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Semantics and Deep Learning 1

1 Introduction∗

This Element covers the interaction of two areas of research: linguistic
semantics and deep learning. These fields share a lot of mutually relevant
ground, but at the same time, the dialogue between the respective research com-
munities is often constrained by the lack of transparency in terminology and
background assumptions. With this Element, we aim to foster the connections
between the two fields by highlighting the relevance of these fields to each other
and by providing an introduction into the points where natural language seman-
tics and deep learning meet. Instead of enumerating all possibly relevant topics,
we will take a close look at three fundamental meaning-related phenomena –
semantic inference, compositionality, and extralinguistic grounding – and use
them as study cases, discussing how these phenomena are treated in modern
computational models. The discussion is accompanied by demonstrations that
readers are invited to play with. No prior programming experience is required
to run the code.1

In recent years, the deep learning revolution has changed the landscape of
natural language processing (NLP), especially so after a deep neural architec-
ture that is the basis of practically all of today’s most successful models – the
Transformer (Vaswani et al., 2017) – was introduced, and variousmodels based
on this architecture were trained on large quantities of primarily linguistic data.
Artificial intelligence (AI) systems built on these models are growing and get-
ting higher and higher scores on various tasks as we speak, advancing the state
of the art (SOTA). These systems and tools are rapidly becoming a part of eve-
ryday life for more and more people, obviously so after the notable release of
one such system, ChatGPT, in late 2022.2

Given the ever-growing omnipresence of such tools, a solid understanding
of both their successes and weaknesses is important. Some of the seemingly
simple but at the same time fundamental questions that one can ask here are: Do
these models understand the texts they process and produce? Do they capture
the meaning of texts in natural language?
There are two aspects to these questions: an instrumental and a theoretical

one. Instrumentally, the answer depends on how well deep learning models
perform on tasks that – presumably – require semantic competence. As the
discussion that follows will show, despite the fact that deep learning models

* The authors are listed in alphabetical order. Given the authors’ equal contribution, each author
has a right to list themselves as a first author when citing this Element. Main author of Sec-
tion 2 “Textual Inference”: Lasha Abzianidze; main author of Section 3 “Compositionality”:
Denis Paperno; main author of Section 4 “Grounding: Language and Vision”: Lisa Bylinina.
Introduction and Conclusions: equal contribution.

1 See our public repository at https://github.com/kovvalsky/SemDL for code and demos for the
three phenomena discussed in this Element.

2 https://openai.com/blog/chatgpt.
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2 Semantics

have pushed the SOTA forward inmany areas of NLP, what kinds of linguistic –
and in particular, semantic – knowledge these models develop as a result of
training is still the subject of ongoing study. Indeed, NLP evaluation is typically
organized around datasets that may or may not reflect the generality and
real nature of linguistic knowledge. More specifically, various semantic tasks
reportedly still prove hard for modern models despite their superficial success.
On a theoretical level, the answer to these questions obviously depends on

what meaning is and what is required of true natural language understand-
ing. These questions lie at the core of the discipline of theoretical semantics.
Theoretical choices concerning the nature of linguistic meanings provide a
framework for the instrumental evaluation and development of NLP systems:
What dowe need to test in order to addressmodels’ semantic capabilities?What
types of learning agents do we think lead to better meaning representations?
This instrumental–theoretical relation goes both ways: On the one hand,

theories of how humans convey and extract linguistic meanings set the stage
for what to expect from artificial linguistic systems and agents. On the other
hand, performance of deep learning models can inform linguistic theory: If we
observe a particular success or failure of a model on some task, is it expected
under our view on how meanings are represented and acquired, given how
this model was trained? Or should we adjust our theoretical understanding of
semantics accordingly?
These are all questions with no definitive answers, and we will not try to pre-

tend otherwise in this Element. Instead, we will give substance to the debates
around these questions and invite the readers to think about them together
with us.
We start with laying out the necessary technical background on text repre-

sentation in models of interest. Then we establish the theoretical context for
our discussion and how it relates to the current debates about semantics in such
models.
Then we move on to the three topics this Element will focus on. We start

from the inferential perspective on semantics in Section 2. We discuss how
deep learning systems apply to modeling inference between sentences or larger
linguistic units. Then, in Section 3, we discuss how vector-based and deep
learning methods approach the phenomenon of semantic compositionality, and
how semantic compositionality is tested and probed. Finally, in Section 4,
we turn to the quickly developing field of language and vision, where ref-
erential properties of language expressions receive an automated treatment.
We discuss the representation of these phenomena in recent neural models
and the quality of these representations, as well as ways to evaluate them.
We close the Element with directions for future research and deeper possible
interconnections between deep learning and theoretical semantics.
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Semantics and Deep Learning 3

1.1 Technical Context: Vector Representations
Artificial neural networks are mathematical structures that formalize data
processing as operations over numeric vectors. Let us unpack this.

Word Vectors A (k-dimensional) vector is a sequence of k numbers. Vectors
or vector combinations can represent diverse kinds of data, including linguis-
tic data. For example, one version of GloVe (Pennington, Socher & Manning,
2014) assigns every word of English a fifty-dimensional vector:

to: 〈0.680,−0.039, 0.302, . . . ,−0.073,−0.065,−0.260〉

and: 〈0.268, 0.143,−0.279, . . . ,−0.632,−0.250,−0.381〉

government: 〈0.388,−1.083, 0.450, . . . ,1.194,−0.653,−0.763〉.

Vectors in GloVe and other models are estimated from data, most commonly
from the way words are used in texts. The numeric values in resulting word
vectors encode diverse word properties correlated with word usage, including
semantic and syntactic properties. Simplifying, one can think of these values
as encoding word features including part of speech, gender, animacy, etcetera,
although the values are continuous and do not correspond to interpretable
features in a perfect or one-to-one fashion. So while the dimensions are usu-
ally estimated from distributions, they can be seen as reflecting an underlying
conceptual space in the spirit of Gardenfors (2004).
Relations between word vectors are often regular, allowing for methods such

as vector analogy solving: to solveUK:London=France:?, one can apply arith-
metic operations to words involved and search for a word with the nearest
vector to vec(London)-vec(UK)+vec(France).

1.1.1 Word Embedding Models and Neural Language Models

Naturally occurring texts are a rich source of data. The task of language models
(LMs) to predict continuation of a textual sequence can be also thought of as the
task of classifying contexts (sequences of words) according to which word(s)
can serve as a likely continuation of the context. In this case, the number of
classes is huge as each vocabulary item is its own class.
For example, one can take as input a single word context (e.g., scientific),

encode it as a vector, and use the model to predict likelihood scores for dif-
ferent words to appear in the context of scientific. Such a model will assign
high scores to words like approach or major, and low scores to words that are
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4 Semantics

not particularly likely to appear near scientific. In practice, a model represents
each context (e.g., the word scientific) with a relatively low dimensional vector
v from which a vector of scores for all vocabulary items is derived via matrix
multiplication MWEv, where the word embedding matrix MWE contains com-
pact vectors of words in the vocabulary. There are good reasons to use vectors
of relatively low dimensionality. First, they are more practical in computation,
including various vector operations used in neural network models. Second,
features of lower dimensional vectors may better approximate abstract features
of words, including features corresponding to semantic properties. Because of
this, inputs with similarities in meaning or syntactic properties end up with
substantial overlap in their vector features.
Systems that predict likely words in this way are known as word embed-

ding models. They operate with individual word inputs, as in the example just
provided.
Early methods that estimated word vectors from corpus data included

the Hyperspace Analog of Language (Burgess & Lund, 1995) and Latent
Semantic Analysis, also known as LSA (Landauer & Dumais, 1997). The
advent of neural network methods in the 2010s led to the creation of sev-
eral efficient algorithms for word vector estimation, which were released as
word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Similar
to word2vec, fastText (Bojanowski et al., 2017) extended its coverage to rare
and unseen words by exploiting cues from the character sequences within the
word. These algorithms proved robust and fared better in empirical evaluations
than earlier methods (Baroni, Dinu, & Kruszewski, 2014).
In contrast to (static) word embedding models, neural LMs predict the prob-

ability distribution over the next word (or other text elements) given a sequence
of other elements in context – for example, the sequence Let’s use the sci-
entific . . . or The cat is sitting . . . ). For the latter sequence, the next word
prediction may look as in Table 1. As seen in this example, the sequence is
predicted to be continued with a dot or “on,” with prepositions like “under” or
“by” predicted less likely, and many other words having negligible predicted
probabilities (rounded to 0 in Table 1).

The Sequence Neural Models: From Recurrent Networks to Transformers
Often, vector operations proceed via multiple computation steps – that is, out-
put vector v is computed from vector u that is itself computed from the input
vector x. The intermediate computation steps are called the hidden layers of
the model, and a model that includes hidden layers is considered a deep neural
network. Machine learning methods that create such models are known as deep
learning.
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Semantics and Deep Learning 5

Table 1 Neural word embedding models (and neural language models)
assign, for a given context, an array of logit scores to each element of the
model’s vocabulary, which can then be transformed into probabilities using

the softmax function.

Classes on the by . from he my at under . . .

Scores 7.1 2.3 2.6 7.5 1.8 0.22 0.25 4.74 6.0
Probabilities 0.23 0 0.02 0.34 0 0 0 0.02 0.08

For most purposes, assigning vectors to words is not enough if the goal is to
process diverse kinds of structures, such as phrases, sentences, or longer texts.
This motivates several types of sequence models, which can adapt to inputs
of variable length. In all sequence models, the input is a sequence of vectors
representing text units – for example, words, and the output is a sequence of
calculated vectors:

x1,x2 . . . xn −→ h1,h2 . . . hn. (1)

The vector representations h1,h2 . . . hn that a sequence model derives can
then be used for diverse tasks such as sequence classification, tagging (token
classification), etcetera.
The oldest type of sequence neural network, inspired by real-time signal pro-

cessing in humans, is the recurrent neural network (RNN). Recurrent neural
networks process the input one element at a time, computing the memory repre-
sentation hk from hk−1 and the k th input element xk. Simple recurrent networks
(SRNs), proposed by Elman (1990), already showed promising results on toy
linguistic input, but presented diverse problems at training time. More efficient
recurrent architectures were proposed later, with two gaining wide adoption:
the Long Short-Term Memory, or LSTM (Hochreiter & Schmidhuber, 1997),
and the Gated Recurrent Unit, or GRU (Cho et al., 2014).
Most current applications, however, rely on the Transformer model

(Vaswani et al., 2017); see Section 1.1.2. In addition to other practical benefits,
the self-attention mechanism underlying Transformer models makes it easier
to learn and execute nonlocal operations on the sequence.
Regardless of the precise underlying architecture, sequence models can be

used to produce contextualized token vectors. If xk is an input word embed-
ding, corresponding hk in the output represents the k th word in context. One
can also select one of the output vectors, often the last one hn, to represent
the whole sequence. For example, in a task like natural language inference,
the vector resulting from processing the concatenation of the premise and the
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6 Semantics

hypothesis can serve to provide features labeling the example as entailment /
contradiction / neutral; see Section 2.

