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Abstract

In this paper a branching process approximation for the spread of a Reed–Frost epidemic
on a network with tunable clustering is derived. The approximation gives rise to
expressions for the epidemic threshold and the probability of a large outbreak in the
epidemic. We investigate how these quantities vary with the clustering in the graph and
find that, as the clustering increases, the epidemic threshold decreases. The network is
modeled by a random intersection graph, in which individuals are independently members
of a number of groups and two individuals are linked to each other if and only if there is
at least one group that they are both members of.
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1. Introduction

This paper is concerned with Reed–Frost epidemics modified to take place on random
networks. Introduced in 1928 by two medical researchers, Lowell Reed and Wade Frost,
the Reed–Frost model is one of the simplest stochastic epidemic models. The spread of the
infection takes place in generations: each individual that is infective at time t (t = 0, 1, . . .)
independently makes contacts with all other individuals in the population with some probability
p, and if a contacted individual is susceptible, it becomes infected at time t + 1. Also, at time
t + 1, the infective individuals from time t are removed from the epidemic process.

The behavior of the Reed–Frost model is well understood; see, e.g. von Bahr and Martin-Löf
(1980). A crucial assumption which simplifies the analysis of the model is that the population
in which the epidemic takes place is taken to be homogeneously mixing, that is, an infective
individual is assumed to make contacts with all other individuals in the population with the
same probability. This assumption is of course very unrealistic, since, in a real-life epidemic,
an infective individual is much more likely to infect individuals with whom he/she has some
kind of social connection. The Reed–Frost model can easily be adapted to incorporate this type
of heterogeneity by introducing a graph to represent the social structure in the population and
then stipulating that infective individuals can only infect their neighbors in the social network;
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see Section 3. This modification makes the analysis of the model two-fold. Firstly, finding a
realistic model for the underlying social network, and, secondly, studying the behavior of the
epidemic on this graph.

Large complex networks such as social contact structures, the Internet, and various types
of collaboration networks have received a lot of attention during the last few years; see, e.g.
Dorogovtsev and Mendes (2003), Newman et al. (2006), and the references therein. As for social
networks, one of their most striking features is that they are highly clustered, meaning roughly
that there is a large number of triangles and other short cycles; see, e.g. Newman (2003b). This
is a consequence of the fact that friendship circles are typically strongly overlapping, so that
many of our friends are also friends of each other. A model that captures this in a natural way is
the so-called random intersection graph, which is described in Section 2. Roughly, the idea of
the model is that people are members of groups—families, schools, workplaces etc.—and an
edge is drawn between two individuals if there is at least one group that they are both members
of. If the relation between the number of individuals and the number of groups is chosen
appropriately, this leads to a graph where the amount of clustering can be tuned by adjusting
the parameters of the model.

An important goal of network modeling is to investigate how the structure of the network
affects the behavior of various types of dynamic processes on the network; see Durrett (2006) for
an overview. When it comes to epidemics, Andersson (1999) is a comprehensible introduction,
in which expressions for the epidemic threshold, the probability of a large outbreak, and the final
size of the epidemic are derived in a heuristic way for a number of underlying graphs. Here, the
epidemic threshold, commonly denoted by R0, is defined as a function of the parameters of the
model such that a large outbreak in the epidemic has positive probability if and only if R0 > 1. In
epidemic modeling a common technique for deriving expressions for the epidemic threshold and
the probability of a large outbreak is to use branching process approximations of the early stages
of the epidemic. However, when studying epidemics on networks, dependencies between the
edges in the graph tend to make branching process approximations more complicated. Results
for epidemics on graphs with arbitrary degree distribution can be found in Andersson (1998),
and Erdős–Rényi graphs and some extensions thereof are dealt with in Neal (2004), (2006).
There is however very little work done on more complicated graph structures.

The aim of this paper is to give a rigorous analysis of how clustering in a network affects
the spread of an epidemic. The network is modeled by a random intersection graph with
tunable clustering and we then let a Reed–Frost epidemic propagate on this graph. Comparing
the epidemic with a certain branching process yields (implicit) expressions for the epidemic
threshold and the probability of a large outbreak. Numerical evaluations reveal that, as the
clustering increases, the epidemic threshold decreases—that is, large outbreaks are possible
for larger parts of the parameter space—but also that the actual value of the probability of
a large outbreak decreases as the clustering approaches its maximal value. To the authors’
knowledge, this is the first rigorous investigation of how the spread of an epidemic is affected by
clustering.

