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1. Introduction

We examine the equation

(L1) )= [V K(x Be(a)da (0<f<in)
or, briefly,
f=Kg,

where

__fcosasinp ()]
(1.2) K= f) = { cos asin f {1+3n (tanb(x, B)—0(x, B)} (x = B),
with
(1.3) B(«, f) = cos™? (ZEZ) (principal value; « = f§).

This integral equation arises in connection with the problem of measuring
foliage density of small plants and grasses by means of point quadrats;
it is due to J. R. Philip [1]. Foliage density is defined to be the area of
foliage per unit volume of space. In order to assess the foliage density within
a certain spacial region, the phytologist pushes a point quadrat {which is
a sharp needle, suitably mounted) through the region along a line inclined
at an angle B to the horizontal, and records the number of contacts with
foliage made by the point of the quadrat per unit length of travel: this figure
determines f(8). The unknown distribution of foliage angle is given by
g: g{x)da is the contribution to foliage density due to foliage inclined at
angles between « and a-+da to the horizontal (it being supposed that
the foliage slopes non-preferentially to all points of the compass). The
practical problem is to find g from a knowledge of the values of f(§) for
a few values of §. In general the phytologist must work on che assumption
that f is smooth; g is of course expected to be non-negative, but may be
anything from constant to, say, a delta function.

The form of the kernel K is due to J. Warren Wilson and J. E. Reeve

[4]. K is continuous over the square [0, =] X [0, 4], but it is not sym-

metric: thus (1.1) is a Fredholm integral equation of the first kind whose
397
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L? theory would be covered by, say, the discussion in [3], §§ 3.15, 3.16.
The purpose of the present note is to describe the L! theory, where an
explicit formula for the solution ((3.5)) can be found by quite modest
means when f is sufficiently smooth. The solution found is unique, but
depends explicitly upon f and its first three derivatives; thus to estimate g,
many values of f(8) are required. Consequently, the solution is principally
of theoretical interest, and is unsuitable for application to experimental
data. We do not examine here what further conditions on f are necessary
in order that g be non-negative, as required.

I must thank Dr. Philip for introducing me to the subject and for the
benefit of several helpful discussions, and the referee for additional com-
ments.

2. Range of K

The transform relation (1.1) is, in more detail,

(2.1) 3=nf(B) = dnc, sin B+sin B ﬁ"g(a) cos « (tan 8(x, B)—0(x, B))dx,
where
c, = f:"g(a) cos a dx.

In this section we shall take K to be the linear operator defined by (1.1)
whose domain is L!(0, }») (briefly, L!); we assume that g is a function
in L!, and consider the consequent properties of its transform f. In this
way we find necessary conditions on | for the existence of solutions g in L1,

Notice that 0 < 0(«, ) < 4=; for fixed f # 0, 6(a, §) increases from
0 to }= as « increases from B to §=, while for fixed « # 0, 0(«, f) decreases
from 4z to 0 as § increases from 0 to «.

Lemma 1. If ge L3, then
lim f(8) = [ g(e) sinad lim /§) = [¥¢(a) cosada = .

ProoF. Since
(2.2) tan 0(«, B) = cot § V'tan? a—tan? g,
cos « tan 6(x, B) is an increasing function of «, and

0<cosatanb(x, 8) =cotg for 0<f<a<in

The result follows from (2.1).

LeMMA 2. If g € LY, then /’(ﬂ) exists for all B in (0, }x), and

ey () - . j o (a) cos a v/iant atant f da.

2 df \sin " sin?
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Proor. Formula (2.3) follows formally from (2.1) by differentiation,

since

] V'tan? a—tan? g

fl 0 —6 = 7,
(24) 75 (000 £)—0(x. ) S
To prove the lemma, let 4(8) denote the righthand side of (2.3). Taking
0 < ¢ < 7 < 1=, integrate k(B) over (o, 7), inverting the order of integration
in the double integral. (This is justified by Fubini’s and Tonelli’s theorems,
under the assumption g € L1.) We find

’ =z flr) = flo)
JOF =3 e T T eing
Hence
_ =9 (1)
0= 5 7 (5er)

for almost all 7 in (0, 4=). Since in fact A(r) exists for all v in (0, 3n), we
can assume that f'(r) likewise exists for all z. The result follows.

Lemua 3. If g e L1, then limy_, f(B) = lim,,, f/(8) = 0.
Proor. (2.3) is equivalent to
Yt (8) = e, 05 ft-cos B [ ¥ g(a)eos a(tan b(z, B)—0(x, ) du
—cosec f J:" g() cos «Vtan® x—tan? B da.