Subword Tokenization For practical reasons, modern NLP models limit the
size of their vocabulary. As a result, neural networks often represent text as
sequences of tokens, where each word can be a token on its own (if the word is
frequent) or broken intomultiple tokens (if theword is rare). For example, in the
first lines of Hamlet’s monologue “To be or not to be,” the SOTA GPT4 model
treats most words and punctuation marks as one token each. However, GPT4’s
underlying byte pair encoding (BPE) tokenizer breaks rare word forms such as
nobler into subword tokens, for example nob and ler, character sequences that
often occur as parts of other rare words.3

There are several widely used subword tokenization algorithms, usually built
upon the BPE method (Sennrich, Haddow & Birch, 2015). Models by Google
often rely on the WordPiece algorithm (Song et al., 2021), inspired by BPE
but built upon a proprietary technology. SentencePiece (Kudo & Richardson,
2018) can use BPEs but does not require word-separated input, applying to
diverse languages and writing systems.

1.1.2 Transformer Architecture

Self-Attention The attention mechanism originally gained wide acceptance
in text processing in the field of machine translation as a useful addition to
RNNs, starting from Bahdanau, Cho, and Bengio (2014). Later, Vaswani et al.
(2017) introduced self-attention as the coremechanism for sequence processing
that completely replaced RNNs. Self-attention allows for efficient training of
ever-larger models on ever-larger data that was not technically possible with
RNNs.
We reproduce the equation of self-attention here:

Attention(Q,K,V ) = softmax
(
QKT
√
dk

)
V, (2)

where Q, K, and V are computed from the underlying sequence embedding M
by multiplying it with matrices of numeric parameters: Q=MWQ,K=MWK,

V=MWV. The softmax function normalizes the scores that reflect the match
between “query” vectors in Q and the “key” vectors in K, so that the weights
for each position are positive and sum to 1; see the following example. Several
self-attention components, called “attention heads,” are computed in parallel

3 For a visual demonstration, see https://platform.openai.com/tokenizer.
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Semantics and Deep Learning 7

and combined into “multihead attention” Multihead, which is then combined
with the input embedding matrix M via the residual connection, giving M +
Multihead(M) as output.
Informally, self-attention copies to a given token vectormk information from

token vectors at other positions. The tokens to be copied from are determined
by the match between the query vector of token mk from matrix Q, and the key
vectors of all tokens from matrix K.
For example, take inputM to encode text as a sequence of numeric vectors:

−7 −1 −10 −7
−1 −4 5 2
−6 6 2 7
the cat is sitting

Vectors encoding tokens can be similar to each other across some or all
dimensions. The vectors for is and sitting are the most similar. For example, the
sign of all their vector components is the same: negative for the first dimension
and positive for the others. Numbers in token vectors can encode semantic and
syntactic information – for example, the second dimension could partly encode
part of speech, with positive values for verbs.
Amatch between queries and keys is computed asQKT, which after applying

vector size and softmax normalization gives an attention matrix – for example:

0 0 0 0
0.99 0.01 0.86 0
0.01 0.19 0.14 1
0 0.8 0 0

The attention matrix specifies howmuch update each token’s vector receives
from different tokens. In our example, the last token sitting gets its entire update
from token is, while token the receives 89 percent of the update from cat.
The values of the updates are taken from a separate matrix V – for example:

−8.7 2.4 2.3 5.8
−5.5 1.1 −2.6 0.01
−8 −3.6 −3 −2.5
the cat is sitting

The attention update

2.3 5.1 2.3 2.3
1.1 −0.49 0.59 −2.6
−3.6 −2.6 −3.6 −3
the cat is sitting

is added to the input.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009542340
Downloaded from https://www.cambridge.org/core. IP address: 3.15.25.100, on 11 Jan 2025 at 05:48:02, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009542340
https://www.cambridge.org/core


8 Semantics

After self-attention, the vector representations become more contextualized.
In our toy example, both the and is received most of their attention update from
cat. As a result, the vectors of the and is now signal aspects of their relation to
the word cat. Being updated with similar information, these tokens also become
more similar to each other:

−4.7 4.1 −7.7 −4.7
0.1 −4.5 5.6 −0.6
−9.7 3.4 −1.6 4
the cat is sitting

There are several other kinds of computation steps in Transformers, but
self-attention is central. Informally, self-attention allows for information flow
between positions in the sequence by selecting which positions to copy infor-
mation from (via K to Q matching) and what form this information takes (via
the V matrix). Roughly speaking, self-attention is the operation of selecting
positions according to features in K and copying features from V. Components
of self-attention specify the source, target, and nature of the copied informa-
tion. For instance, Transformers could naturally approximate rules like “copy
into the vector of a verb (encoded inQ) ontological semantic features (V ) from
the closest noun to the left (K ).”

Other Transformer Components In addition to the core self-attentionmech-
anism that drives contextualization of word or token representations, there are
several other components to the computation. Each of the components con-
tributes nontrivially to the vector output values of the Transformer (Mickus,
Paperno, & Constant, 2022).
For example, layer normalization is applied to intermediate vector repre-

sentations at various points of computation. Every vector is scaled so that its
dimensions have the average of 0 and the standard deviation of 1, making sure
that no vector’s dimensions take extreme values. This technique makes the
training more efficient and reliable. It balances potentially unbounded contri-
butions of other computation components, especially the feedforward step (see
later in this section), which can introduce extreme vector value updates.
Positional encodings are another component required for the Transformer

to work for natural language. The self-attention mechanism updates the inputs
on the basis of their vector representations. If the input was encoded simply
via word vectors, the Transformer would have been a bag-of-words model,
ignoring the order in which the words appear. To inject order information, each
token in the input is encoded as the sum of token vectors and positional encod-
ings, special vectors uniquely characterizing the position of the token in the
text. Positional encodings are designed so that nearby positions in the sequence
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Semantics and Deep Learning 9

receive similar positional encoding vectors. This allows self-attention opera-
tions to target not only word features but also positional features (e.g., “copy
features from a preceding adjective to the noun”).
Feedforward networks are interleaved in Transformers with self-attention

and normalization operations. During the feedforward step, each token vector
v (previously contextualized via self-attention) is passed through a neural net-
work FFN, which consists of multiplying by two matrices of numeric weights
and a nonlinear operation: FFN(v) = W2max(0,W1v).
The result is added to the input via a residual connection: v + FFN(v).

The feedforward step is the one that introduces nonlinear transformations of
the information about the current token and its context. Most of the numeric
parameters of modern Transformer models correspond to the feedforward step.
It has been argued that it is the feedforward networks that embody most of
the knowledge encoded by Transformer models, including relational mappings
such as correspondence between embeddings of present and past tense of verbs
(Merullo, Eickhoff, & Pavlick, 2023).

1.1.3 Neural Model Training

Deep neural network models include a large number of numeric parameters
that need to be estimated, or learned, from data. In the case of Transformer
LMs, these trainable parameters include numeric values in vectors of all tokens
in the vocabulary and in matrices that define the model’s self-attention and
feedforward operations.
Ultimately, large language models (LLMs) are evaluated on downstream

tasks. For example, the natural language inference task often boils down to
classifying sentence pairs as exemplifying an entailment, a contradiction, or
neither.

Pretraining and Fine-Tuning In modern deep learning models, a common
approach taken in achieving state-of-the-art results in specific tasks com-
bines self-supervised pretraining with task-specific fine-tuning, illustrated in
Figure 1.
Typically, an LLM is pretrained on a distributional task, meaning that its

output representations are optimized for predicting a match between the con-
text and the textual element that can appear in it. For instance, the vector
representation of a sentence can be trained to predict what continuations the
sentence is likely to have. In GPT-like models (Radford et al., 2019), the train-
ing signal comes from predicting the next token in the context of the preceding
sequence of tokens. In other models (like BERT; Devlin et al., 2019), token
prediction happens in a bidirectional context (sentence with gaps), with tokens
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10 Semantics

Figure 1 Two-step training paradigm: in the pretraining stage, the model is
trained on large text corpora on a word prediction task. Task-specific training
(fine-tuning) happens separately, with the pretrained model as a starting point.

to be predicted typically replaced by a dedicated [MASK] token. As such, the
vector representation that is useful for token prediction cannot be immedi-
ately applied to alternative tasks involving reasoning, question answering, or
sentiment analysis, inviting additional approaches including fine-tuning; see,
however, Radford et al. (2019) and Brown et al. (2020) for influential views
on the transfer of pretrained LMs to new tasks without such computationally
expensive steps.
Vector outputs of a pretrained model can serve as input to a simpler neu-

ral component such as a feedforward neural network. The latter makes the
actual task-specific predictions, such as whether one sentence in a pair entails
the other. The whole pipeline can then be trained on the task-specific data
(e.g., inference data), updating both the feedforward network’s weights and
the weights of the pretrained LM. The resulting fine-tuned LM differs from the
original pretrained one, and produces task-specific vector representations of the
input. Note that fine-tuning only produces reasonable empirical results when
applied to a pretrained model, rather than learning the weights from scratch on
task-specific data. One can think of the process of fine-tuning as highlighting
the features of compositional representations produced by the pretrained model
that are relevant for the specific task at hand, and suppressing irrelevant fea-
tures. The intuition here is that the distributional pretraining allows the model
to extract a wide set of features from the text, different subsets of which are
useful for different downstream tasks. Features useful for one task (e.g., infer-
ence) may happen to be complementary to the features useful for another
task (e.g., sentiment analysis), so instances of the same model fine-tuned
on these tasks may prove quite distinct. Note that fine-tuning mainly affects
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Semantics and Deep Learning 11

representations at the top layers of deep models while the bulk of processing
that happens in a majority of layers remains largely intact (Mickus et al., 2022).
Both pretraining and fine-tuning follow the end-to-end training approach:

model parameters (weights) are not estimated for each module separately.
Instead, even in the biggest models, all parameters are tuned in parallel, with
an eye on how they affect the output in a given task. In pretraining, the output
is the likelihood score assigned to the currently predicted token, and in fine-
tuning, to the currently predicted other output such as the likelihood score of
different classes in a classification task.
Fine-tuning a neural network on a dataset may lead to a loss of its generality.