In Newman (2003a), the effect of clustering on epidemics was studied by heuristic means,
and calculations therein indicate that indeed the epidemic threshold should decrease as the
clustering increases. Furthermore, Trapman (2007) studied epidemics on graphs with a given
expected number of triangles, but the construction of the graph is more involved there. We also
mention the work in Ball et al. (1997) on the so-called household model, which describes the
spread of an epidemic in a population with group structure. The model there, however, is not
formulated in terms of an underlying graph and the concept of clustering is not considered.
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The paper is organized as follows. In Section 2 random intersection graphs and their
properties are described in more detail. Section 3 contains the main result—a comparison
of a Reed–Frost epidemic on a random intersection graph with a branching process—and its
proof. In Section 4 the final size of the epidemic is commented on. It is observed that a thinned
random intersection graph is in fact not a random intersection graph, implying that results
concerning the component structure in a random intersection graph cannot be used to draw
conclusions about the final size of the epidemic. In Section 5 numerical results are presented
and, finally, Section 6 contains a short discussion.

2. Random intersection graphs

Random intersection graphs were introduced in Singer (1995) and Karoński et al. (1999).
In its simplest form, the model is defined as follows: given a set V of n vertices and a set A of
m auxiliary vertices, construct a bipartite graph Bn,m,r by letting each edge between vertices
v ∈ V and a ∈ A exist independently with probability r . The random intersection graph Gn,m,r

with vertex set V is obtained by connecting two vertices v, w ∈ V if and only if there is a vertex
a ∈ A such that a is linked to both v and w in Bn,m,r . This construction can be generalized
in various ways—see, e.g. Godehardt and Jaworski (2002) and Deijfen and Kets (2007)—but
in this paper we will stick to the above formulation. We will also specialize to the case where
m = �βnα� for some constants α, β > 0 (where �·� denotes the integer part); see Karoński
et al. (1999) for a motivation of this choice of m. In fact, to get a graph with tunable clustering,
we will soon take α = 1.

If the vertices in V and A are thought of as individuals and groups, respectively, then
the random intersection graph provides a model for a social network where individuals are
connected if there is at least one group where they are both members. The probability that
two individuals do not share any group is (1 − r2)m, implying that the edge probability in the
random intersection graph is 1 − (1 − r2)m, and, hence, the expected degree of a fixed vertex is

(n − 1)(1 − (1 − r2)m) = βr2n1+α + O(r4n1+2α).

To keep this expression bounded as n → ∞, we let r = γ n−(1+α)/2 for some γ > 0. The
expected degree then tends to βγ 2 as n → ∞.

As for the asymptotic distribution of the vertex degree with the above choices of m and r , it
was shown in Stark (2004) to be a point mass at 0 for α < 1, a compound Poisson distribution,
describing the law of a sum of a Poisson(βγ )-distributed number of independent Poisson(γ )
variables for α = 1, and a Poisson(βγ 2) distribution for α > 1. To see this, note that the number
of groups that an individual belongs to is binomially distributed with mean mr = βγn(α−1)/2.
For α < 1, this goes to 0 as n → ∞, explaining the point mass at 0. For α = 1, the number
of group memberships per individual is asymptotically Poisson(βγ ) distributed, and the sizes
of the groups are Poisson(γ ), with overlaps between groups being very unlikely if n is large,
indicating that the degree distribution should indeed be compound Poisson. When α > 1, each
individual belongs to infinitely many groups as n → ∞. This means that the edge indicators
are asymptotically independent, which suggests a Poisson distribution for the vertex degree. In
fact, for α > 1, the random intersection graph is similar to the standard Erdős–Rényi random
graph; see Fill et al. (2000).

Moving on to the clustering in the graph, for two vertices v, w ∈ V, let Ivw denote the edge
indicator for the edge between v and w in Gn,m,r , and write Pn for the probability measure of
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Gn,m,r . We then define the clustering as

c = cα,β,γ := lim
n→∞ Pn(Ivw = 1 | IvuIwu = 1),

that is, c is the limiting conditional probability that there is an edge between two vertices v and
w, given that they have a common neighbor u. The expected number of groups that individual
u belongs to is βγn(α−1)/2, which goes to 0, βγ , or ∞ depending on whether α < 1, α = 1,
or α > 1, respectively. As a consequence, the limiting probability that two individuals v and
w who both share a group with u in fact share the same group with u—thus being connected
to each other—will behave differently depending on the value of α. More specifically, it was
shown in Deijfen and Kets (2007) that

cα,β,γ =

⎧⎪⎨
⎪⎩

1 if α < 1,

(1 + βγ )−1 if α = 1,

0 if α > 1.