The value of the limit as g — }n follows without difficulty. To derive
the limit as g — 0, one first shows that

(2.5)

T4
lim | g(x) cosa O(a, B)da = }nc,,
g-0ds

and then uses (2.5). We omit the details.

LeMMA 4.If g € L, then [ (B) exists for almost all B in (0, 4n), determining
a measurable function, and for such B,

g(a) cos a da

i
2.6 cos?® ' = —— e
(2.6 b A1) = [ o

The proof follows closely that of Lemma 2, so we omit it.

We conclude from Lemmas 2, 3 and 4 that the range of K s contained
in the class of functions f which are defined and have absolutely continuous
first derivative on the open interval (0, §n), with ' (0+0) = f (3n—0) = 0.

It can be shown that f has a third derivative if g is also absolutely
continuous and satisfies certain integrability conditions.

https://doi.org/10.1017/51446788700025210 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025210

400 J. B. Miller (4]

3. Solution of the integral equation
The solution in L?! is unique.

THEOREM 1. The integral equation (1.1) has at most one solution g in
L if | is given.

ProoF. Let g, and g, be two solutions of (2.1), in L. By Lemma 2,

3.1) ) j” (g1(2) —ga(«)) cos « Vtan® u—tan? f do = 0
for all g in (0, 3n). Make the change to variables # and y defined by
(3.2) tana =2, tan’f =y,
and write
rle) = MOV ) = gale) —eale):

22t (1+4+2)% °
{3.1) becomes

f:o (x—y)t7(z)dx = 0 for all y in (0, o).

Titchmarsh’s convolution theorem ! implies that 7(z) = 0 for almost all x.
The result follows.

In § 2 we have found necessary conditions on f for the existence of a
solution g e L. We now find sufficient conditions, and obtain an explicit
formula for the solution. Formally, this is done as follows. The solution g
satisfies the differentiated form (2.3); change to the variables z and y of
(3.2), and introduce functions $ and ¢ by writing

ﬁ(y)———Slzﬂdﬁ(sfl(f;) O<p<in 0<y< ),

9(”)=“2—t$iecaa B<a<imy<az< o)
Equations (2.3) becomes
(3.3) pO) = [ @—y)tq(e)de
Then

© (y—t)t (" * (z—y)t (y—t)H

[ =iy = [ qwas | S ay
(z—1t) =

dz,

=), @ s
so that

1 [2], p. 325, Theorem 152.
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28 °°(y ) q()
A f du T
Therefore
B gt
- N};’_jﬁ(t* [TEE sm)
- zj;j w1 1)_ p(tw)du
- fl (w—1) " () du
ie.
(3.4) a) = = f 04" (y)dy

In terms of the original functions, this is

*n : 7 - ’ a1
(3.5) gla)=tanasec’a f 3 cost sin7(/(x) +{£______n2(?it:::? FE@+r") dx

Rather than justify the above argument, it is simpler to start with
(8.5), and show that it defines a solution of (2.1) under suitable conditions
on f. If this is done (and we shall not elaborate the detaiis here), we obtain

THEOREM 2. Let f be such that ' exists and is absolutely conmtinuous

on [0, }n], and

F'(0) = f(En) =0
Then g(a«), given by (3.5), exists for almost all «, and g is the solution of (1.1)
belonging to L.

Finally, to round off the discussion, we consider the circumstances in
which a solution g of (1.1) can be found by solving one of the differentiated
forms of the equation, (2.3) or (2.6). It is evident, for example, that a
solution g of (2.3), which does not contain the constant ¢, depending upon
the solution, may not be a solution of (2.1). We state without proof

THEOREM 3. (i) Let [’ be absolutely continuous on (0, §n). If g is a solution
in L1 of (2.6), it is also a solution of (2.3) if and only if f'(3n—0) = 0.

(ii) Suppose instead that | is absolutely continuous on (0, 4x). If g is a
solution in L1 of (2.3), it is also a solution of (2.1) if and only if ¢, = f(3n—0).

References

[1] Philip, J. R., Analysis of the spatial distribution of foliage by point quadrats at several
inclinations {to be submitted to the Aust. J. of Dotany).

https://doi.org/10.1017/51446788700025210 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025210

402 J. B. Miller [6]

{2] Titchmarsh, E. C., Introduction to the theory of Fourier integrals. Oxford U.P., 1937,

(3] Tricomi, F. G., Integral equations. Interscience, New York, 1957.

{4] Warren Wilson, J., Inclined point quadrats, with Appendix by J. E. Reeve. The New
Phytologist 59 (1960), 1—8.

Australian National University,
Canberra.

https://doi.org/10.1017/51446788700025210 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025210