There is a risk that a model adapts to biases of the data on which it was fine-
tuned, learning shallow statistical regularities. For example, the presence of the
word not may be associated in a fine-tuning dataset with the example being a
contradiction. A system fine-tuned on such a dataset may learn the shallow heu-
ristic not⇒contradiction and fail to apply correctly to data from other sources
where the heuristic is not helpful. For more discussion, see Section 2.
Methods for adjusting model parameters in neural networks rely on gra-

dient descent. In simple terms, this means that each numeric parameter of
the deep neural network is updated proportionally to the degree to which its
change moves the model’s prediction toward the desired output. Measures of
discrepancy between the prediction and the desired outputs are known as loss
functions.

Instruction-Tuning Instruction-tuning is a specific type of refinement for
pretrained LMs that has shown a distinctive potential since 2022.
An LM that predicts probabilities of tokens in context can be used for text

generation. In this case, one may first estimate the probabilities of possible
tokens, and pick a likely one to be generated. The newly generated token
is appended to the context, and the next possible token is predicted. This
text-generation process is called autoregressive decoding and exists in sev-
eral alternative algorithms such as greedy decoding, nucleus sampling, topK
sampling, and beam search.
Text generation is one of the tasks on which LMs can be fine-tuned. In partic-

ular, one can fine-tune LMs to generate responses to textual instruction. This is
called instruction tuning. Furthermore, one can ask human annotators to rate or
rank an LM’smultiple possible responses to instructions. On the basis of human
preferences, LMs can be further refined using techniques such as reinforcement
learning (Ouyang et al., 2022). This approach underlies the creation of Chat-
GPT and similar models (Touvron et al., 2023), which have proven effective at
following many types of textual instructions.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009542340
Downloaded from https://www.cambridge.org/core. IP address: 3.15.25.100, on 11 Jan 2025 at 05:48:02, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009542340
https://www.cambridge.org/core


12 Semantics

Beyond Attention: Prompting for Few-Shot Learning A possible bottle-
neck of highly parametrized compositional models is the amount of data
required for successful learning. A modifier, such as adjective red, modeled
as linear mapping from n-dimensional word vectors to n-dimensional phrase
vectors (as in a lexical function model, see 3.2.2) would be represented via
n2 parameters (realistic case: n = 300, n2 = 90,000). Learning compositional
semantics therefore requires a wealth of data to estimate this huge number of
parameters. In contrast, human learners need only a small number of exam-
ples to learn a new adjective and use it correctly with different nouns. Natural
language compositionality can therefore be seen as a skill crucially involv-
ing few-shot learning. Indeed, few-shot learning behavior characterizes current
LLMs (Brown et al., 2020; Patel et al., 2022). In case of the few-shot eval-
uation of LLMs, they are not fine-tuned on the task, but are provided a few
examples of the fulfilled task as context.

necktie -> cravat
wave -> onde

Within that context, themodel is taskedwith continuing yet another example.

man -> _

The few-shot behavior of large pretrained LMs has been specifically demon-
strated on presumably compositional tasks, such as question answering and
unsupervised machine translation. The few-shot behavior of LLMs is not yet
fully understood. Chan et al. (2022) argue that both the Transformer architec-
ture and the structure of natural language corpora are necessary for LMs to
develop the few-shot learning behavior. Olsson et al. (2022) argue for a causal
mechanism they call “induction heads,” a specific way in which an attention
mechanism can explain the few-shot learning behavior.

Beyond Attention: Chain of Thought Under the chain of thought, the model
is prompted to produce the text of intermediate steps through which one can
arrive at the output, which can help with recursion.
The following example taken from the Google AI blog illustrates the chain-

of-thought prompting at work:4

Example input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls.
How many tennis balls does he have now?

4 https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html.
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Example output

Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5+6 = 11. The answer is 11.

In the example, only the last sentence of the output constitutes the answer to
the question. The rest of the output only helps the model to arrive at the final
answer. Indeed, chain-of-thought prompting improves the few-shot learning of
Transformer models on tasks that involve multiple reasoning steps.

F F F

With this technical background in mind, we can turn to the second main
ingredient of our survey: natural language semantics.

1.2 Theoretical Context: Natural Language Semantics
In this section, we set the theoretical foundation in semantics for the rest of
the Element. Throughout the Element, we will talk a lot about “meaning,” so
we need to make this notion a bit more specific before we embark on the main
discussion.
The nature of linguistic meanings and their place in the overall architecture

of natural language grammar have been debated for millennia, and we will
certainly not try to settle this debate here or follow its historic development
(see Harris 1993 for an overview of recent history of semantics and linguistics
in general).
Instead, let us take a different route: rather than directly asking fundamental

questions about meaning, we shift our attention to more practical but related
questions and let them guide us in building the theoretical basis for our dis-
cussion. Rather than asking “What is natural language semantics?” we can
ask something like “How can semantic knowledge be detected in linguistic
behavior?” On a more concrete level, instead of asking “What’s the meaning
of sentence X ?” we can ask “How do we find out whether someone knows the
meaning of sentence X ?”
Take the sentence A cat is sitting on a chair. We know what this simple

sentence means. This knowledge can manifest in a number of ways – for one,
we are able to distinguish situations that can be truthfully described by this
sentence from situations in which this sentence is false.
For example, given a schematic depiction of a situation in Figure 2 on the

left, we can agree that the sentence A cat is sitting on a chair is true in this
situation and false in the situation portrayed in the picture on the right – this is
one of the ways our knowledge of the meaning of this sentence manifests itself.
As trivial as this observation may seem, it is the intuitive basis for the

currently most widespread approach to linguistic meanings, truth-conditional
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14 Semantics

Figure 2 Depictions of two situations: The sentence A cat is sitting on a
chair is true in the left-hand situation, but not in the right-hand one.

Source: Images generated with AI image generation tool Midjourney, accessed April
15, 2023.

semantics. Knowledge of truth conditions of a sentence – the ability to distin-
guish situations where it is true from the ones where it is not – is under this
approach fundamentally tied to the knowledge of what the sentence means.
Heim and Kratzer (1998) open their classic textbook with the statement that
equates truth conditions with sentence meaning: “To know the meaning of a
sentence is to know its truth-conditions.”
To sketch an implementation of this idea, let us think of sentence interpreta-

tion as a function I that takes two arguments – a sentence in natural language
and a situation – and returns a truth value: True or False (along with whichever
additional truth values your system is designed to have – for instance, the truth
value Undefined). For our running example, this function will return True if
its first argument is A cat is sitting in a chair and the second argument is the
situation depicted in the left-hand side of Figure 2 (and it will, of course, return
False for the other situation of the two, given the same sentence):

I(A cat is sitting on a chair) ©« ª®¬ = True. (3)

A different but related function I′ would simply output the set of situations
in which the sentence is true:

I′(A cat is sitting on a chair) =


 . (4)
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Both functions have their place in semantic practice. The latter can be used to
pinpoint one possible notion of the meaning of a sentence: the set of situations
where it is true.
Another core meaning-related intuition – besides the knowledge of truth

conditions – is the ability to recognize whether sentences stand in a particu-
lar meaning relation to each other – that is, to draw inferences. Simply put, if
we know the meaning of a sentence, we know what conclusions we can draw
from it and what conclusions are not justified. Entailment – one type of seman-
tic inference – is typically defined on pairs of sentences A and B along the
following lines (Coppock & Champollion, 2022):

A ENTAILS B if and only if:

In any case where A is true, B is true too.
(5)

Note that both semantic notions corresponding to the basic meaning-related
intuitions we discussed – truth conditions and semantic inference – operate
on the level of sentences. Formal semantics as we know it has indeed been
shaped primarily by sentence-level phenomena. This does not, of course, mean
that no meanings are assigned to smaller linguistic units – phrases and individ-
ual words. But it would be fair to say that in this tradition, lexical meanings
are viewed through the lens of their potential to combine into bigger units –
ultimately, sentences.
Lexical meanings are therefore designed with combinatorial potential in

mind: they need to be of the right type to combine into meanings of senten-
tial type when used in a sentence. The sentential meanings, in turn, need to
support evaluation for truth or falsity given a state of affairs, and to be of the
right type for semantic inference.
We can now formulate the questions we will focus on in the forthcoming

sections:

• How do deep learning models capture semantic relations between sentences?
(Section 2 “Textual Inference”)

• How do deep learning models build sentential meanings from meanings of
smaller expressions? (Section 3 “Compositionality”)

• How do deep learning models relate linguistic meanings to nonlinguis-
tic information – in particular, visual information? (Section 4 “Grounding:
Language and Vision”)

Before we move on to the main sections discussing these questions, let us
take a step back and have another look at the two main semantic notions that
we have already introduced: truth conditions and semantic inference. Now,with
some theoretical and technical background, we can elaborate a bit more on the
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16 Semantics

role of these notions in semantic theory and in deep learning models trained on
textual data.

