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Abstract

Two coupled nonlinear evolution equations correct to fourth order in wave steepness are
derived for a three-dimensional wave packet in the presence of a thin thermocline. These
two coupled equations are reduced to a single equation on the assumption that the space
variation of the amplitudes takes place along a line making an arbitrary fixed angle with
the direction of propagation of the wave. This single equation is used to study the stability
of a uniform wave train. Expressions for maximum growth rate of instability and wave
number at marginal stability are obtained. Some of the results are shown graphically. It is
found that a thin thermocline has a stabilizing influence and the maximum growth rate of
instability decreases with the increase of thermocline depth.

1. Introduction

There exist a number of papers on nonlinear interaction between surface gravity waves
and internal waves. Most of these are concerned with the mechanism of generation of
internal waves through nonlinear interaction of surface gravity waves. Coherent three
wave interactions of two surface waves and one internal wave have been investigated
by Ball [1], Thorpe [22], Watson, West and Cohen [23] and others. Using the
theoretical model of Hasselman [12] for incoherent three-wave interaction, Olber and
Hertrich [18] have reported a mechanism of generation of internal waves by coupling
with surface waves using a three-layer model of the ocean. One of the present authors
with Dysthe [9] has investigated a modulational instability mechanism for generation
of internal waves using a three-layer model of the ocean.

It is of considerable importance to study the reverse problem, that is, to see how
the amplitude of surface gravity waves gets modulated when it interacts with internal
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[2] Fourth-order nonlinear evolution equations for surface gravity waves 215

waves. Such a study has been made by one of the present authors [3] in which
he has investigated the nonlinear evolution of a three-dimensional surface gravity
wave packet in a two-layer fluid including the effect of its interaction with internal
waves. Similar types of interactions between small-scale surface waves and large-
scale internal waves in a two-layer fluid has been considered by Rizk and Ko [20]. But
they have restricted their analysis to one-dimensional wave packets and to very small
density ratios. In deriving the relevant equations they have neglected the conditions of
the governing flow at the interface of two fluid layers, and have replaced the internal
wave by a surface current produced by it. Resonant interaction between long internal
waves and surface gravity waves has been considered by Funakoshi and Oikawa [10]
and Ma [17].

In the present paper we consider the nonlinear evolution of a three dimensional
surface gravity wave packet in the presence of a thin thermocline. Considering
the importance of the fourth order evolution equation, which was first pointed out by
Dysthe [8] and later elaborated by Janssen [14] and considered by many authors ([2,5-
7,11,13,21]) in studying stability of water waves, two coupled nonlinear evolution
equations correct to fourth order in wave steepness are obtained for a surface gravity
wave packet in the presence of a thin thermocline. These two coupled equations
are reduced to a single equation on the assumption that the space variation of the
amplitudes takes place along a line making an arbitrary fixed angle with the direction
of propagation of the wave packet. This evolution equation does not remain valid
when the resonance condition is satisfied. The resonance occurs when the component
of group velocity along the line along which the amplitudes are assumed to vary
becomes equal to the phase velocity of the long wavelength internal wave.

The single nonlinear evolution equation is used to study the stability of a uni-
form surface gravity wave train in the presence of a thin thermocline. Expressions
for maximum growth rate of instability and wave number at marginal stability are
obtained.

Graphs are plotted showing the variation of the maximum growth rate of the
instability against wave steepness for some different values of dimensionless ther-
mocline depth. It is found that a thin thermocline has a stabilising influence on the
instability of surface gravity wave packet, and the maximum growth rate of instability
decreases with the increase of thermocline depth. The wave number of perturba-
tion X at marginal stability has also been plotted against wave steepness a0 showing
stable-unstable regions in Xa0 - space for some different values of thermocline depth
and 0, which is the angle between the direction of propagation of the wave and the
direction along which the perturbation is given. Graphs are also plotted showing the
maximum growth rate of instability against wave steepness for some different values
of dimensionless density increase through the thermocline and for some fixed values
of dimensionless thermocline depth.
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2. Basic equations

We break up the velocity potential (f> and the free surface elevation £ into two parts:

0 = </>O + 4>I, ?=£<> + ?/. (1)

where </>0, £o are responsible for long wavelength internal waves and (/>/, £/ are re-
sponsible for surface gravity waves.

