k + σ1/2k1/2 + σ0 + . . . , r̂ = r̂0,1 + k−1/2 r̂−1/2 + k−1 r̂−1 + . . . . (4.9a,b)

This leaves the analysis at O(k) unchanged and introduces the following equation at
O(k1/2):

σ1/2 r̂0,1 + i(B̂ − σ1I )r̂−1/2 + D̂ r̂−3/2 = 0. (4.10)

We project this onto l̂0,2 and use (4.8), along with the fact that l̂0,2 is orthogonal to the
range of D̂, to conclude that

σ1/2 l̂0,2 · r̂0,1 + i(l̂0,1 + χ̂) · r̂−1/2 = 0. (4.11)

The unknown vector r̂−1/2 is eliminated by proceeding to the O(1) equation. With the
new expansion, this is

σ1/2 r̂−1/2 + σ0 r̂0,1 + i(B̂ − σ1I )r̂−1 − Ĉ r̂0,1 + D̂ r̂−2 = 0. (4.12)

Then, we project this onto l̂0,1. Since l̂0,1 · r̂0,1 = 0, the term containing σ0 vanishes,
along with the diffusive term which lies in an orthogonal subspace. After rearranging
and using (4.11), as well as the O(k3/2) part of the system, which implies that r̂−1/2 ∈
span{ê1, . . . , êi }, we obtain a formula for the O(k1/2) part of the growth rate:

σ1/2 = ±1 − i
2

(
2(l̂0,1 · Ĉ r̂0,1 + l̂−1 · D̂ r̂−1)

l̂0,2 · r̂0,1

)1/2

. (4.13)

For Jordan chains of length two l̂0,2 · r̂0,1 = |l̂0,2||r̂0,1| �= 0, provided both the left and
right vectors correspond to the same Jordan block. Consequently, (4.13) implies that there
is a mode such that Re(σ ) ∼ k1/2, provided the terms in the numerator do not interact in a
way that causes it to vanish.

1022 E2-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
76

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10762


J. Langham, X. Meng, J.P. Webb, C.G. Johnson and J.M.N.T. Gray

Conversely, for longer Jordan chains, the denominator in the (4.13) formula is also
guaranteed to be singular. Different asymptotic expansions are needed, depending on the
length of the the chain. However, to avoid these further complications, we terminate our
analysis here, since cases where three or more modes intersect at high wavenumber are far
less commonly encountered.

To summarise the analysis above, models up to second order that may be cast in
the general form of (3.4) are ill posed as initial-value problems if any of the following
conditions are met:

(i) Any eigenvalue of D̂ is negative, where D̂ denotes a diagonalisation of A−1D.
(ii) Any eigenvalue of B̂red is complex, where B̂red denotes the matrix formed by

representing A−1B in the basis used to diagonalise A−1D in (i) and deleting each
row and column j such that the j-th diagonal entry of D̂ is nonzero. We refer to B̂red
as a ‘reduced Jacobian’ in later analysis.

(iii) Repeated real eigenvalues of B̂red of algebraic multiplicity 2 share the same left
and right eigenvectors l̂0,1 and r̂0,1 (up to normalisation), and the numerator of
(4.13) is nonvanishing. (More generally, the expectation following from (4.7), is that
repeated real eigenvalues of any algebraic multiplicity m � 2 imply ill posedness if
the dimension of their associated eigenspace is strictly less than m, but this is not
explicitly proven above.)

For the remainder of this section, we apply these steps to different example systems.

Acknowledgements. We are grateful to T. Pähtz for spotting the oversight in the original manuscript.
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