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ZT-SUBGROUPS OF SHARPLY 3-TRANSITIVE GROUPS

by HEINRICH WEFELSCHEID
(Received 15th September 1978)

A permutation group G operating on a set M is called a ZT-group (Zassenhaus
transitive group) if G has the properties (i) and (ii):

(i) G operates 2-transitively on M;

(ii) G,p# {id} and G,,. = {id} for distinct elements a, b,c € M.

Here G,,={a €G|a(a)=a and a(b)=>b} denotes the stabilizer of {a, b}, and
G. . the stabilizer of {a, b, c}, respectively.

In this paper we are looking for all ZT-groups which are subgroups of sharply
3-transitive groups. It is shown that such ZT-groups can be uniquely described by
means of certain subgroups B of the multiplicative group (F*,-) of the KT-field
(F, +, -, o) which characterizes the underlying sharply 3-transitive group.

In §1 the basic notions and properties of sharply 3-transitive groups are given.

In §2 the above mentioned ZT-groups are described.

In §3 a method of constructing sharply 3-transitive groups and their ZT-subgroups
is treated. It is shown that the smallest ZT-subgroups of these examples are all
isomorphic to PSL(2, K) even if the underlying sharply 3-transitive group is not
isomorphic to PGL(2, K). In the finite case this was already known by Zassenhaus (6),
where he determined all finite sharply 3-transitive groups and their ZT-subgroups.

1. Basic notions and relations

Definition 1.1. A set F with two binary operations (+) and (-) is called a
neardomain (*‘Fastbereich”) if the following axioms are valid:

Fb1 (F,+) is a loop (with neutral element 0)

Fb?2 a+b=0>b+a=0

Fb3 (F*, ) is a group (with neutral element 1; F* := F\{0}).

Fb4 0-a=0,for every a€ F.

Fbs a-(b+c)=ab+ac foralla,b,c€F.

Fb6 For every pair of elements a, b € F there exists an element d,, € F*,
such that

a+(b+x)=(a+b)+d,, - x

for every x € F.

Remark. Each sharply 2-transitive permutation group can be written as the group of
linear transformations x = a + mx, m# 0, of a neardomain (F, +, -). (Karzel (2)).
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Definition 1.2. (F, +, -, o)is called a KT-field, if the axioms KT 1 and KT 2 are valid:

KT 1 (F, +, -) is a neardomain.
KT?2 o is an involutory automorphism of the multiplicative group (F*,-)
which satisfies the functional equation:
c(l+o(x)=1-0c(1+x) for all x € F\{0, 1}.

As one easily can verify the transformations a,B:F:=F U{x}—> F, where o«
denotes an element not in F and

F>F

x—a+ mx, a€eF,meF*

00 —> 00

F->F
B: x—a+ o(b+ mx), a,beF,meF*
) 0> g

-m7'h >

form a group Ti(F) which operates sharply 3-transitively on F. Conversely each
sharply 3-transitive group is isomorphic as a permutation group to the group T3(F) of
a uniquely determined KT-field (see (4)).

Therefore in the following we will consider each sharply 3-transitive group as
being represented in the form T3(F).

2. ZT-subgroups of Ty(F)

The main result will be the following theorem:

Theorem 2.1. Let (F,+, -, o) be a KT-field. If B is a subgroup of (F*, ) such that
RCB, DCB and o(B)CB, where R:={ac(a)EF*laeF*} and D=
{d., € F*| a, b € F} then the transformations of the form:

fx—>a+mx, aeEF,meB
T leo—>00

x—>a—o(b+mx), abeEFFmeB
Bl —m b >

©o—>q

constitute a subgroup U of Ty(F )_which is Zassenhaus transitive.

Conversely, to each U < Ty(F) which is a ZT-group, there exists a subgroup
B < F* with RC B, DC B and o(B) C B such that all elements of U have the form a
or B.