For 4>i and £7 the equations are the following in which we disregard the existence
of the thermocline. They interact with long wavelength internal waves through the
nonlinear terms.

(2)V20/ == 0,
3 ^

0

-oo

= (V,#)

= -i(v,

as Z -

< Z < i

-> —oo.

>-

V

when

,henZ

z = f, (4)

^ (5)
dz,

Here the undisturbed free surface of water has been taken as the Z = 0 plane; the

Z-axis points vertically upwards and VA = (^, |-, 0 j .
The governing equations for <p0 and £0 are the following, where <j)'o is the velocity

potential below the thermocline and w is the vertical component of velocity ([9,19]).
The thermocline is assumed to be confined between the two planes Z = — d — e,
Z = —d + €, where the thermocline thickness 2e is small. The terms responsible
for long wavelength internal waves are assumed to be sufficiently small so that their
product and higher-degree terms can be neglected ([9]).

V2(/>o = O, -d + e<Z<r), (6)

V20o = 0, - o o < Z < -d - e, (7)

) (8)
Zjz_d_e

3
— V2u; + Ar2(Z)V2u; = 0, -d - e < Z < -d + e, (9)

^ -+ 0 as Z - • - oo , (10)
aZ

) ^ , (11)

(12)
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where N2{Z) = — £ | | , the Brunt-Vaisala frequency, and p is the density of water.
Equation (9) is obtained if the Boussinesq approximation is applied, and the long

wavelength internal wave is assumed to have sufficiently small amplitude for the
nonlinear term to be neglected ([19]).

The thickness of the thermocline being small we shall work with equations obtained
by approaching to the limit e —> 0.

Integrating equation (9) with respect to Z between the limits — d — e to — d + c and
then proceeding to the limit e ^ O w e get

where Sp = p(—d — 0) — p{—d + 0) is the density increase through the thermocline.
Proceeding to the limit e —> 0 in (8) we get

(^) • d4)

dz)z=_d
So the governing equations for <j>o,<p'o, £b for a thin thermocline are (6), (7), (10)-

(14).

3. Derivation of evolution equations

Following a standard procedure 4>, % given by (1) are expanded as follows ([4]):

n=l

where <p0, <pn, </>* are functions of Z, f, r), x and fo» f«> £„* are functions of £, r), r . Here
£ = e(x — Cgt), x] = ey, x = e2t, e being a small parameter; \jf = kx — cot, co, k
satisfying the linear dispersion relation

co2 = gk (16)

for surface - gravity waves; Cg = dco/dk is the group velocity; <p'o is also a function
ofZ,f, r), x.

Substituting the expansion for <j>i as given by (15) in equation (2) and then equating
coefficients of exp in\j/,n = 1, 2 on both sides we get the equation

* 2

dZ2 - A2
n4>n = 0 , n = 1 ,2 , (17 )
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where An is the operator

The solution of equation (17) satisfying (5) can be put in the form

<pn=exp(ZAn)An, (19)

where An is a function of f, r\, x and the operator exp(ZAn) operates on A n .
For the sake of convenience we take Fourier transforms of (6), (7) and (10) with

respect to f, r\ after making a change of independent variables from x,y,t\o%,r\,x.

^ 0o = 0, (20)

>'0 = 0, (21)

J2 AJ

g > 0 as Z -* -oo, (22)

where 0O, 0O are Fourier transforms of <p0, 0O respectively defined by

(0o, 4>'o) = * , / / (0o, 0O) expi(*s? + *,»?) <*£<*>?, (23)
{•\j2nY J J-oo

where k2 = k2 + k^. The solution of equation (20) is

0o = Aoe
e*z + Boe-eiz (24)

and the solutions of (21) satisfying (22) is

0 O = Coe
('kZ. (25)

The constants Ao, Bo, Co appearing in these two equations depend on k$, kn, x.
Substituting (15) in the Taylor expanded form of (3) and (4) about Z = 0 and then

equating coefficients of exp/m/r, (n = 1, 2) on both sides, we obtain equations for
A,, £,, A2, &• These are the equations (Al), (A2), (A3), (A4) given in the appendix.
Next substituting the same expansions (15) for 0, £ on the right-hand side of equations
(11), (12) and then keeping only terms independent of f, we get equations (A5), (A6)
given in the appendix. Taking Fourier transforms of (13) and (14) with respect to
£, T) and then substituting the solutions for 0, 0' given respectively by (24) and (25)
we obtain yet two more equations (A7), (A8) given in the appendix. These equations
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(A5) - (A8) determine the quantities Ao, Bo, Co, £0- Eliminating Co between (A7) and
(A8) we get the equation (A9) given in the appendix.

