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Abstract

In this paper, we exploit a new series summation and convergence improvement technique
(that is, Drazin and Tourigny [5]), in order to study the steady flow of a viscous incom-
pressible fluid both in a porous pipe with moving walls and an exponentially diverging
asymmetrical channel. The solutions are expanded into Taylor series with respect to the
corresponding Reynolds number. Using the D-T method, the bifurcation and the internal
flow separation studies are performed.

1. Introduction

For over four decades, workers in statistical mechanics have effectively employed
the technique of extending a regular perturbation series to high order by computer,
and then analysing the coefficients to reveal the structure of the solution (Gaunt and
Gutmann [8]). That procedure was later adapted to a variety of problems in fluid
mechanics (Van Dyke [6]). Recently, Drazin and Tourigny [5] presented a novel
computational approach to the investigation of bifurcations that relies on the use of
power series in the bifurcation parameter for a particular solution branch. Their
initial motivation was to solve boundary-value problems for non-linear systems of
ordinary and partial differential equations. The procedure leads to a special type of
Hermite-Pade approximant. Let us suppose that the partial sum

O(XN+l) asA.^-0 (1.1)
n=l
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is given. We shall make the simplest hypothesis in the context of non-linear problems
by assuming that U(k) is the local representation of an algebraic function u of k.
Therefore, we seek a polynomial Fd = Fd(k, u) of degree d > 2,

Fd(k, U) = YJ £ / m _ M r - V , (1.2)
m=\ *=0

such that

^ ( 0 , 0 ) = 1 (1.3)
du

and

Fd(k, UN(k)) = O(kN+i) ask-^0. (1.4)

Condition (1.3), which yields /0,i = 1 , ensures that the polynomial Fd has only one
root which vanishes at k = 0 and also normalises Fd . There are thus

l + X > + l) = i(rf2 + 3rf-2), d-5)
m=2 l

undetermined coefficients in the polynomial (1.2). The requirement (1.4) reduces
the problem to a system of N linear equations for the unknown coefficients of Fd.
The entries of the underlying matrix depend only on the N given coefficients an.
Henceforth, we shall take

N = ^(d2 + 3d-2), (1.6)

so that the number of equations equals the number of unknowns. A bifurcation
occurs where the solutions of a non-linear system change their qualitative character
as a parameter changes. In particular, bifurcation theory is about how the number of
steady solutions of a system depends on a parameter. The bifurcations for Fd(k, u)
can then be analysed locally by means of Newton's diagram (Vainberg and Trenogin
[18]).

The objective in the present paper is to demonstrate the applicability of the D-T
method in solving non-linear systems of ordinary and partial differential equations.
In Section 2, we consider the steady flow in a porous pipe with axially decelerating
walls (Berman [1]). The problem reveals the procedure's ability to find disconnected
solution branches, and also serves to illustrate how strongly non-linear results can
be found accurately by using only weakly non-linear results. In Sections 3, we
investigate the problem of steady flow in an exponentially diverging asymmetrical
channel (Blasius [2]). The problem is considered in the boundary-layer approximation
and reveals the suitability of Pade approximants over the D-T method in determining
the position of internal flow separation. In Section 4, we discuss the pertinent results.
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2. Porous pipe with decelerating walls flow

[3]

The steady axisymmetric flow of a viscous incompressible fluid driven along a pipe
by the combined effect of the wall deceleration and suction is considered. This type
of problem was first investigated by Berman [1] and subsequently by many authors,
for example, Terrill and Thomas [17], Zaturska and Banks [19], Makinde [11]. Let
E be a parameter such that the axial velocity of the wall is Ez. It is assumed that
aE/V= 0(1) and V ^ 0 (V > 0 represents suction velocity and V < 0 represents
injection velocity).

v — V, u = 0 or Ez

*• z

FIGURE 1. Schematic diagram of the problem.

By assuming a similarity form for the solution of the Navier-Stokes equations it is
found, after non-dimensionalization, that the velocity components (u, v) increasing
in the directions of (z, r), respectively, and vorticity co of the flow may be expressed
as (Makinde [13])

zdF 1 r« = - — , v = —F,
r dr r

CD = -zG, (2.1)

and

dr \_rdr J \_r dr dr \r ) J

=0, 4 I ~ I =
dF

F = — 1
1 — i» dr

= - 1 ,

G = — [
dr\r dr

on r = 0,

on r = 1.