Truth Conditions or Inference? Which of the two notions – truth conditions
or semantic inference – is taken as basic with respect to the other one defines
the two views on natural language semantics that, in turn, provide two different
perspectives on semantics in deep learning models. Let us zoom in on this a bit.
The currently most widely adopted version of compositional formal seman-

tics builds on truth conditions – a view that can be traced back to the
philosophical tradition that includes Alfred Tarski, Rudolf Carnap, Donald
Davidson, David Lewis, and Richard Montague. As famously formulated by
David Lewis (1970), “Semantics with no treatment of truth conditions is not
semantics.” Under this truth-conditional view – we will call it referential to
contrast with its alternative – sentence-level semantics amounts to an associ-
ation between sentences and sets of situations that make them true. Semantic
inference relations within sentence pairs would then be mediated by sets of
situations they describe: the relation holds by virtue of a set-theoretic relation
between sentence meanings.
Objects that sentences are mapped to can have different specifics – they

can be situations, worlds, circumstances, models, cases, etcetera, depending
on the implementation. There is also variation among systems in whether
the mapping between sentences and objects that express truth conditions is
direct (Kratzer & Heim, 1998;Montague, 1970) or indirect via a representation
language, typically some logic (Coppock & Champollion, 2022; Montague,
1973). The core of the referential view on semantics would remain the same:
Meaning is defined by reference, understood as a mapping between linguistic
objects on something external to language itself.
Alternatively, semantic inference relations (including but not limited to

entailment) can be taken as basic – defined directly on sentence representations,
without referencing the situations or worlds. We will call the view that builds
on semantic relations the inferential view (Fitch, 1973; Lakoff, 1970; Moss,
2010, 2015; Murzi & Steinberger, 2017; Schroeder-Heister, 2018; Sommers,
1982; Van Benthem, 1986, 2008). This description groups together theories
that have very important differences with each other, but, crucially for our dis-
cussion, they all capitalize on semantic relations between linguistic expressions
(primarily sentences) as the core semantic notion.
The guiding observation for this view is that, given that people reason using

language, the logical structures underlying human reasoning should correspond
to the grammatical structure of natural language in a deep way. If these regulari-
ties are given central stage in analyzingmeaning, reference and truth conditions
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can be explained as their by-product. This program can be summed up in two
theses:

1. Meanings of linguistic expressions are determined by their role in inference.
2. To understand a linguistic expression is to know its role in inference.

The difference between the referential and inferential views is deep, but
at the same time it carries mostly metasemantic value: it is a difference in
the order of explanation and departing points such as formal and traditional
logics. Radical versions of these views can also be seen as endpoints on the
scale of importance of corresponding intuitions for semantics – those of truth
conditions and those of inference. In practice, the views of most semanticists
probably lie somewhere in between: grounding in nonlinguistic information has
doubtless potential to enrich linguistic meanings; on the other hand, at least for
some semantic phenomena, it is useful to directly examine semantic relations
between expressions.
The importance of the referential/inferential distinction in the context of deep

learning has to do with the fact that most of the deep learning models we will
discuss are trained on exclusively textual data. This means that the represen-
tations these models develop are not referentially grounded to anything exter-
nal to linguistic data itself (see, however, Section 4 on vision-and-language
models).
The text-only training setup has stirred a debate around the semantic prop-

erties of LM representations. Do models trained on exclusively textual data
develop representations that encode the full range of semantic information?
Can tasks formulated as text-only be informative and useful for enhancing
and/or probing models’ semantic capabilities? We will now give an overview
of this debate.

Grounding Argument against Semantics in Text-Only Models Language
is inherently grounded in a variety of extralinguistic experiences (Barsalou,
2008; Clark, 1996; Harnad, 1990; Meteyard et al., 2012; Parikh, 2001). Lin-
guistic communication essentially involves a connection between what we say
and what we mean, naturally implemented as a mapping between two separate
spaces – the “what we say” and the “what we mean,” respectively. The expres-
sion the smell of coffee, for example, describes a corresponding nonlinguistic
olfactory experience. Can an agent that has not been exposed to the “what we
mean” side of messages develop an understanding of what anymessagemeans?
The architecture of a lot of widely used computational models for language

does not involve explicit mapping between text and “states of affairs” (although
see Radford et al. 2021 and Section 4); they are usually not trained with the

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009542340
Downloaded from https://www.cambridge.org/core. IP address: 3.15.25.100, on 11 Jan 2025 at 05:48:02, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009542340
https://www.cambridge.org/core


18 Semantics

objective of mapping between object language and such model-theoretic space.
This has led many to conclude that such models do not encode semantics at
all – a conclusion that seems practically unavoidable under a referentialist truth-
conditional view on semantics.
An influential position piece elaborating on this argument is Bender and

Koller (2020), even though it might be a stretch to classify their position as
strictly referentialist (their “what is meant” includes things like communicative
intent, which is not really model-theoretic). In their ownwords, they “argue that
the language modeling task, because it only uses form as training data, cannot
in principle lead to learning of meaning.” Since the language modeling task
is that of string prediction, the “meanings” – whatever they are – are not in
the training signal. Bender and Koller conclude that, for this reason, meanings
cannot be learned as the result of this process, since LMs are not provided the
means of solving the “symbol grounding problem” (Harnad, 1990) – that is,
they have no means to connect text representations to the world these texts are
used to communicate about.
To illustrate this position, Bender and Koller introduce a thought experiment

that they call the octopus test, largely inspired by the Turing test for artifi-
cial intelligence (Turing, 2009). In the scenario, two people are stranded on
two islands and are communicating via telegraph using an underwater cable.
Meanwhile, an intelligent octopus underwater is eavesdropping on their con-
versations and, being extremely good at detecting statistical patterns, learns to
predict the two people’s replies to each other. Eventually, the octopus inserts
itself into the conversation, successfully pretending to be one of the people.
But when facing a situation that requires real-world knowledge of what a
coconut is, the octopus fails since it knows nothing about the referent of the
word.
Bender and Koller (2020) conclude that statistical patterns of co-occurrence

cannot be enough to develop knowledge of meaning.5 In the discussion that
followed, other researchers cast doubt on this conclusion. Let us now review
their arguments in favor of semantics without grounding (Merrill, Warstadt, &
Linzen, 2020; Piantadosi & Hill; 2022; Potts, 2022).

Meaning without Grounding? Consider a counterargument: It is one thing
for a semantic theory to predict that text-based models should be unable to

5 This argument applies to a different extent to pure LMs (trained exclusively for next-word
prediction) and to models that underwent additional training on potentially more semantically
grounding tasks, such as reinforcement learning with human feedback (Ouyang et al., 2022;
Touvron et al., 2023) or natural language inference (Section 2). We thank a reviewer for this
point.
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encode semantic information – but it is up to the actual behavior of thesemodels
to either support this or suggest otherwise.
Following Potts (2020), let us shift our focus from a priori conclusions to

a more practical reformulation: “Is it possible for language models to achieve
truly robust and general capabilities to answer questions, reason with language,
and translate between languages?” In this way, the extent to which the models
can do so defines the extent to which they encode semantics (and therefore,
have the capacity to achieve natural language understanding), regardless of the
training data and objective.
There are at least two reasons for optimism. First, the general ability of

deep learning models to acquire abstract information not explicitly given dur-
ing training has been shown on, for example, hierarchical syntactic structure;
see for instance the survey in Linzen and Baroni (2021). Second, empirically,
we do not really know which types of input are necessary for humans to learn
meanings and manipulate them. Visual grounding is clearly not necessary as
congenitally blind people still acquire language (Landau & Gleitman, 1985);
the same holds for smell (returning to the example with the smell of coffee),
and so on. This does not mean that human semantic knowledge does not have a
grounding component to it at all, but the extent to which human semantic rep-
resentations can be constructed in the absence of different types of grounding
suggests that the same can in principle hold of artificial learners.
Piantadosi and Hill (2022) address the same question from the perspec-

tive of conceptual role theory – a view on cognition in many ways close to
the inferentialist semantic paradigm (see Margolis and Laurence 1999 for an
overview of conceptual role theory and its alternatives). While acknowledging
that the string-prediction training setup differs in format from human language
acquisition, they review arguments suggesting that the meaning of a significant
fraction of natural language expressions is primarily determined by the role
they play in a larger mental theory rather than their reference.
Studies in language acquisition show some support for this idea: learning

the meanings of various classes of words relies heavily on structural linguis-
tic information (Gleitman 1990; Gleitman et al., 2005; Landau and Gleitman
1985). This is particularly true of expressions for concepts without observable
correlates such as, for instance, verbs like think or believe (see Hacquard and
Lidz 2022 for a review).
Taking this view to its extreme, a system relying on relations within one

modality is not necessarily meaningless, with additional modalities provid-
ing various enrichments. Reference or grounding then adds to the “conceptual
role” the word plays. The signal that the learner gets from text alone is already
quite rich in conceptual role information, explicit and implicit. The task of the
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learner is to invert from observations to mechanisms that generate these data
(see Merrill et al. 2022 for an estimation of how entailment could be learned
by a text-only model under some simplifying assumptions).
This perspective, again, gives a practical turn to the question of semantics

in text-only LMs: In order to know whether LMs learn to represent semantics
during training and what it looks like, one has to examine the models’ internal
representations and how they relate to each other.
This practical angle motivates our Element:Wewill take a closer look at how

these models perform on semantic tasks and examine the semantic properties
of their internal representations.
The result can sometimes be disappointing: Despite the often-reported

impressive performance of current deep learning models, upon closer investi-
gation, it often turns out to be mere pattern memorization or bias propagation –
and the sometimes “superhuman” scores on such tasks go down dramatically
when the benchmark datasets are manipulated in a relevant way. At the same
time, studies of LM representations reveal rich semantic structures such as color
space geometry (Abdou et al., 2021) or the relative geographical positions of
major cities (Gatti et al., 2022); some work shows indications that contextual
representations of the latest text-only LMs implicitly encode models of entities
and situations evolving as text progresses (Li, Nye, & Andreas 2021; but see
Kim and Schuster 2023 for a critique of these results).
In this overview, we would like to give the reader a balanced picture

of challenges and successes in this domain and suggest possible future
directions.

F F F

We are now moving on to the main part of the Element. We went over both
technical and theoretical background for the upcoming discussion. We intro-
duced vector representations for words and larger linguistic sequences and
discussed how such representations are usually obtained from deep neural net-
work models, often ones based on the Transformer architecture (Devlin et al.,
2019; Radford et al., 2019). We introduced the main notions and intuitions
in theoretical semantics: truth conditions and semantic inference. Finally, we
highlighted the tension between the text-only setup common in deep learning
language modeling and the architecture of most common theoretical seman-
tics frameworks that involve a separate interpretation space. This tension is the
driving point for the rest of the discussion.
We will start the main part with an overview of reasoning and inference in

deep learning models (Section 2), then we turn to compositionality (Section 3)
and language grounding (Section 4).
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2 Textual Inference
Studying semantic relations between sentences has long been the focus of lin-
guistic semantics. When modeling sentence meaning, regardless of the choice
between the referential and inferential views (see Section 1.2), one of the cen-
tral goals is to license as many (correct) semantic relations between sentences
as possible. For example, a semantic analysis of the sentences A cat is sitting on
a chair and A cat is on a chair is inadequate if it does not license the entailment
of the latter from the former.
The task of detecting these relations between sentences in textual form (tex-

tual inference) has been the most common way in NLP to directly evaluate
to what degree an LM captures sentence meaning. This brings us to a popu-
lar NLP task that was originally referred to as recognizing textual entailment
(RTE) and is currently known as natural language inference (NLI). Following
Dagan et al., (2013):

Textual entailment is defined as a directional relationship between pairs
of text expressions, denoted by T (the entailing Text) and H (the entailed
Hypothesis). We say that T entails H if humans reading T would typically
infer that H is most likely true.