In view of the result in Stark (2004) concerning the degree distribution and the characterization
of the clustering in Deijfen and Kets (2007), the best choice if we want to use a random
intersection graph to describe a social network seems to be α = 1. This gives rise to a model
where both the mean degree and the clustering can be tuned by adjusting the parameters β

and γ . More precisely, with D denoting the limiting degree of a fixed vertex, we have

E[D] = βγ 2 and c = (1 + βγ )−1.

For the remainder of this paper, we fix α = 1 and write G(n)
β,γ = G(n) and B(n)

β,γ = B(n) for
the corresponding random intersection graph and its underlying bipartite graph (omitting the
subscripts when the dependence on β and γ does not need to be emphasized).

3. The epidemic model and an approximating branching process

Consider a closed homogeneous population consisting of n individuals, labeled v1, . . . , vn,
with a social structure represented by a random intersection graph G(n). We will use the Reed–
Frost dynamics to describe the spread of an infection in this population. The social graph G(n)

is assumed to be fixed throughout the spread of the infection. Furthermore, for simplicity, we
start with one single randomly selected infective individual at time 0, the rest of the population
being susceptible. Without loss of generality, we assume that the initial infective, which will
be referred to as the index case, is individual v1. An individual that is infective at time t

(t = 0, 1, . . .) contacts each one of its neighbors in G(n) independently with some probability
p, and if a contacted neighbor is susceptible, it becomes infective at time t +1. The individuals
that were infective at time t are removed from the epidemic process at time t + 1 (by immunity
or death) and take no further part in the spread of the infection.

We will be concerned with the set E (n) of individuals that are ultimately affected by the above
epidemic. More precisely, we will construct a branching process that can be used to determine
whether E (n) is finite or infinite in the limit as n → ∞. To this end, first note that E (n) can
be identified with the cluster containing the index case in an edge percolation process on G(n)

in which each edge is open independently with probability p. Open edges in the percolation
process are interpreted as possible transmission links for the disease, that is, if one of the vertices
of an edge is infective at time t and the other one is not, then the uninfected vertex becomes
infective at time t +1. Furthermore, if we consider the percolation cluster of a particular vertex
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restricted to a subgraph of G(n) then the size of this cluster has the same distribution as the
final size of a Reed–Frost epidemic on the subgraph. In particular, let Rk (k = 0, . . . , n − 1)

be the size of the percolation cluster of a given vertex belonging to a complete subgraph with
k additional nodes, excluding the vertex itself. Then the distribution of Rk , denoted by Fk , is
equivalent to the final size distribution of a Reed–Frost epidemic initiated by a single infectious
individual in a homogeneously mixing population with k susceptible individuals (excluding
the index case). The distribution Fk can be computed recursively; see Andersson and Britton
(2000, Section 1.2).

We now define the branching process that will be used to approximate the epidemic process.
To begin with, note that the groups in a random intersection graph generate complete subgraphs.
Moreover, for a given individual who is a member of a given group, the additional number of
group members in that group is binomial(n − 1, γ /n) and, hence, asymptotically Poisson(γ ).
Thus, in the limit as n → ∞, an individual will generate R additional infected individuals in
any group it is a member of, where

R ∼ F :=
∞∑

k=0

Fk

γ k

k! e−γ . (3.1)

Recall that the number of groups that a given individual is a member of is asymptotically
Poisson(βγ ) distributed. Let f be the generating function of a sum of a Poisson(βγ ) number
of independent and identically distributed variables all distributed as R, that is,

f (s) = exp(βγ (E[sR] − 1)), (3.2)

and let {Z(t) : t ≥ 0} be a discrete-time branching process starting with a single individual
(Z(0) = 1) and with offspring generating function f , that is, E[sZ(1)] = f (s). Finally, write
E for the total progeny in such a process, that is,

E =
∞∑
t=0

Z(t).

Let E(n) = |E (n)| denote the final size of a Reed–Frost epidemic on a random intersection
graph G(n). Our main result is the following theorem, which will be proved by relating the initial
phases of the epidemic to a branching process with the same distribution as {Z(t) : t ≥ 0} as
n → ∞.

Theorem 3.1. As n → ∞, we have E(n) → E in distribution.