(2.2)

(2.3)

(2.4)

The Reynolds number associated with the flow is R = Ea2/v, where a is the tube
characteristic radius and v is the kinematic viscosity of the fluid. The solutions
F = F(r, R) and G = G(r, R) of the resulting boundary-value problem can be
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obtained in the form of power series in R, (that is, for small /?),

Fn=0, (lF'«) =°- on r = 0, (2.6)

Fo = - l , F n + 1 = 0 , F ' 0 = - l , F ' n + i = 0 , on r = \,n = 0 ,1 ,2 , . . . , (2.7)

where the prime symbol denotes differentiation with respect to r. We expand F(r, R),
P = (F'/r)' at r = 1 and F"(0) (that is, stream-function, skin friction and centreline
axial velocity parameter) in powers of the Reynolds number, to obtain

F(r) = - l - r 2 0 ~ r 2 ) - ^ r \ l - r 2 ) ( l - r 2 ) 2 R + ••• , (2.8)

\§ilM3--> (29)

and

Using a symbolic algebra package such as Maple, the first 54 coefficients of the solution
series were obtained. We observed that the signs of the coefficients are the same and are
monotonically decreasing in magnitude. The convergence of the series may be limited
by a singularity on the positive real axis (Van Dyke [6]). The graphical form of the
D'Alembert's ratio test (Domb and Sykes [4]) together with Neville's extrapolation at
l/n = 0 (that is, n -> oo) reveal the radius of convergence R = 3.07249. Following
the Drazin and Tourigny technique, we compute the first and second turning points
R{ and R2 together with fi_x and F",(0) on the secondary branch as R -> 0, since
P ~ £_,/?-' and F"(0) ~ F!,(0)/?-' as R ->• 0 on the secondary branch (Brady
and Acrivos [3]). Our results show that /?, ^ 3.0724980042, Ri % 8.813114939,
y5 -* -67.670206/?-', and F"(0) -> -35.3149734/?-' as R -*• 0 on the secondary
branch (see Table 1). It is interesting to notice the absence of real solutions for
/ ? , < / ? < R2, and that fi -* 0 as R - • 2.828847..., that is, reversal of the flow at
the wall will occur (see Figure 3).

3. Flow in a diverging channel

The two-dimensional flow of a viscous incompressible fluid driven steadily through
an exponentially diverging asymmetrical channel is considered. This problem was
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introduced into the literature by Blasius [2] and has been treated mathematically in
several ways by many researchers, for example Fraenkel [7], Lucas [9], Pedley [16],
Makinde [12], Makinde and Lungu [15].

TABLE 1. Computations for the flow in porous tube with axially decelerating walls.

d
2
3
4
5
6
7
8
9

N
4
8
13
19
26
34
43
53

R\d>

2.9908989594384452426
3.0729182958247960750
3.0724931718813353943
3.0724980037912682482
3.0724980042504038099
3.0724980042458196719
3.0724980042458197011
3.0724980042458197011

K2

8.826676298
8.813139499
8.813109211
8.813114950
8.813114939
8.813114939

-80.829517
-67.329194
-67.666689
-67.670223
-67.670206
-67.670206

-34.7954971
-35.3066983
-35.3151076
-35.3149729
-35.3149734
-35.3149734

Let u and v be the velocity components increasing in the directions of x and y
respectively, and b(x) be the variation in the channel's width.

y =

y=0

FIGURE 2. Schematic diagram of the problem.

The channel's width (y — b(x) = aS{x/L)) is assumed to vary slowly with axial
distance such that 0 < £ = a/L « 1, where a is the channel's characteristic width
and L is the characteristic length. In the limit e —> 0, the channel is of constant width.
The following dimensionless variables are introduced

a2to ex
co =

y

a
(3.1)

Q ' a ' }~ a Q'

where Q is the constant flux across any cross-section of the channel, * is the stream-
function and co is the vorticity. The flow is considered in the boundary layer approx-
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imation or for a channel with a small aspect ratio e. The dimensionless governing
equations together with the appropriate boundary conditions (neglecting the bars for
clarity) can be written as (Makinde [14])

= Re"v"A<*') , (3.2)
ay- d(x,y)

3y2

3 *
* = 0, — on y = 0, (3.4)

3y
3 *
— = 0, W = l 011 y = S, (3.5)

where Re = e Q/v is the effective flow Reynolds number and we emphasize that
Re = O(e) as £ ->• 0. For the geometry of the channel under consideration, 5 is
defined as S = e*.

In order to estimate the position of separation in the flow field, the state variables
* , p (= 5232*/3y2), and H (= S3sdP/dx , P is the fluid pressure), that is, stream-
function, the wall shear stress and the axial pressure gradient parameters respectively,
are expanded in powers of h (= Re S) to obtain

- 3 ) T]2(2r] - l ) ( r j 2 - r) - l ) ( r ) 2 - \ ) 2 h + ••• , ( 3 . 6 )

= 6 " 35* " *2 + ft3 +35* 26950* + 6l3lT35ft + 914923259250

as /i —>• 0 and where t) = y/s. Using a computing aid such as Maple, the first 44
coefficients of the above series were obtained. We noticed that the coefficients of wall
shear stress alternate regularly after the tenth term and are monotonically decreasing
in magnitude (that is, similar to the Lucas [9] problem). We also recast the series
into several diagonal Pade approximants [M/M] (where n = M + M is the order
of the series required for each approximant). The D-T method is also utilised and a
comparison of the results shows good agreement as the number of terms of the series
used increases, as shown in the Table 2 below. Hence, the position of separation for
any given Reynolds number Re is given by Sc « 31.7397/Re, that is, as fi -*• 0.