A Text–Hypothesis pair annotated with a ground truth inference label is called
a textual inference problem or an RTE/NLI problem. The terms Premise and
Conclusion are also commonly used instead of Text and Hypothesis, respec-
tively. Originally, Dagan, Glickman, and Magnini (2006) proposed an NLP
task on textual inference as a shared challenge called RTE.6 They created a
textual inference dataset – that is, a collection of textual inference problems,
where they labeled the problems with entailment (⇒) and non-entailment ( 6⇒)
labels. (1)–(3) represent instances of the RTE problems.

(1) About two weeks before the trial started, I was in Shapiro’s office in
Century City.
⇒ Shapiro works in Century City.

(2) Green cards are becoming more difficult to obtain.
⇒ Green card is now difficult to receive.

(3) The town is also home to the Dalai Lama and to more than 10,000
Tibetans living in exile.
6⇒ The Dalai Lama has been living in exile since 10,000.

6 A shared challenge or a shared task inNLP is a competition amongNLP systemswhere systems
are designed to tackle a common NLP problem. The shared task organizers usually provide
training and test data for participant systems.
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Although the RTE name and inference labels involve the term entailment,
the notion of entailment found in the initial and subsequent inference datasets
is a softer version of the logical entailment. This softness corresponds to the
terms humans reading, typically, andmost likely as highlighted in the definition
just provided. For example, while (1) is considered textual entailment, strictly
speaking, one can think of a possible scenario where a person has an office in
Century City but does not work there. Another scenario that makes (1) non-
entailment could be one in which Shapiro currently does not work in Century
City but used to work there. However, during the creation of the RTE dataset,
the authors deliberately gave little importance to tense in order to prevent a
large number of problems from being labeled as non-entailment. In a similar
spirit, (2) is an example of textual entailment, but becoming more difficult does
not necessarily lead to being difficult.
Due to the mismatch between textual and logical entailments, Zaenen, Kart-

tunen, and Crouch (2005) suggested using textual inference instead of textual
entailment. Under the umbrella term textual inference they distinguish logical
entailment from inferences triggered by conventional or conversational impli-
catures. We find their suggestion appealing and use textual inference instead of
RTE and NLI throughout the Element.
Textual inference is an integral part of natural language understanding

(NLU). Condoravdi et al., (2003) argue that detection of entailment and contra-
diction relations between texts is a minimal, necessary criterion for evaluating
NLP systems on text understanding. A couple of inference evaluation datasets
are a part of the standard NLU benchmarks GLUE (Wang, Singh, et al., 2019)
and SuperGLUE (Wang, Pruksachatkun, et al., 2019).
Historically, textual inference was thought of as a potential module for

downstream NLP applications such as question answering (QA), information
retrieval (IR), information extraction (IE), (multi-)document summarization,
etcetera. For example, in QA, a candidate answer should be entailed by a source
text; in IR, a textual inference system can be used to validate a retrieved docu-
ment based on its passage entailing the query phrase; in IE, the system should
find a passage that entails entities in a target relation; a summary should be
entailed by the source document(s). Despite these initial goals and expecta-
tions, the textual inference task became a stand-alone task over time. Due to
the high performance of end-to-end models and the relative simplicity of their
development, it is not common to use textual inference systems as a component
of other systems.
In the next subsection, we will touch on several subtle and peculiar charac-

teristics of the textual inference task as practiced in NLP. Then we will zoom
in on a selection of semantic phenomena and corresponding datasets.
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2.1 Things to Know about the Textual Inference Task
The inference capacity of LMs is evaluated on textual inference datasets. Let
us discuss how such datasets are constructed and what kind of inference prob-
lems can be found in them. We will highlight several nonobvious properties of
textual inference datasets.

2.1.1 Collecting Text–Hypothesis Pairs

Many textual inference datasets are created in two major steps: first, collect-
ing Text–Hypothesis pairs, and second, annotating them with inference labels.
The methods of collecting Text–Hypothesis pairs can roughly be divided into
human-elicited, semiautomated, and fully automated methods.
The human-elicited method involves human annotators in creating an infer-

ence problem – for example, creating an entirely new problem, pairing existing
sentences, or providing a Hypothesis given a Text or vice versa. Initially, infer-
ence problems in the series of RTE challenges were human-elicited by expert
annotators and the organizers of the challenges. Due to the involvement of
experts, the collection process was expensive and each iteration of the chal-
lenge prepared only 1,000 to 1,600 new inference problems. A step forward in
the human-elicited collection came from Bowman et al. (2015), who created
the Stanford NLI (SNLI) dataset, a collection of circa 570,000 sentence pairs.
Hypotheses were written by crowd workers given a premise sentence and a
target inference label. The size of SNLI has triggered a surge of deep learning
models for textual inference. A collection protocol similar to SNLI was used
to create another large inference dataset, multi-genre NLI (MNLI et al., 2018).
Semiautomated collection methods partially automatize the generation of

sentences or automatically transform existing sentences. Manual work usually
involves verification of Text–Hypothesis pairs on fluency or carrying out cer-
tain tasks that are difficult to reliably automatize. Marelli et al. (2014) were the
first to semi automatically collect about 10,000 sentence pairs for the Sentences
Involving Compositional Knowledge (SICK) dataset.
There are three main groups of approaches when collecting inference pairs

with a fully automated method. The first approach takes advantage of already
existing textual inference datasets and automaticallymodifies the problems. For
example, Naik et al. (2018) modifyMNLI data to create a stress test on spelling
errors and various distractions (e.g., a high word overlap and length mismatch
between a premise and a hypothesis). The second approach, as demonstrated by
White et al. (2017), recasts datasets for other NLP tasks as inference datasets.
The third approach automatically generatesText–Hypothesis pairs. This is usu-
ally done with the help of manually predesigned templates or formal grammar
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such as regular or context-free grammar. To automatically generate inference
problems, Geiger et al. (2018) use the regular grammar in (4) to construct sen-
tences. Optional elements are marked with ?, Q∈{every, not every, some, no},
and other grammatical category variables range over predefined sets of words.

(4) Q Adj? N (does not)? Adv? V Q Adj? N

All these methods are actively used when collecting Text–Hypothesis pairs
for new textual inference datasets. When pairs are human-written, one needs to
be aware of potential biases that human annotators might introduce (see Sec-
tion 2.1.4 for more details). Inference datasets generated fully automatically
usually focus on a particular set of semantic phenomena and tend to have sen-
tences with less structural or lexical diversity. Finally, semiautomated methods
try to combine the best of both worlds to produce Text–Hypothesis pairs with
diversity and at scale.

2.1.2 Annotating Inferences

Annotation of textual inferences means labeling Text–Hypothesis pairs with a
ground truth inference label. Methods of annotating inferences can be roughly
divided into three categories.
For human annotation, usually, crowd workers rather than experts or trained

annotators are employed to produce judgments. The gold label of an inference
problem is commonly set to the label that receives a majority of votes from
annotators. For example, a Text–Hypothesis pair in the SICK dataset is labeled
as entailment if at least three out of five crowdsourced judgments are in agree-
ment.When annotating a pair, sometimes one of the inference judgments comes
from the author of the pair. For instance, this is the case for SNLI, MNLI, and
the datasets of RTE challenges.
Automatic annotation of inferences is typically usedwhen inference pairs are

fully automatically generated (see Section 2.1.1). When modifying or recasting
an existing dataset, an automatic annotation method can simply map origi-
nal labels to inference labels. For example, if an original inference problem
is entailment, a new problem that is obtained by adding an informative and
consistent conjunct to a Hypothesis will have a neutral inference label.
The third approach is to use human annotations for a task simpler than infer-

ence. For example, the Monotonicity Entailment Dataset (MED, Yanaka et al.
2019a) asks crowd workers to make certain phrases in a sentence more
specific – for example, make spectator in every spectator bought a ticket
more specific with female spectator. With the help of the human-elicited
phrasal inference and the monotonicity calculus (see Section 2.2.2), one can
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automatically detect that the original sentence entails the new sentence obtained
with the phrase replacement.
It is important to keep in mind that not all gold labels are gold (see Sec-

tion 2.1.5). Human annotation might introduce erroneous gold labels due
to insufficient annotation guidelines or ambiguity. For example, a substan-
tial number of gold labels in the SICK dataset are inconsistently applied to
the inference problems (Kalouli et al., 2023; Kalouli Real, & de Paiva, 2017;
Marelli et al., 2014). The reason behind this is that annotators interpreted
indefinite noun phrases in different ways: A boy is running and A boy is not
running can be judged as contradiction or neutral depending on coreference or
lack thereof (see Section 2.1.3 for more discussion).

2.1.3 Two Interpretations of Contradiction

The contradiction label was introduced at the third RTE challenge
(Giampiccolo et al., 2007) as part of a pilot three-way classification of tex-
tual inference. Unlike the two-way classification in previous RTE datasets, the
three-way classification distinguishes contradiction ( |= ) and neutral (##) in
non-entailment inferences ( 6⇒). The contradiction label was defined in a similar
vague fashion as the entailment label. In particular, according to de Marneffe,
Rafferty, and Manning (2008), contradiction occurs when a Text and a Hypoth-
esis are extremely unlikely to be true simultaneously. For the contradiction
label, the annotation guidelines instructed that compatible referring expres-
sions had the same reference in the absence of clear countervailing evidence.7

This definition of contradiction worked well for the RTE challenge datasets
mainly because the datasets kept Text–Hypothesis pairs grounded in natural
data, which means that the pairs contained longer Texts and more definite NPs
and named entities.
Annotation of the SICK dataset showed that if the co-reference of compatible

referring expressions is not explicitly instructed for caption-like sentence pairs,
crowdworkers providemixed annotations for the inference problems involving
indefinite NPs and negation. For example, the SICK inference problems in (5)
and (6) have the exact same structure from an inference perspective, but (5)
gets the neutral gold label while (6) gets contradiction:

(5) A couple is not looking at a map. ## A couple is looking at a map.