Proof. For the first part of the theorem, let «;:x—>a;+mx and Bi:x—>
a;—o(b;+ mx) for i =1,2 with a;, b, € F and m; € B.
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Then we have:
ai':x->-mi'a;+ mi'x

Tix——mi'b;— ola(-miYa; + o(m;')x)
ajay:x —>(a+ mya;) + dg i, 1M2x
a1 x - (a+ may) * olo(ds ma,)o(Mm)by + 0(da, ma)o(m)m;x]
Biaz:x = ay = o((by+ may) + dy, ma,Mim:x)
BB x ~[a,— o()] — ol(—dt + dto(t™)o(dy, mya)or(m)b)

+ d_ gttty m 0 om0 ()T (A, gymy) T (M) MX ]

where t 1= b;+ m a,# 0 and d := o(d,, ;).
For t =0 we get:

BiB2 = [a, + a(m)bs] + day, oimpp,0 (M) M2x.

Because of the properties of B the inverse and the products are all of the form « or 8.
Conversely, let U be a subgroup of T3(F) which is Zassenhaus-transitive. Since
U., is a subgroup consisting of permutations of the form a : x - mx the set A

A={m eF*lm = a(1) with a € U..p}

is a subgroup of F*. We have to show that A possesses the required properties.

U. consists of transformations of the form x — a + mx with m € A. Because of the
transitivity of U, there exists to each b € F an a € U. such that a(0) = b.
Thus

U.={x—>a+mx|a€F and m € A}.

We define now:
H:={neF*[3a,be Fsuchthat BeE U, B:x—>a— o(b + nx)}.

Since U is a ZT-group there exists a transformation 7 € U with 7(0) = o and 7() = 0.
Therefore 7 has the form 7:x - —uo(x) where 7(1) = u and o(u) € H.

Now take some B € U, B(x)=a—o(b+ nx) and define §(x)=—a+x. We have
8 € U, and 78B8(x) = ub + unx with 7868 € U., i.e. un € A. Hence uH C A. Also for
each m € A the permutation x - r(mx) = —g(o(u)mx) lies in U from which o(u)A C
H. This implies that uo(u)A C uH C A whence uo(u) € A and so uH = A.

Furthermore the above considerations show that for any n € H and each a,b € F
the permutation B(x)=a — o(b+ nx) belongs to U. The inclusion DC A follows
directly from ajay(x) = (a, + ay) + dg, o, for ai(x)=a; +x and i = 1,2,

Now for an arbitrary u € ULy, say u(x)=mx, m € A we get

7 \ur(x) = o(u ' muo(x)) = o(u Yo (m)o(u)x
whence o(u™)o(m)o(u)EA and so o(m)€E o(u)Ao(u™") = u™'Au, on account of

uo(u) € A. Thus g(A)C u~'Au.
Finally we show that u € A:
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F;)r this we consider B(x) = a + 7(x). Then
TB(x) = ~uo(a — uo(x))
= —uo(a)— o(-o(u)a + o(u)ac(a Yo(u)x)

so that o(u)ac(a")o(u)E H =u"'A and hence ao(a")o(u)E o(uYu'A for each
a € F*,

If we put a = u we get u € A and therefore A=H. .
Together with o(A)Cu'Au we get o(A)=A. From this follows ac(a™)€
Ao(u)' = A for each a € F¥, whence RC A.[]

By computing one gets the

Corollary 2.2. A ZT-subgroup U of Ty(F) is normal if and only if the cor-
responding subgroup B of F* is normal. In this case T;(F)/U = F*/B.

3. Examples

The following theorem of Kerby (12.7 in (3)) shows the way to construct KT-fields.
To my knowledge all examples so far known are made in this manner.

Theorem 3.1. Let (F,+,*) be a commutative field and let A be a subgroup of
(F*, *) such that
() Q={axala€F*CA
(1)) There exists a monomorphism . F*|A — Aut(F, +, *).
(iii) 7(x)€x * A for all x € F* and all r € w(F*/A).
Let x: F*— F*| A denote the canonical homomorphism. Then (F, +, ©)

aob= { 0 fora=90
a * a,(b) with a, = mk(a)

is a (strongly coupled Dickson) nearfield and (F, +,°, o) is a KT-field with o(a) = a™"
(inverse with respect to (*)).

For instance (see (3), p. 67) take an arbitrary finite or infinite index set I. Further
let K be a commutative field and F = K(#,);c; the field of rational functions in |I|
transcendental indeterminates ¢; and grad; f = grad; (f,/f,) = grad; f\(¢;) — grad; f«(t;) the
degree of the polynomials f), f, with respect to t.