4. Graphical results and discussion

With the aid of Maple graphic facilities and using the D-T method, a sketch of the
bifurcation diagram for the problem of a porous tube flow with decelerating wall was
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TABLE 2. Comparison of the Pad6 approximant with the D-T method in estimating the separation position
for asymmetric flow in an exponentially diverging channel, that is, h as fi -*• 0.

n

4
8
14
20
26
34
44

m

2
4
7
10
13
17
22

(/ic = Re5c)Pade
approximants [M/M]

31.75531685568
31.72949279707
31.74025328399
31.73969222172
31.73973143549
31.73971036233

(hc = ReSc)
D-T method

29.99643400951
31.04359838975
31.89432463789
31.74548021256
31.73963919155
31.73973283481
31.73970885902

F"(0)

* R

(a) (b)

FIGURE 3. A sketch of the bifurcation diagram for the porous-tube-with-decelerating-wall flow problem;
(a) skin friction, and (b) centreline axial velocity, with respect to R.
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FIGURE 4. Domb-Sykes plot for coefficients of /? for the porous-tube flow problem (Radius of convergence
=3.07249).

FIGURE 5. Variation of wall shear stress (/)) with respect to h (= Re S) for the exponentially-diverging-
asymmetrical-channel flow problem.
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obtained and is shown in Figure 4. We obtained accurately the two turning points
Ru R2 as well as the asymptotic behaviour of skin friction and the centre-line axial
velocity as R -> 0 on the secondary solution branch (see Table 1). The absence of
real solutions for /?i < R < R2 is noticed and consequently the branches with turning
points Ri and R2 are disconnected. Figure 5 shows the Domb-Sykes plot for the
coefficients of the skin friction fl. The radius of convergence that corresponds to the
nearest singularity lies on the positive real axis of R and is given as R = 3.07249.

Figure 6 shows the variation of the wall shear stress with respect to the param-
eter h (= Re 5) using several diagonals Pade approximants, for steady flow in an
exponentially asymmetrical channel. We observe a convergence from the [4/4] Pade
approximant, and the wall shear stress decreases with an increase in h. The position of
internal flow separation is given by Sc « 31.7397/Re (see Table 2). Here, we observe
that our result at the separation position is four times the result obtained by Lucas [9]
at the separation position (that is, 4 x 7.9349 = 31.739). This implies that the results
obtained for flow in an asymmetrical channel can be easily transformed to those in a
symmetrical channel (Makinde [14]).

Finally, the porous tube flow problem investigated in Section 2 demonstrates the
ability of the D-T method to find disconnected solution branches and also serves to
illustrate how strongly non-linear results can be found accurately by using only weakly
non-linear results. However, in the case of an exponentially diverging asymmetrical
channel no bifurcation was found. Also we observe that the Pade approximants
converge better than the D-T method in the absence of turning points, although
the Pade approximants can only improve the result on the single solution branch
representing the original power series. We emphasize that the D-T method is, in
essence, a numerical form of analytic continuation and, as such, can only be expected
to reveal those branches that are analytic continuations of the original power series.
Furthermore, it is noteworthy that the applicability of the D-T method as well as
other series summation and improvement techniques depend on the availability of
partial sums of the solution series for the problem under consideration. In many
situations, it is possible to obtain the Taylor coefficients exactly (for instance by
perturbation methods). Reliance upon the exactness of the Taylor coefficients may,
however, limit the usefulness of the procedure to a rather small portion of the global
bifurcation diagram. Hence, one may compute the approximate Taylor coefficients
by using the standard numerical part-following techniques (Lyness, [10]), thus greatly
enhancing the scope and range of applicability of the D-T method. The D-T method
has a wide range of application and may fail to reveal the bifurcation point for some
problems (for instance when the pattern of signs of the coefficients of solution series
is irregular or cannot be easily established), but whenever it works, the error decays
faster than exponentially with the number of terms of the series used, as illustrated
by our example. Therefore, it is not a panacea for all applied-mathematics problems.
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Moreover, the D-T method utilised in this paper is obviously amenable to various
types of generalizations. For instance, it is quite straightforward to devise extensions
to cater for problems with more than one bifurcation parameter or with more than
one scalar state variable. Such generalizations may, however, be very demanding of
computing time and memory.
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