Thus we get three sets of equations. The set I is constituted by equations (Al) and
(A2); the set II is constituted by equations (A3) and (A4); and the set III is constituted
by equations (A5), (A6) and (A9).

To solve these three sets of equations we make the following perturbation expansion
of the quantities Al,A2,£\, £> E, F, £0 ([4]).

j=n

Substituting (26) in the three sets of equations mentioned above and then equating
coefficients of various powers of e on both sides, we get a sequence of equations.
From the first (lowest) and second-order equations of (Al) we obtain solutions for A\,
and A12 respectively. Next from the first- and second-order equations of (A3), (A4)
we obtain solutions for An, £22, A23, £23- From the first- and second-order equations
of (A6) we get solutions for £02> Km, this equation also gives fOi = 0- Finally from
the first- and second-order equations of (A5) we get solutions for F2, F3; from this
equation we also get Fi = 0. All these solutions are given in the appendix.

Substitution of these perturbation solutions in the two equations (A2) and (A7),
which have not been used in getting perturbation solutions, produce the following two
coupled fourth-order nonlinear evolution equations. Details of the derivation of these
two equations are given in the appendix.

I ~ ~ ^~~^~ ~T~ ~~ -^—— — — ——^— —I—

( 2 7 )

32£ / 32 32 \ 3 3 3

3^2 \ 3 ^ 2 dr)2J 3£ 3^ 3f

where £ = £11 + ef 12. E = £, + eE2, H is the two-dimensional version of the Hilbert
transform given by

jj « i Z ^ ) , (29)

a n d y = — •
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The two nonlinear evolution equations have been made dimensionless by introdu-
cing dimensionless quantities in bars

2k2

T=COT, £;=k%, r) = kr), E = E (30)
CO

and then finally dropping the bars.
Therefore the nonlinear evolution equation of a three-dimensional surface gravity

wave packet in presence of a thin thermocline consists of the two coupled equations
(27) and (28).

In the absence of a thermocline y = 0, and therefore (28) gives

-J- =4H-g-(SS*). (31)

Substituting this expression for dE/d% in (27) we get the following single nonlinear
evolution equation, which is same as the equation (2) of Janssen [14] and (2.20) of
Hogan [13] with K = 0, that is, in the absence of capillarity.

1 3T ~ 8 3F + ian2 ~ 1(3 W + ~S

zitn- (32)
0$ 0$ 0%

We shall now derive a single nonlinear evolution equation from the two coupled
equations (27) and (28) on the assumption that space variation of the amplitudes takes
place along a direction which makes an angle 9 with the direction of propagation of
the wave. Such an equation is suitable for a stability analysis of a uniform wave train
with respect to a plane wave perturbation given in a direction making an angle 9 with
the direction of propagation of the wave.

Transforming the horizontal co-ordinates £, r\ into the new co-ordinates £', JJ' by
the relations

£' = £ cos 6 + ?7 sin ̂ , j / = — £ sin 9 + r] cos 9 (33)

and then assuming that f, E depend on %' only and not on r\', the evolution equations
(27) and (28) get transformed into the following two coupled equations.

3f / I , 1 , \ 92£ / I , 3 , \ 3 3 i ;
/ — - I - cos2 0 - - sin2 $ -f- - i [ — cos3 9 - - cos 6 sin2 9 —^

ox \ 8 4 / 9§ \ l o 8 / 9§

= 2£2£* — 6/ cos#£f *—- — i cos^^2 1— cos#£—-, (34)

BE 16ycos# t 4cos30 1 f°° d%" 9

cos2 9— Aykd cos2 9 — Aykd n j - ^ ^ — s "5 (riz\
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Substituting the expression for dE/d%' given by (35) in (34) we get the following
single nonlinear evolution equation for £ in the presence of a thin thermocline, and in
this equation we drop the prime on £.