Define ρ to be the smallest nonnegative root of the equation f (ρ) = ρ. It follows from
standard results in branching processes theory that P(E = ∞) = 1 − ρ and that ρ < 1 if
and only if E[Z(1)] > 1; see, e.g. Athreya and Ney (1972, Theorem 1). Combining this with
Theorem 3.1 gives the following corollary concerning the asymptotic behavior of the epidemic.

Corollary 3.1. Define R0 := E[Z(1)] = βγ E[R], and write π = 1 − ρ. As n → ∞,
we have

(a) E(n) → ∞ with probability π ,

(b) π > 0 if and only if R0 > 1.
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Before we continue with the proof of the theorem, we will state and prove a lemma concerning
the bipartite graph B(n). To this end, for an arbitrary graph G with vertex set W , the subgraph of
G induced by some subset W ′ ⊂ W is defined to be the subgraph consisting the vertices in W ′
together with all the edges in G that run between the vertices in W ′. Let C(n)(t) be the vertices
of B(n) at distance t from vertex v1. Note that a vertex in B(n) may be either an individual
(that is, a vertex v ∈ V) or a group (that is, an auxiliary vertex a ∈ A), and that vertices at
an odd distance from v1 correspond to groups and vertices at an even distance correspond to
individuals.

Let Tn be the event that the subgraph of B(n) induced by C(n)(�κ log n�) is a tree.

Lemma 3.1. Let κ > 0 be such that 1/κ > 2 log(βγ 2). Then P(Tn) → 1 as n → ∞.

Proof. We will build up C(n)(t) by a sequence {D (n)(t) : t ≥ 0}, constructed in such a way
that C(n)(t) = ⋃

0≤s≤t D (n)(s). For odd t , the set D (n)(t) will consist of groups and, for even t ,
the set D (n)(t) will consist of individuals. To begin with, by definition, we have C(n)(0) = {v1},
so necessarily D (n)(0) = C(n)(0). For odd t , the set D (n)(t) is then constructed by choosing,
independently for each individual in D (n)(t − 1), a binomial(m, γ /n)-distributed number of
distinct groups in A, and, likewise, for even t , we construct D (n)(t) by choosing, independently
for each group in D (n)(t − 1), a binomial(n, γ /n)-distributed number of distinct individuals
in V. Let X(n) be a compound binomial random variable with generating function

g(s) = E[sX(n) ] =
(

1 − γ

n
+ γ

n

(
1 − γ

n
+ γ

n
s

)n)m

,

and let {X(n)(t) : t ≥ 0} be a branching process with offspring distribution X(n) and X(n)(0) =
1. Furthermore, write Y (n)(t) = ∑t

s=0 X(n)(s) for the total progeny of the branching process
at time t . Then, for even t , the number of individuals (not necessarily distinct) that have been
chosen in the construction of the process C(n)(t) has the same distribution as Y (n)(t/2), and
the number of groups (not necessarily distinct) that have been chosen is (stochastically) strictly
smaller than Y (n)(t/2).

We will now show that

P(Y (n)(�κ log n�) ≥ n1/2−ε) = o(1) as n → ∞

for small enough ε > 0, by Markov’s inequality. Define µn := E[X(n)] = γ 2m/n and note
that βγ 2(1 − 1/βn) ≤ γ 2�βn�/n = γ 2m/n ≤ βγ 2, so that µn ≤ n and µn → µ := βγ 2.
We have

E[Y (n)(t)] = E

[ t∑
s=0

X(n)(s)

]
=

t∑
s=0

µs
n ≤

⎧⎪⎨
⎪⎩

1

1 − µn

, µn < 1,

1 + tµt
n, µn ≥ 1.

For µ ≤ 1, we may take 0 < ε < 1
2 :

P(Y (n)((�κ log n�) ≥ n1/2−ε)) ≤ n−1/2+εO(log n) = o(1).
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For µ > 1, we take 0 < ε < 1
2 − κ log µ, so that ε < 1

2 and 1
2 − κ log µ − ε > 0:

P(Y (n)(�κ log n�) ≥ n1/2−ε) ≤ n−1/2+ε(1 + �κ log n�µ�κ log n�
n )

≤ o(1) + �κ log n�n−1/2+εµκ log n

= o(1) + �κ log n�n−1/2+εnκ log µ

= o(1) + �κ log n�n−(1/2−κ log µ−ε)

= o(1).