(6) A soccer ball is not rolling into a goal net.

|= A soccer ball is rolling into a goal net.

7 https://nlp.stanford.edu/RTE3-pilot/contradictions.pdf.
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Many Text–Hypothesis pairs are not in a contradiction relation if no
co-reference of entities or events is assumed. Recall the example whereA boy is
running and A boy is not running do not form a contradiction pair unless a boy
in both sentences refers to the same entity. If event co-reference is adopted, a
pair like A cat is sleeping and A dog is sleeping would become a contradiction:
The only participant of the sleeping event cannot be both a cat and a dog. Even
worse, event co-reference would make A cat is sleeping and A dog is running
a contradiction due to the incompatibility of sleeping and running events. Such
a notion of contradiction is highly odd from a purely logical perspective.
To instruct crowd workers about annotating coreference-enforced contra-

diction, the authors of SNLI grounded sentences in photos without showing
actual photos to the crowdworkers. In particular, the crowdworkers were asked
whether a Hypothesis could definitely be a true, might be a true, or definitely
be a false description of a photo whose caption was the Text.8 Such a guideline
prevents the co-reference issue the SICK dataset suffers from, but on the other
hand, it introduces somewhat odd contradiction problems that involve unre-
lated sentences as illustrated by an SNLI problem in (7). It is important to note
that problems like (7) are labeled as neutral in SICK. Hence models should
not be trained on SICK and evaluated on SNLI/MNLI or vice versa as these
datasets use different interpretations of contradiction.9

(7) Dog carry[sic] leash in mouth runs through marsh.

|= A ship hitting an iceberg.

The majority of the existing inference datasets adopt the co-reference-
enforced notion of contradiction. Several inference datasets are annotated with
binary labels, entailment and non-entailment, and avoid opting for one of the
contradiction notions.

2.1.4 Biases in Textual Inference

The main idea behind collecting textual inference datasets is to teach an
NLP system regularities governing NLI or to evaluate its semantic capacity.
However, high system performance on a particular inference dataset does not
necessarily mean that the system has learned the underlying inference regulari-
ties. It might easily be the case that the system learned accidentally introduced
regularities behind the gold labels in the dataset. For example, a high word

8 Similar instructions were shown to crowd-worker annotators of MNLI, but the word photo
was replaced with situation or event as, unlike SNLI, MNLI contains sentences in various text
genres.

9 Despite this, there are several works (we refrain from explicitly mentioning them) that overlook
this mismatch between the interpretations of contradiction and jointly use these datasets for
training and evaluation.
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overlap between a Text and a Hypothesis is often a good indicator of the entail-
ment relation, but it has little to do with the underlying rationale of inferences.
Learning such accidental regularities might be easily overlooked in deep learn-
ing as models employ representations and transformations that are opaque for
humans. Next we present two biases in textual inference datasets that further
encourage models to learn accidental regularities about inferences.
The hypothesis-only bias is a dataset bias that allows models to achieve

relatively high accuracy on the dataset while the models take only a Hypoth-
esis as an input, completely ignoring the Text part. The hypothesis-only bias
for the SNLI and MNLI datasets was concurrently reported by several works
(Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018). They showed
that some neural models can correctly classify 63–69 percent of SNLI problems
by looking only at a Hypothesis. This accuracy is twice as high as the major-
ity baseline (34 percent).10 For MNLI, the hypothesis-only performance range
is 52–53 percent compared to 35 percent of the majority baseline. The root of
the hypothesis-only bias lies in the data collection method of SNLI and MNLI.
For example, in the test part of SNLI, 90 percent of inference problems with
a word form of sleep in a Hypothesis is labeled as contradiction. This reflects
the tactics crowd workers used to quickly provide a Hypothesis sentence per
inference label. Using several neural models as examples, Gururangan et al.
(2018) showed that after training on the datasets, the hypothesis-only bias gets
projected into the predictions of the models.
Another common bias associated with inference datasets and learned by

models is a high word overlap between a Text and a Hypothesis for entail-
ment problems. The Heuristic Analysis for NLI Systems (HANS) dataset by
McCoy, Pavlick, and Linzen (2019) intends to evaluate a model on the extent
it uses a word-overlap heuristic for entailment classification. The dataset covers
three types of heuristics depending on whether a Hypothesis is a subset, subse-
quence, or constituent of a Text. The entailment and non-entailment inference
problems for each heuristic are given in (8). Note that every word in the shared
Hypothesis sentence occurs in the Text sentences.

(8) a. Subset heuristic
(i) The cat with a collar slept. ⇒
(ii) The cat saw that the dog slept. 6⇒

b. Subsequence heuristic
(i) The dog and the cat slept. ⇒ The cat slept.
(ii) The dog near the cat slept. 6⇒

10 A majority baseline always predicts the most common label in a training dataset.
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c. Constituent heuristic
(i) The dog saw the cat slept. ⇒
(ii) If the cat slept, the dog was away. 6⇒

Several works (He, Wang, & Zhang, 2020; McCoy, Pavlick, & Linzen,
2019) showed that when neural models fine-tuned on large inference datasets
are evaluated on HANS, the accuracy on (i)-style problems is much higher
than on (ii). For instance, the accuracy gap is greater than 70 percent for BERT
fine-tuned on MNLI. This indicates that the neural models have difficulties to
distinguish high lexical overlap from entailment.
Besides the two mentioned biases, there are also other dataset biases. A

reversed word overlap bias is a tendency to label a problem with a low
word overlap as non-entailment (Rajaee, Yaghoobzadeh, & Pilehvar, 2022).
Yet another bias is a negation bias, which is a preference to classify a prob-
lem as contradiction if it contains a negation word. The negation bias exists in
SICK, SNLI, and MNLI (Gururangan et al., 2018; Lai & Hockenmaier, 2014).
There is an entire research line in the textual inference that attempts to debias
inference models.

2.1.5 Should the Textual Inference Task Be Categorical?

Textual inference is modeled as a two- or three-way classification task. But
taking into account the soft nature of the entailment and contradiction notions,
is a categorical classification suitable for textual inference? There have been
at least two proposals for an alternative modeling of the textual inference task.
One proposal models textual inference as a subjective probability of entailment
while another one uses the distribution of human judgments over the inference
labels instead of a single inference label.
Chen et al. (2020) argue for uncertain NLI (UNLI) where a Text–Hypothesis

pair is estimated with a probability score rather than a single inference label.
The probability score represents an average of subjective probabilities elicited
from crowd workers.11 An inference problem that gets the neutral gold label in
SNLI but 0.84 entailment probability in UNLI is given in (9):

(9) A man is singing into a microphone.
(0.84) ⇒ A man is performing on stage.

Nie, Zhou, and Bansal (2020) modeled the textual inference task as predict-
ing a probability distribution over the inference labels. Following a proposal

11 Note that the average might result in a probability close to 0.5 if annotators provide mixed
estimates close to 0 and 1. To avoid such undesired results, one could opt for the mode or
median of the estimates or simply drop the inference problems with such mixed judgments.
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by Pavlick and Kwiatkowski (2019), they created the ChaosNLI dataset where
gold standard distributions per inference problem were derived from 100
crowdsourced judgments. (10) illustrates an SNLI problem that originally had
the entailment gold label obtained as a majority label from three entailment
and two neutral judgments. However, after re-annotating the problem as a
part of ChaosNLI, it gets contradiction as the most probable label in the label
distribution.

(10) The lady wearing a red coat is giving a speech.
[(0.40) ⇒, (0.01)##, (0.59) |= ]Woman is the center of attention.

In total, 25 percent of the SNLI problems that were reused in ChaosNLI
received a major inference label different from the original SNLI label. This
indicates that the inference gold labels that are defined as a majority among
several judgments are difficult to replicate and begs a question about the ade-
quacy of the gold standard inference labels and the categorical nature of the
textual inference task.

F F F

In the subsection, we covered several crucial characteristics of the tex-
tual inference task. We summarized common methods of creating datasets,
namely collecting and annotating Text–Hypothesis pairs. During the dataset
creation, one can control the interpretation of the contradiction label via anno-
tation guidelines–whether to opt for the co-reference-enforced contradiction or
a more logical notion that largely narrows down the contradiction inference
problems. However, it is not easy to keep inference datasets free from biases,
especially when the sentences are collected via crowdsourcing. Notable biases
of inference datasets are the hypothesis-only bias and the high word overlap for
entailment problems. Finally, there are inference problems for which a single
inference label is not representative. While there have been at least two sugges-
tions for abandoning a single inference label in textual inference, most of the
inference datasets are still created as a two- or three-way classification task.

2.2 Phenomena-Specific Textual Inference
In this section, we describe several textual inference datasets that were created
with clear linguistic and semantic phenomena inmind; in other words, they con-
tain inference problems that require correct treatment of certain semantically
heavy words or semantically peculiar constructions. Such inference datasets
are usually inspired by studies in formal semantics. The list of the datasets is
given in Table 2 at the end of the section. Additionally, wemention the results of
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LMs on these datasets as reported by the original works.12 Our focus on seman-
tic phenomena-driven inference datasets distinguishes this section from other
works that also summarize existing inference datasets (Chatzikyriakidis et al.,
2017; Poliak, 2020; Storks, Gao, & Chai, 2019).

2.2.1 The FraCaS Test Suite

We start with the FraCaS test suite (Cooper et al., 1996) as it covers several
semantic phenomena that have been intensively studied in semantics literature.
The FraCaS test suite was originally created as a yes/no/unknown-QA test suite
for NLP systems.13 Only later it was converted and used as a textual inference
test suite byMacCartney andManning (2007). It contains only 334well-formed
inference problems but has nine focused sections covering generalized quan-
tifiers (74), plurals (33), nominal anaphora (28), ellipsis (55), adjectives (22),
comparatives (31), temporal reference (70), verbs (8), and attitudes (13). Back-
ground knowledge is explicitly encoded in the FraCaS inference problems as
premises (e.g., Every Swede is a Scandinavian), and (multistep) logic-based
reasoning is the only challenge built in the dataset.
The FraCaS inference dataset has been rarely used for evaluating LMs due

to its small size and imbalance of inference labels (e.g., entailment covers 52
percent of the problems while contradiction covers only 9 percent).
As was alreadymentioned, the size and imbalance of the labels make FraCaS

a nonrepresentative evaluation set. Its treatment of semantic phenomena and
clear structure motivate new ways of creating inference problems and datasets.
FraCaS is mainly used for testing logic-based approaches (Abzianidze, 2016;
Bernardy & Chatzikyriakidis, 2021; Hu, Chen, & Moss, 2019).