where

£, = —(cos20 -2s in 2 0) , fi2 = (cos30 - 6cos0sin20),
8 16

8y cos2 6
A. = 2 + / ,

cos2^ — Aykd
A3 = -cos9, A4 = 2 + 2 C ° S 9 (37)

cos20 — Aykd
and the Hilbert transform operator H is given by

[ P^d^'. (38)

As the coefficients A i and A2 contain the factor cos2 0 —Aykd in their denominators,
the evolution equation (36) does not remain valid when cos2 6 = Aykd, which is the
resonance condition. This resonance condition is satisfied when the component of
group velocity of the surface gravity wave along a line making an angle 6 with the
direction of propagation of the wave becomes equal to the phase velocity of the
long wavelength internal wave. Moreover since the evolution equation (28) has been
derived on the assumption that kd is finite, results for kd —> oo cannot be obtained
from the evolution equation (36).

4. Stability of a uniform wave train

For a uniform wave train we take

f = aoexp(-i AOJT) = £<0) (39)

as the solution of (36), where a0 is a real constant and Aco is the nonlinear frequency
shift of the wave given by

Aco = A,a2. (40)
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To study instability of the uniform wave train (39) we introduce the following
perturbation in the uniform solution:

£ = £ ( 0 ) [ l+£( f , r ) ] . (41)

We substitute (41) in the evolution equation (36), linearize with respect to £, f *
and then separate the equation into real and imaginary parts after setting £ = fr + /£,,
where £., f, are real. Finally taking Fourier transforms of these two equations with
respect to £ we get the following two equations.

ti) +
dr

, , ] . . .
(42)

lA2a
2

0 - lA^Mr) = 0, (43)

where (£,.) and (£,-) denote Fourier transforms of £r and £,• respectively with respect to
§ defined by

(44)

Now assuming r dependence of (£r) and (^,) to be of the form exp(—i£2z) we get
the following nonlinear dispersion relation from (42), (43).

2, (45)

where we have neglected order e5 terms, since the evolution equation (36), from which
we have derived this nonlinear dispersion relation is correct to order e4 terms.

The instability condition, that can be obtained from (60), is

P2l4 - 2/S/2a0
2(A, - A4|/ |) < 0, (46)

where we have set fix = —p. If this condition is satisfied the growth rate of the
instability is given by

Yx = [2£/2«0
2(A. - A4|/ |) - £2 / 4 ] 1 / 2 . (47)

This growth rate of instability attains a maximum when the wavenumber of the
perturbation lM is given by

<48>
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and the corresponding maximum growth rate of instability yM is given by

YM = A,<30 U-

According to (46) the wave number at marginal stability is given by

P2l2-20a*(Al-A4\l\) = O.

0-0*.
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FIGURE 1. Maximum growth rate yM against wave steepness OQ, — represents absence of thermocline.

For drawing graphs of Figures (la)-(ld) and (2a)-(2d) we have taken y = 10~3,
which is the case for a seasonal thermocline. Graphs are plotted showing the variation
of maximum growth rate of instability yM against wave steepness a0 for 5 different
values of kd and for a fixed value of 6. Figures (la)-(ld) are drawn respectively
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FIGURE 2. Wave number of perturbation X at marginal stability against wave steepness a0,
represents absence of thermocline.

for 9 = 0°, 10°, 20°, 30°. In each of the figures graphs of maximum growth rate of
instability obtained from the third-order evolution equation are shown; moreover the
graphs for maximum growth rate of instability in the absence of a thermocline (y = 0)
obtained from the fourth-order evolution equation are also shown. From these graphs
it is found that a thin thermocline has a stabilizing influence on the instability of
a uniform surface - gravity wave train and the maximum growth rate of instability
decreases with the increase of thermocline depth. From this it cannot of course be
concluded that the maximum growth rate of instability tends to zero, that is, there is
stability as kd —>• oo. Since as mentioned in the last paragraph of Section 3 the results
for kd -> oo cannot be obtained from evolution equation (36).

The wavenumber of perturbation X at marginal stability has been plotted against
wave steepness a0 showing stable-unstable regions in Xa0 - space for five dif-
ferent values of kd in four figures (2a)-(2d), which are drawn respectively for
9 = 0°, 10°, 20°, 30°.