Now let An denote the event that all individuals and groups that have been chosen in the
construction of C(n)(t) are distinct, and let Bn denote the event that {Y (n)(�κ log n�) ≥ n1/2−ε}.
On An, clearly the subgraph of B(n)(t) induced by C(n)(t) is a tree, that is, An ⊂ Tn. Hence,

P(Tn) ≥ P(An)

= P(An | Bn) P(Bn) + P(An | Bc
n) P(Bc

n)

≥ (1 + o(1)) P(An | Bn)

≥ (1 + o(1))

n1/2−ε∏
k=1

(
1 − k

n

)(
1 − k

m

)

= (1 + o(1)) exp

(n1/2−ε∑
k=1

(
log

(
1 − k

n

)
+ log

(
1 − k

m

)))

= (1 + o(1)) exp

(
−

(
1 + 1

β

) n1/2−ε∑
k=1

(
k

n
+ O

(
k2

n2

)))

= (1 + o(1)) exp(o(1))

= 1 + o(1),

and the lemma is proved.

Proof of Theorem 3.1. The idea of the proof is to construct a branching process {Z(n)(t) :
t ≥ 0}, with Z(n)(0) = 1, that counts the number of individuals infected by the epidemic in
its initial stage, though not necessarily in chronological order. The branching process will be
defined in such a way that the final size of the epidemic and the total progeny of the branching
process are equal with high probability. As n → ∞, we will have Z(n) → Z in distribution—
where Z is the branching process in the formulation of the theorem—and the theorem thus
follows.

First, we describe the initial spread of the disease among the individuals/groups in the set
C(n)(�κ log n�) with a process {E (n)(t) : 0 ≤ t ≤ �κ log n�}.

We only consider what happens on the set Tn, since the probability of the complementary
set tends to 0 by Lemma 3.1. Furthermore, our construction will be such that E (n)(t) ⊆ C(n)(t)

for all t , implying that the nodes of E (n)(�κ log n�) themselves constitute a tree if seen as a
subgraph of B(n).

The construction of E (n)(t) is similar to the construction of C(n)(t) described in Lemma 3.1.
Namely, we will define a sequence {F (n)(t) : 0 ≤ t ≤ �κ log n�} and then set

E (n)(t) =
⋃

0≤s≤t

F (n)(s).
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To this end, first let F (n)(0) consist of the initial infective, that is, F (n)(0) = {v1}. Then, for
odd t , let F (n)(t) consist of the groups of the individuals in F (n)(t − 1) that are at distance t

from v1, that is,

F (n)(t) = {a ∈ D (n)(t) : there exists v ∈ F (n)(t − 1) such that v ∈ a}.

To define F (n)(t) for even t , recall the percolation representation of the set of ultimately infected
individuals in G(n) described before Theorem 3.1.

For a group a, let v
a↔ w denote that the vertices v and w belong to a, and that there exists a

path of open edges—that is, edges that can be used for disease transmission—connecting v and
w, with the additional property that the whole path is contained in group a. Furthermore, let
Ka,v = {w ∈ a : v

a↔ w}. This is to be thought of as the local outbreak in group a caused by
individual v, if v itself becomes infected from outside of group a, excluding v itself. As pointed
out before the formulation of Theorem 3.1, given that |a \ {v}| = k, we have |Ka,v| ∼ Fk ,
where Fk is the distribution of the final size of a homogeneous Reed–Frost epidemic initiated
by a single infectious individual in a population with k susceptible individuals (excluding the
index case). Note that |a \ {v}| ∼ binomial(n − 1, γ /n), and, for future use, let R(n) be a
random variable with distribution

∑
k Fk P(|a \ {v}| = k), that is, the size of a local outbreak in

a group, not conditioning on the group size. Now, for even t , define F (n)(t) to be the individuals
infected in the local outbreaks caused by the individuals in F (n)(t − 2), that is,

F (n)(t) = {w ∈ Ka,v : a ∈ F (n)(t − 1), v ∈ F (n)(t − 2)}.

We will now study the growth of |E (n)(t)|. To this end, for 0 ≤ t ≤ 1
2�κ log n�, define Z(n)(t) =

|F (n)(2t)|. Then, since the subgraph of B(n) induced by C(n)(2t) is a tree for t ≤ 1
2�κ log n�, by

construction, Z(n)(t) is a branching process with a compound binomial offspring distribution.
The generating function of the offspring distribution is

fn(s) = E[sZ(n)(1)] =
(

1 − γ

n
+ γ

n
E[sR(n) ]

)m

. (3.3)

For t ≥ 1
2�κ log n�, we let Z(n)(t) evolve by the same branching mechanism, that is, as a

discrete-time branching process with offspring distribution defined by (3.3). For t ≥ 1
2�κ log n�,

however, Z(n)(t) is no longer related to the epidemic process.