If we choose 7i(k)=k for k€K, 7(t;)=1¢ for i#j and 7(t;)=1-1t, then
F? .= (F,+,0) with

fog:i=f-f,(2) where f, 3=I€175‘m’"‘

is a Dickson nearfield and (F, +,°, o) with o(f) = f~! (inverse with respect to the
multiplication (-) of the commutative field) is a KT-field.
The subgroup A of Th. 3.1 is here

A={f€ F|grad;f=0 (mod 2) for all i € I}.
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For the rest of the paragraph let F® denote the KT-field which is constructed with
the help of a commutative field F according to 3.1. Those ZT-subgroups U =< T;(F®)
which are at the same time subgroups of PGL(2, F) are characterised by the

Proposition 3.2. Let F° be a KT-field derived according to 3.1 from a com-
mutative field F. A ZT-subgroup U < T3(F*®) is simultaneously a subgroup of
PGLQ2,F) if and only if the corresponding subgroup B <(F*,o) satisfies BC
Ker ¢ :={z € F*| z, = id}.

Proof. We have to show that the mapping ¥

U - PGL@2, F)
:ia:xs>a+mox > Xx-oa+mxx
B:xsa-ob+mox) - x-a—(b+m=xx)"

is a homomorphism. If B C Ker ¢ then m o x = m * x for all m € B. Denoting the inverse
of a with respect to (¢) by a= and with respect to (*) by a~' we get because of
a=t=a.'(a™):

too(tD =t xto@; ) =1t*t,[t;' ¢ ]
=txt ]l (t)=1t*t

The formulae in the proof of Theorem 2.1 show that ¢ is a homomorphism. If, on the
other hand, ¢ is a homomorphism then B C Ker,.[]

In all examples furnished by 3.1 the sets R and Q are equal:
R={aco@)|a€F*}={a*a|la€F*}=Q

and R=QC A=Ker,. Moreover Q=<(F* ), o(Q)CQ, Q=(F*o). So R=Q
satisfies the conditions of 2.1 and B = R supplies the smallest ZT-subgroup of T3(F°®).
It is well known that the smallest ZT-subgroup of PGL(2, F) is PSL(2, F). Thus 2.1,
3.1 and 3.2 give:

Proposition 3.3. The smallest ZT-subgroup U of a sharply 3-transitive group
T3(F?) where F° is constructed as in 3.1, is isomorphic to PSL(2, F).

Finite KT-fields F*¢ possess only two subgroups B < (F*, o) relevant to 2.1 namely
F* and R if |F| is odd and only one such subgroup namely F* if |F| is even (6).

In order to get examples of ZT-groups which are not simultaneously ZT-subgroups
of PGL(2, F) we have to look for subgroups B =< (F*,-) which satisfy o(B)=B,
R C B but BZ Ker ¢.

We mention here only two possibilities:

I. Let (F,+,-) be a commutative field, A< F* and 7 € Aut(F, +, -) such that:
r’=id, 7#id, 7(A)=A and [F*:A]J=2. Then (F,+,0,0) is a KT-field where
o(a)=a! and

aob:{a-b ifa€ A

a-r(b) ifag A’ (see (4), p. 232).
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If we choose 7 such that the fixed point field F,Z A U{0} there is a t € F,\A. We
define B = QU Qt. The set B is a group with Q=RC B and ¢(B)C B but B A=
Ker,.

II. Let F be a KT-field constructed according to 3.1 such that A=Kere¢ is a
commutative subgroup of index [F*: A}= 2", n = 2. (More details of this construction
can be found in Kerby (3; p. 67).) Then one can easily find a set B with the properties:

(B,°) <(F*,°)
(B,")=(F*,")
ACB
[F*:B]=2"<2"=[F*: A].
Thus BZ Ker ¢, o(B) = B, R C B and B satisfies the conditions of 2.1.
For instance let |[I| =2 be as in the example following Theorem 3.1 and take for B:
B ={f € K(t,)ic; | grad; f =0 (mod 2) with j € J},

where J is a proper subset of I.
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