2.2.2 Monotonicity

Reasoning with monotonicity is the most common phenomenon on which LMS
have been evaluated. This is because monotonicity reasoning is well studied
from a formal semantics point of view (Icard & Moss, 2014; Van Benthem,
1986) and captures inferences that can be characterized by phrase substitu-
tions directly in surface forms, without translations into an intermediate formal
meaning representation. This facilitates the automatic generation of inference
problems on monotonicity reasoning.
Not all phrase substitutions in a sentence result in a new sentence that is

entailed from the original one.With the help of monotonicity reasoning, we can
identify certain entailment-preserving substitutions. This is done by modeling

12 The results quickly get outdated given the fast progress in the field.
13 https://nlp.stanford.edu/ wcmac/downloads/fracas.xml.
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the monotonicity properties of lexical units where quantifiers get the spotlight.
Let us interpret the quantifier most as a binary function from unary predicates
to {0,1} (for false and true, respectively), where it is non-monotone in its first
argument position and upward monotone in its second argument position. This
can be denoted as most(x◦,y↑). Since most is upward monotone in y’s position,
inserting more general predicates in “most dogs y” should not decrease its truth
value: “most dogs are running” ≤ “most dogs are moving”, where ≤ can be
interpreted as entailment. In the case of the non-monotone position of x, we
cannot predict an order between the values of “most x are running” when two
comparable arguments (e.g., dog and pet) are inserted in it: “most dogs are
running” does not entail “most pets are running” and vice versa.
It gets more complicated when dealing with nested scopes of monotone

operators. Let us analyze (11) as (11′), where each function is marked with
monotonicity properties.14 Following (11′), each word in (11) is colored based
on its polarity – that is, the monotonicity property of the position that is a result
of interference ofmonotone functions. Green (red) stands for an upward (down-
ward, respectively) monotone position. When green (red) words are replaced
with synonymous or more general (more specific) concepts, the resulting sen-
tence is entailed from the initial one as demonstrated by (11)⇒(12); The results
of replacement in (12) are underlined.

(11) Every person without a mustache who consumed alcohol tasted most
snacks.

(11′) Every↓↑
(
who↑↑

(
without↑↓(person, a mustache), consumed↑(alcohol)

)
,

tasted↑
(
most◦(snacks)

) )
(12) Every man without facial hair who drank whiskey tried some snacks.

Textual inference datasets on monotonicity reasoning are usually (semi)
automatically generated. The generation process goes as follows: (a) Polar-
ity marking automatically detects the polarity of sub-phrases in a sentence
by exploiting a syntactic structure and monotone operators in the sentence,
(b) Phrase substitution substitutes polarity-marked sub-phrases with more
general or specific phrases, and (c)Entailment labeling induces entailment rela-
tions based on the polarity of the substituted sub-phrases and the specificity
order between substituted and substituting sub-phrases. Vanilla monotonicity
reasoning cannot capture contradiction relations, hence most monotonicity-
based inference datasets cover only entailment and non-entailment labels.

14 Here, we adopt the quantifier scoping that follows the quantifier order in the surface form and
yet yields a sensible semantic reading.
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For the extension of monotonicity reasoning with an exclusion relation, see
MacCartney and Manning (2009) and Icard (2012).
One of the first monotonicity-based inference datasets, the Monotonicity

Entailment Dataset (MED), was semiautomatically created by Yanaka et al.
(2019a). The final dataset contains more than 5,000 problems. While the
problems are evenly balanced between entailment and non-entailment classes,
underlying monotonicity phenomena are unevenly distributed: upward (34
percent), downward (61 percent), non (5 percent). The MED dataset is only
intended for evaluation and comes with no training part.15

Yanaka et al. (2019a) evaluated top textual inference models at that time,
including BERT, and found that the models underperform (below the majority
baseline) on downward-monotone problems when trained on standard train-
ing sets, SNLI and MNLI. When augmenting a training set with the HELP
dataset, the experiments showed that if a portion of the upward (downward)
monotonicity problems increases in the training set, it hurts models to learn the
downward (upward respectively) monotonicity reasoning. Chen (2021) reports
the highest score by an LM on MED: a model with a tree structure encoder
(Zhou, Liu, & Pan, 2016) and a self-attention (Lin et al., 2017) obtains an accu-
racy of 75.7 percent. A substantial improvement (93.4 percent) is reported by
Chen, Gao, and Moss (2021) with a hybrid system that combines a mono-
tonicity reasoning system with lexical databases and LLMs. However, such
hybrid systems have an obvious advantage over purely neural models as they
can faithfully mimic the algorithm underlying the creation of the evaluation
data.
In contrast to theMED dataset, the monotonicity part of Semantic Fragments

(hereafter referred to as monFrag) by Richardson et al. (2020) is fully automat-
ically created: The sentence pairs are generated with a regular grammar using a
restricted vocabulary of size 119 and following the polarity markings induced
from monotone operators. Such controlled generation of the pairs backed up
with polarity computation of Hu et al. (2019) guarantees correct assignments
of three-way inference labels to the generated problems. monFrag contains 10K
problems equally distributed over three labels and divided into simple and hard
parts based on the number of relative clauses in sentences and the vocabu-
lary size of quantifiers per part. A sample problem from the dataset is given
in (13).

15 MEDwas preceded by the fully automatically generated monotonicity inference dataset, called
HELP (Yanaka et al., 2019b). Due to the automatic generation, which introduces some noise
in inference labels and the naturalness of sentences, HELP is intended to be used as training
data.
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(13) All black mammals saw exactly 5 stallions who danced |=

Some black rabbits did not see exactly 5 stallions who danced

As a result of their probing experiments, Richardson et al. (2020) found that
LMs poorly generalize on monFrag, namely one of the best results is obtained
by BERT: 62.8 accuracy score when trained on SNLI and MNLI. They also
show that BERT predicts monFragwith 97.8 percent accuracy when fine-tuned
on 2,000 similar monotonicity problems while its score decreases only by 1.3
percent on the MNLI development set.
Monotonicity reasoning represents a substantial challenge for LMs when

it comes to distinguishing the reasoning processes driven by downward and
upward monotone operators. While within the limited vocabulary (of ≈100
words) LMs overall learn the monotonicity reasoning in monFrag, generalizing
monotonicity reasoning for a larger vocabulary remains a difficult problem.
For more details related to monotonicity and LMs, we refer readers to the

following works: Yanaka et al. (2020) show LMs having difficulties to sys-
tematically generalize on monotonicity reasoning when syntactic structures in
the training and test sets differ; Geiger, Richardson, and Potts (2020) demon-
strate that BERT partially mirrors the causal dynamics of the algorithm that
models a fragment of monotonicity reasoning restricted to negation and lexical
entailment; and Geiger et al. (2018) emphasize the importance of alignment for
reasoning with monotone quantifiers.

2.2.3 Negation

Understanding and processing negation is a challenging task for NLP systems,
including those based on deep neural networks. The experiments by Kass-
ner and Schütze (2020) and Ettinger (2020) showed that when using BERT
as an LM to predict a word in a sentence and in its negated version, BERT
shows little to no sensitivity to the presence of negation. Additionally, Ribeiro
et al. (2020) demonstrated how inserting negation can mislead prominent
commercial models for sentiment analysis.
Negation is present as a part of the challenge in most of the monotonicity

reasoning-based inference datasets since it is one of the main sources of down-
ward monotone operators. However, the complementing nature of negation
is not fully captured by vanilla monotonicity reasoning. There are also syn-
thetic challenge test sets (Richardson et al., 2020) and adversarial/stress sets
(Naik et al., 2018) that focus on negation, but their coverage and the natural-
ness of sentences are rather low. Instead, we will discuss the textual inference
dataset from Hossain et al. (2020), hereafter referred to as negNLI, which is a
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manually created and labeled dataset of size 4,500. It builds on the standard
inference datasets such as RTE, SNLI, and MNLI.
The motivation behind creating negNLI was to test SOTA transformer mod-

els and their training datasets on the proper treatment of negations and their
coverage, respectively. To create new inference problems, they extracted 500
Text–Hypothesis pairs per dataset (in total 1,500), added negation manually to
the main verb of each sentence, and formed three new negation-involving prob-
lems: Tneg-H, T-Hneg, and Tneg-Hneg. Hence, negNLI consists of three subparts,
negRTE, negSNLI, and negMNLI, corresponding to RTE, SNLI, and MNLI,
respectively.
After experimenting with transformers such as BERT, RoBERTa (Liu et al.,

2019) and XLNet (Yang et al., 2019), Hossain et al. (2020) found that the mod-
els underperform on negNLI when trained on the standard inference datasets.
The results of these experiments are negative despite the problems in the sub-
parts of negNLI being very similar to the original inference problems, differing
only in terms of inserted negation particles.
Another inference dataset on negation worth mentioning is the NaN-NLI test

suite (Truong et al., 2022), where NaN stands for Not another Negation. It is a
small curated set of 258 inference problems and is intended only for evaluation
use. The distinct feature of NaN-NLI is that it covers types of negation that
rarely affect the inference labels in the datasets: nonverbal (e.g., not all and
not very) and sub-clausal (e.g., negating a prepositional phrase as in not for the
first time). The premises in the dataset are drawn from Pullum & Huddleston
(2002). For each premise, the authors handcrafted around five hypotheses to
form inference problems driven by a negation item.
In the evaluation experiments, Truong et al. (2022) use two pretrained LMs:

RoBERTa and negRoBERTa, a variant of RoBERTa pretrained with negation
data augmentation and a negation cue masking strategy (Truong et al., 2022).
Both models are fine-tuned on MNLI and MNLI augmented with negMNLI
of Hossain et al. (2020). The highest results are obtained when fine-tuning
the models on the augmented data. The obtained scores of both models are
comparable (ca. 62.7 percent) and represent a moderate improvement over the
majority class baseline (45.3 percent).
Negative results on modeling negation are also reported by Hartmann et al.