Let Z(n)
tot = ∑∞

t=0 Z(n)(t). Since Z(n) → Z in distribution, clearly Z
(n)
tot → E in distribution.

Let ε > 0, let k ∈ N, and take n large enough so that

(i) P(Tn) > 1 − ε/2,

(ii) k ≤ 1
2�κ log n�,

(iii) |P(Z
(n)
tot ≤ k) − P(E ≤ k)| ≤ ε/2.
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Note that if k ≤ 1
2�κ log n� then {E(n) ≤ k} ∩ Tn = {Z(n)

tot ≤ k} ∩ Tn. Hence,

P(E(n) ≤ k) = P(E(n) ≤ k, Tn) + P(E(n) ≤ k, T c
n )

≤ P(E(n) ≤ k, Tn) + ε

2
(by (i))

= P(Z
(n)
tot ≤ k, Tn) + ε

2
(by (ii))

≤ P(Z
(n)
tot ≤ k) + ε

2
≤ P(E ≤ k) + ε (by (iii)).

By (i), it follows that

P(Z
(n)
tot ≤ k, Tn) = P(Z

(n)
tot ≤ k) − P(Z

(n)
tot ≤ k, T c

n )

≥ P(Z
(n)
tot ≤ k) − ε

2
, (3.4)

and, thus,

P(E(n) ≤ k) = P(E(n) ≤ k, Tn) + P(E(n) ≤ k, T c
n )

≥ P(E(n) ≤ k, Tn)

= P(Z
(n)
tot ≤ k, Tn) (by (ii))

≥ P(Z
(n)
tot ≤ k) − ε

2
(by (3.4))

≥ P(E ≤ k) − ε (by (iii)).

We conclude that |P(E(n) ≤ k) − P(E ≤ k)| ≤ ε. Since ε > 0 and k ∈ N are arbitrary, this
means that E(n) → E in distribution, and the theorem is proved.

4. The final outcome of the epidemic

The branching process approach of the previous section basically gives no information about
the behavior of the epidemic in the case of explosion. In this section we will elaborate a bit on
this problem.

As already described, one way of getting a grip of the final outcome of the epidemic is to
consider an edge percolation process on the underlying graph, where each edge in the graph
is independently removed with probability 1 − p and kept with probability p. The vertices
that belong to the component of the initial infective in the graph so obtained correspond to the
individuals that have experienced the infection at the end of the epidemic. If the structure of
the thinned graph is known then this observation might be useful in investigating the final size
of the epidemic. For instance, if there is a unique giant component in the thinned graph—that
is, if the outcome of the percolation process contains a unique cluster of order n—then the
relative size of this component gives the probability of an outbreak of order n in the epidemic.
Such an outbreak is often referred to as a major outbreak, and, in most epidemic models, the
probability of such an outbreak coincides with the probability of explosion in the branching
process describing the initial stages of the epidemic (denoted by π in this paper). This however
requires additional arguments.
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In our case the social network is a random intersection graph with α = 1. Unfortunately, to
date there are no rigorous results concerning the component structure in a random intersection
graph with α = 1, but see Behrisch (2007) for results when α �= 1. Also, in Newman (2003a),
(implicit) expressions for the size of the largest component in a random graph construction
which is similar to the random intersection graph are derived by heuristic means and it is
observed that the relative final size of the giant component seems to decrease as the clustering
in the graph increases. An argument in support of the claim that high clustering in a graph
causes the components to be small is the following: consider an arbitrary graph with n vertices
and k = O(n) edges, and assume that the clustering equals 1. This implies that all subgraphs
are complete. Hence, with nmax denoting the size of the largest subgraph, we find that the
number of edges in the maximal subgraph is

(
nmax

2

)
. It follows that nmax ≤ O(

√
k) = O(

√
n),

that is, the relative size of the largest component tends to 0.
Indeed, the lack of rigorous results concerning the components in a random intersection

graph with α = 1 makes it harder to study the final size of an epidemic on such a graph.
A second complicating circumstance is that thinning a random intersection graph gives rise to
a graph that no longer belongs to the class of random intersection graphs; see Proposition 4.1,
below. This means that, even if there were results for the component structure, these would
not be applicable to a thinned graph. Hence, it remains an open problem to quantify the final
outcome of the epidemic.