In figures (3a)-(3d) graphs have been plotted showing the variations of maximum
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FIGURE 3. Maximum growth rate yM against wave steepness a0, —- represents absence of thermocline.

growth rate of instability yM against wave-steepness a0 for four different values of y
and for some fixed values of kd and 9.

5. Conclusion

In order to study the effect of a thin thermocline on the Benjamin-Feir instability of
a surface gravity wave, we have derived two coupled fourth-order nonlinear evolution
equations. The reason for starting from fourth-order nonlinear evolution equations is
that for infinite-depth fluids as pointed out by Dysthe [8] the fourth-order nonlinear
evolution equations give results consistent with the exact results of Longuet-Higgins
[15,16] for wave steepness up to 0.25. Assuming that space variation of amplitude
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takes place along an arbitrary fixed line, the two coupled equations are reduced to
a single equation. From this equation instability condition and maximum growth
rate of instability are obtained. It is found that a thin thermocline has a stabilizing
influence and the maximum growth rate of instability decreases with the increase
of thermocline depth. These results remain valid only for finite thermocline depth,
since the evolution equations have been derived under this condition. Further the
single evolution equation loses its validity when the resonance condition is satisfied.
This resonance condition is satisfied when the component of group velocity of the
surface gravity wave along the line in which the perturbation is given becomes equal
to the phase velocity of the long internal wave. Both the maximum growth rate of
the instability and wavenumber at marginal stability have been shown graphically for
some different values of dimensionless thermocline depth.
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Appendix

A]Al+il(o-ieCg—+ie2—Ui = au (Al)

—+i€ 2 —jA.+sf , =bu (A2)

A2A2 + i \2w-ieCs—+i€2—U2 = a2, (A3)

-i [2eo - ieCg-- + ie1 — ) A2 + gt;2 = b2, (A4)
V o^ d r /

where an, bn, (n = 1,2) are contributions from nonlinear terms.

€kF — ieCgk^o — e2-^— = a0, (A5)

(A6)

dr
dE

= a0,

= b0,

where E = Ao + Bo, F = Ao — Bo, and a bar over OQ, b0 indicates their Fourier
transform.

Aoe — aoe = Coe , (A I)
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3 T

- e2C2
ek

2k2(E - F)eAd

-(Fcoshefcd - Esinhekd) - 2i€iCgkHk2 I — -^m(*E

V '
eM.

(A8)

(A9)

Solutions for £0, A,v and

A22 = 0,

ico 1
-

ar

O *

^02 — —, £o3 —

cl
g 3r

C? 1_T3 2 F 2

i c r , ri [9

+ ^'

2coF-1

l

IF
" "

1 F
32£,
3^3r

(A 10)

Here F [ ] implies Fourier inversion of the quantity inside bracket.

Derivation of the evolution equations from (A2) and (Al). (A2) can be put in
the following convenient form after eliminating A, by the use of (Al).

This equation in the lowest order, which is order e3, becomes the following after
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substituting the solution for various perturbed quantities.

.3£n a) 32£n co 32fn
 9 £

9 £ i , . n ,

1 l F - (A12)

At the next order, O(e4), the same equation (All) gives

co 32£i2 co 92£i2 ico 33£M 3ico

Sk2 3 | 2 + ~4k2 dr)2 ~ 16k3 3£3 + Ilk3

(A13)

In this equation we have replaced 3£n/3r, by the expression that can be obtained
from (A 12).

Adding (A12) and (A13) and setting £ = £n + e£i2, E = E\ +eE2 we arrive at the
fourth-order nonlinear evolution equation (27) for £. This equation has been made
dimensionless by introducing dimensionless quantities in bars given by (30) and then
finally dropping bars.

Since the evolution equation (27) involves E, we need an equation for E. This is
provided by the equation (A9), which in the lowest order, O(e3) gives the equation

where F[ ] implies the Fourier transform of the quantity inside the square bracket. At
the next order, that is, at order e4 the same equation gives

- 2coC2kl f d 1

E2 = —MF [-*,*,-,J , (A15)
d 1

where we have neglected terms of order €4Sp/p.
Now adding (A 14) and (A 15) then taking the Fourier inversion, we get (28) for

E, which has been written in dimensionless form after introducing the dimensionless
quantities (30) and then dropping their bars.
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