Proposition 4.1. Let �p(G(n)
β,γ ) denote the graph generated by removing edges in G(n)

β,γ inde-
pendently with probability 1 − p. There do not exist β ′ = β ′(β, γ, p) and γ ′ = γ ′(β, γ, p)

such that �p(G(n)
β,γ )

d= G(n)

β ′,γ ′ for every n, where ‘
d=’ denotes equality in distribution.

Proof. The idea of the proof is to observe that certain types of subgraphs will appear with
different frequency in �p(G(n)

β,γ ) as compared to G(n)
β,γ . The subgraph that we will consider

consists of four vertices and five edges, as shown below.

Write K ′
4 for this graph type, and note that it can be obtained, for instance, by removing one edge

from a complete subgraph with four vertices, a graph type that we denote by K4. Furthermore,
we introduce the term vertex-induced subgraph for a subgraph of some given graph such that
the subgraph consists of a subset of the vertices in the original graph together with all edges
between these vertices that are present in the original graph.

The number X4 of vertex-induced subgraphs of type K4 in the random intersection graph
G(n)

β,γ dominates the number of groups of size four in the construction of the random intersection
graph. Since the size of a fixed group is binomial(n, γ /n) distributed, the number of groups of
size four is binomial(�βn�, (n

4

)
(γ /n)4(1 − γ /n)n−4) distributed and, hence, E[X4] ≥ O(n).

It follows that the number X′
4(p) of vertex-induced subgraphs of type K ′

4 in the thinned graph
�p(G(n)

β,γ ) is also at least of the order n, since, as mentioned, one way of obtaining graphs of type
K ′

4 is to remove one edge in graphs of type K4, that is, E[X′
4(p)] ≥ (1 − p)p5 E[X4] ≥ O(n).

Now consider the number X′
4 of vertex-induced subgraphs of type K ′

4 in the random
intersection graph G(n)

β,γ . This number is related to the number of ways that four individuals
v1, . . . , v4 can be assigned to different groups so that a graph of type K ′

4 is obtained. Consider,
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for instance, the following graph of type K ′
4.

v1 v2

v3 v4

Write {(vi1 , vi2)(vj1 , vj2)(vk1 , vk2)} for the event that vi1 and vi2 share a group, that vj1 and vj2

share another group, and that vk1 and vk2 share yet another group. Then, for the above graph to
arise, the individuals v2 and v3 cannot share any group—the probability that they avoid doing
so goes to 1 as n → ∞—and, in addition, one of the following events must occur:

{(v1, v2, v4)(v1, v3, v4)},
{(v1, v2, v4)(v1, v3)(v3, v4)},
{(v1, v3, v4)(v1, v2)(v2, v4)},

{(v1, v2)(v1, v4)(v2, v4)(v1, v3)(v3, v4)}.
It follows that

E[X′
4] ≤ n4

(�βn�
2

)(
γ

n

)6

+ 2n4
(�βn�

3

)(
γ

n

)7

+ n4
(�βn�

5

)(
γ

n

)10

= O(1).

The number of vertex-induced subgraphs of type K ′
4 in a random intersection graph is hence

O(1), while, in a thinned random intersection graph, it is of order n. This proves the proposition.

5. Numerical results

In this section we numerically investigate the epidemic threshold R0 and the probability
π of explosion in the epidemic—recall Corollary 3.1. We have R0 = βγ E[R], where the
distribution of R is specified in (3.1), and π := 1 −ρ, where ρ is the smallest nonnegative root
of the equation f (ρ) = ρ and f is the generating function specified in (3.2). Using the recursive
formulae for the distribution Fk of the final size of a Reed–Frost epidemic in a homogeneous
population of size k—see, e.g. Andersson and Britton (2000, Section 1.2)—numerical values
of R0 and π are easily obtained for fixed values of β and γ (this requires some truncations that
do not affect the results).

We are particularly interested in how ρ and R0 are affected when the (asymptotic) clustering
c = (1 + βγ )−1 is varied, and, to be able to compare results for different values of c, the mean
degree µ = βγ 2 in the graph is kept fixed. In Figure 1 the parameters R0 and π are plotted
against c for three different values of the infection probability p. Let us comment a bit on these
plots.

First we investigate the value of R0 in the limit as c → 0. Since µ is fixed, we see that
c = (1 + µ/γ )−1 → 0 implies that γ → 0 as well. Asymptotically, the degree distribution in
our random intersection graph is compound Poisson with generating function

g(s) = exp(βγ (eγ (s−1) − 1)),

which converges to eµ(s−1) as γ → 0. The limiting degree distribution as c → 0 is hence
Poisson(µ) and, after thinning the graph, removing each edge independently with probability
1 − p, the degrees are Poisson distributed with mean pµ. Since the graph obtained by such
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Figure 1: In the top plot, R0 is plotted against c for fixed µ = 4 and for three choices of p: p = 0.2 (solid
line), p = 0.3 (dashed line), and p = 0.5 (dash–dot line). The bottom plot shows how the probability π

of explosion in the epidemic varies with c for fixed µ = 4 and the same choices of p as above.

a thinning can be thought of as representing the outcome of the epidemic, it is reasonable to
suspect that R0 = pµ in the limit as c → 0. Indeed, it can be seen in the top plot of Figure 1
that R0 → pµ as c → 0.

In the top plot of Figure 1 it can also be seen that R0 increases with c, that is, higher clustering
makes it easier for epidemics to take off. This is in line with the findings in Newman (2003a).
Let us give a heuristic explanation of why this should be the case: first note that, since the mean
degree µ in the graph is fixed, an increase in c = (1 + µ/γ )−1 is equivalent to an increase in
γ and a decrease in β of the order γ −2. Also, recall that the mean number of groups that an
individual is a member of is βγ and the mean group size is γ . Hence, increased clustering with
fixed mean degree means that individuals are members of fewer but larger groups. Combining
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this with the observation that the probability for an individual to avoid infection from some
index case with whom he/she shares a group decreases geometrically with the group size, it
follows that it should be easier for an epidemic to take off when the clustering is large. In fact,
we have R0 → µ as c → 1, that is, in the limit of large clustering, the infection probability p

does not matter (as long as it is positive) for the value of R0.

The bottom plot in Figure 1 shows how the probability π of explosion in the epidemic
varies with c. For instance, it can be seen that π → 0 as c → 1. In Section 4 we argued
that the relative size of the largest component in a graph with maximal clustering is 0 in the
limit of large graph size. If the probability of explosion in the epidemic coincides with the
relative size of the largest component in the graph representing the outcome of the epidemic
then indeed it follows from this that π → 0 as c → 1. Furthermore, it is interesting to
note that the decrease of π towards 0 is not monotone for all values of p. Clearly, if a low
value of c prevents explosion, while explosion is possible for a larger value of c—this is the
case, for instance, for p = 0.2—then we will see an increase in π from 0 to a positive value
when the threshold is passed. But, as the curve for p = 0.3 reveals, even if π is already
positive at c = 0, it can be the case that it increases with c in some interval before it starts to
decrease.

6. Discussion

In the present paper we have analyzed how the clustering in a random network affects how
an infectious disease propagates in the network, assuming that the size of the network is large.
In particular, using a random intersection graph construction, we have rigorously derived the
limiting probability of an explosion in the epidemic and a threshold parameter indicating if this
probability is 0 or positive.

The motivation for analyzing an epidemic on a random network with positive clustering is
of course that most empirical social networks manifest positive clustering, so predictions based
on epidemic models neglecting such clustering, i.e. most epidemic models, must be interpreted
with caution. There are of course several other features in empirical networks, not considered
in the present paper, which should also be taken into account for predictions to be reliable. One
such feature is the degree distribution, which in many social networks has been observed to
follow a power-law distribution. The graph model used in this paper gives compound Poisson
distributions for the degrees, but the model is generalized in Deijfen and Kets (2007) to allow
for power-law degree distributions. It would be interesting to study how an epidemic on such a
generalized graph is affected by the exponent in the power law. Another feature that has been
observed in many social networks is positive degree correlation, that is, individuals with high
or low degrees tend to be connected to other individuals with high or, respectively, low degrees.
Because of the group structure, this is likely to be the case in a random intersection graph, but
it remains to quantify the correlation.

A possible generalization of the studied model would be to distinguish between different
types of individuals, and to assume that both network characteristics as well as transmission
probabilities depend on the type of an individual; see, e.g. Ball and Clancy (1993). Another
extension, motivated by real-world epidemics, is to leave the Reed–Frost paradigm, in which
the events that different neighbors of a given infective becomes infected are independent. If, for
example, the infectious period is taken to be random, then these events are positively correlated;
see, e.g. Andersson and Britton (2000, Chapter 2). Unfortunately, by relaxing the independence
assumption, the analysis of the model becomes much more complicated.
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Perhaps the most obvious continuation of the present work is however to derive fully rigorous
results about the final size of the epidemic in the case of explosion. The (relative) final size of
the epidemic then most likely coincides with the probability of explosion, a quantity derived in
the present paper, but a proof of this is still missing.
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