(2021) when evaluating the multilingual BERT model on five languages.
Unlike previous datasets, Hartmann et al. (2021) structured their multilingual
inference dataset in minimal pairs of inference problems. In this way, the
dataset tests a model on whether it correctly recognizes the effect the presence
and absence of negation have on inference labels.
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Classifying textual inference problems with negation remains a challenge for
LMs, stemming from the scope-taking nature of negation and its ability to flip
the meaning of a phrase. The latter behavior contrasts with the general word
insertion mechanism, which usually introduces additional information to the
meaning (e.g., inserting adjuncts or complements).

2.2.4 Implicatures and Presuppositions

Implicatures and presuppositions are pragmatic inferences that are different
from standard logical entailment. While implicatures are defeasible sugges-
tions made by an utterance, presuppositions are assumed true by an utterance as
they are essential for interpreting its meaning. Unlike entailments, presupposi-
tions can survive even when they are embedded under questions, conditionals,
and negation. For instance, (14) shows examples of a presupposition and an
implicature (of the type usually called scalar implicature).

(14) Some of John’s kids are playing outside.
presupposes that John has kids.
implicates that One of John’s kids is not playing outside.

Note that the same presupposition would still be available if we considered the
negated version of the sentence Some of John’s kids are not playing outside or
the question Are some of John’s kids playing outside?.
The implicature in (14) arises because an alternative to some – namely all –

could have been used, but it was not. Pragmatic reasoning about why this alter-
native was not used can lead to a conclusion from (14) that this alternative is
not true (i.e., not all of John’s kids are playing outside). The implicature can
be canceled with the follow-up elaborating sentence Actually all of John’s kids
are playing outside.
The inference relation built into inference datasets has an imprecise defini-

tion that says “T entails (contradicts) H if humans reading T would typically
infer that H is most likely true (false)” (see p. 21) and represents a weaker rela-
tion than logical entailment. This raises a question:What is the relation between
the entailment that textual inference models learn and pragmatic inferences
like implicatures and presuppositions? Do textual inference models recognize
implicatures as entailment or as neutral? Are they robust enough to consistently
accommodate presuppositions?
To answer these questions, Jeretic et al. (2020) automatically created an

inference dataset, called IMPPRES, focusing on scalar implicatures and pre-
suppositions. The problems were generated from predefined sentence tem-
plates, in total more than 25,000. The scalar implicature part consists of six
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subparts, each focusing on a particular lexical scale: determiners 〈some,all〉,
connectives 〈or,and〉, modals 〈can,have to〉, numerals 〈2,3〉, gradable adjec-
tives 〈good,excellent〉, and gradable verbs 〈run,sprint〉. The presupposition
part has eight subparts involving all N, both, change of state, cleft existence,
cleft uniqueness, only, possessed definites, and questions. As noted by the
dataset authors, ImpPres is solely intended for evaluation purposes since the
patterns in the dataset can be easily learned.
Experiments conducted onMNLI-trained BERT showed that with some con-

sistency BERT uses pragmatic inference when some is in a premise – that is,
identifies examples like 〈some N V, all N V 〉 as contradiction. However, exper-
iments on other subparts suggested that BERT cannot distinguish the scalar
pairs for connectives and gradable concepts – for example, it treats X is good
and X is excellent as semantically equivalent, and it inconsistently handles the
cases of numerals and modals. Evaluation on the presupposition part reveals
that BERT predicts entailment for presuppositions of clefts (e.g., it is X who V
⇒ Someone V ), possessed definites, only, and questions (e.g., John knew why
Ann left⇒ Ann left) but fails to do so for numerals (e.g., Both N V ⇒ Exactly
two N V ) and change of state (e.g., X was healed⇒ X used to be ill).
Jeretic et al. (2020) conclude that the pragmatic reasoning capacity of BERT

mostly comes from the pretraining stage – that is, masked language modeling,
as MNLI contains an insufficient number of pragmatic inferences and almost
no samples of those triggered lexically. This leaves the question open whether
LMs are able to consistently carry out pragmatic reasoning.
A follow-up study by Parrish et al. (2021) created a test dataset of more than

2,000 inference problems on presuppositions. In the dataset, the Text repre-
sents naturally occurring multiple sentences while the Hypothesis is manually
constructed for each Text. To model the gradable nature of presupposition pro-
jection/cancellation, they also designed variants of Text that contain negated
presupposition triggers. The results of their experiments show that models per-
formed comparably to humans on relatively simple cases (e.g., cleft, numeric
determiners, and temporal adverbs) but failed to fully capture human-level
context sensitivity and gradience.
For related work, we refer the readers to Jiang and de Marneffe (2019),

Ross and Pavlick (2019), and Schuster, Chen, and Degen (2020). Jiang and de
Marneffe (2019) recast samples of CommitmentBank (de Marneffe, Simons,
& Tonhauser, 2019) to inference problems, where the Text consists of multi-
ple sentences, and the Hypothesis is a complement of clause-embedding verbs
under entailment-canceling environments (conditional, negation, modal, and
question). Based on the experiments with BERT models, they concluded that
the models still do not capture the full complexity of pragmatic reasoning.
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Ross and Pavlick (2019) studied whether BERT can make correct inferences
about veridicality in verb–complement constructions. While the projectivity
behavior of verb–complement verbs is different from presupposition projec-
tion, they share similarities when it comes to inferring embedded meaning.
Schuster et al. (2020) explored whether an LSTM-based sentence encoder can
be used to predict the strength of scalar inferences, namely predicting semantic
similarity between some kids play and some, but not all, kids play.

2.2.5 Other Targeted Inference Datasets

In addition to the discussed inference datasets, there are many other datasets
that focus on semantic phenomena beyond the scope of the section. Kober et al.
(2019) designed andmanually annotated a set of sentence pairs that require rea-
soning with tense and aspect.16 Ravichander et al. (2019) prepared the EQUATE

dataset for quantitative reasoning formatted as inference problems. Saha, Nie,
and Bansal (2020) constructed the CONJNLI challenge set to evaluate LMs on
understanding connectives (like and, or, but, nor) in conjunction with quan-
tifiers and negation. In addition to themonotonicity fragment, Richardson et al.
(2020) created synthetic data fragments for negation, Boolean connectives,
quantifiers, and comparatives. Abzianidze et al. (2023) curated inference prob-
lems on spatial reasoning and showed that LMs are far from mastering it.
Liu et al. (2023) designed an inference dataset, called AmbiEnt, to evaluate
models on reasoning with ambiguous sentences involving a variety of lexi-
cal, syntactic, and pragmatic ambiguities. The dataset shifts from three-way
classification to multi-label classification with three inference labels. Inference
problems that are sensitive to the ambiguity of the Text are classified with more
than one inference label.

2.3 Interim Conclusion
Since the first RTE task (Dagan et al., 2006), reasoning with natural language
remains a popular NLP task. In the age of deep learning, the task
gained momentum with the creation of the SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018) datasets.17 Both MNLI and RTE (the
merge of RTE1, RT2, RTE3, and RTE5) are part of the GLUE benchmark

16 White et al. (2017), Poliak, Haldar, et al. (2018), and Vashishtha et al. (2020) together recast
twenty datasets of other NLP tasks into inference dataset format. Their datasets cover phe-
nomena such as temporal reasoning, event factuality, anaphora resolution, and semantic roles.
However, the recast datasets have somewhat unnatural or uniformly structured Hypotheses.

17 It also gradually got a new name, natural language inference (NLI), partially due to these dataset
names and terminology used in the corresponding papers.
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Table 2 A list of phenomena-specific textual inference datasets discussed in the current section. t × p in the size column stands for
generating p number of inference problems from t number of templates. †A part of a dataset was used for training in the original
experiments. nσMulti-labeling with n number of labels. “Dev” stands for a dataset having a designated development set. A list of
abbreviations used: trained annotators (TA), crowd workers (CW), human-elicited (HE), and automatically/manually edited existing

text (AE/ME).

Dataset Size Train
part

Pair
coll.

Lab.
anno.

Lab.
num. Phenomena

FraCaS 334 No HE TA 3 Quantifiers, plurals, anaphora, ellipsis,
(Cooper et al., 1996) adjectives, comparatives, temporal ref.,

verbs, attitude

MED 5,382 No ME CW 2 Monotonicity reasoning
(Yanaka et al., 2019a)

Semantic fragments 40,000 Yes Auto Auto 3 Negation, Boolean connectives, quantifiers,
(Richardson et al., 2020) counting, comparatives, monotonicity

negNLI 4,500 No† ME TA 3 Verb-level negation
(Hossain et al., 2020)

Nan-NLI 258 No HE TA 3 Diverse types of negation: verbal and nonverbal,
(T. H. Truong et al., 2022) clausal and sub-clausal, analytic and synthetic

IMPPRES 25,500 No Auto Auto 3 Scalar implicature (six subparts) and
(Jeretic et al., 2020) presuppositions (eight subparts)

NOPE 2,732 No HE CW 3 Context-sensitivity of ten different types
(Parrish et al., 2021) of presupposition triggers
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TEA 11,138 No† HE TA 2 Tense and aspect: all combinations of
(Kober, Bijl de Vroe, & Steedman, 2019) present/past, simple/progressive/perfect

and modal future, covering perfect,
and progressive aspect

HANS 30×1,000 No† Auto Auto 2 Overlap heuristics: lexical, subsequence,
(McCoy, Pavlick, & Linzen, 2019) sub-constituent

EQUATE 9,606 No AE
Auto

TA
CW
Auto

2/3 Quantitative reasoning (five subsets): verbal
(Ravichander et al., 2019) reasoning with quantities, basic arithmetic

computation, inferences with approximations,
and range comparisons

ConjNLI 1,623 Dev AE TA 3 (Non-)Boolean use of connectives (e.g., and, or,
(Saha, Nie, & Bansal, 2020) but, nor) with quantifiers and negation

SpaceNLI 160×200 No† Auto Auto 3 Diverse types of spatial expressions: directional,
(Abzianidze, Zwarts, & Winter, 2023) argument orientation, projective, non-projective

AmbiEnt 1,645 Dev HE
Auto TA 3σ Ambiguity: sentences involving a variety of

(A. Liu et al., 2023) lexical, syntactic, and pragmatic ambiguities

, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781009542340

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 3.15.25.100, on 11 Jan 2025 at 05:48:02, subject to the Cam

bridge Core term
s of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009542340
https://www.cambridge.org/core


40 Semantics

(Wang, Singh, et al., 2019) for NLU. The new NLU benchmark SuperGLUE
(Wang, Pruksachatkun, et al., 2019) dropped MNLI as by that time systems
had already reached ≈90 percent of accuracy on the mismatched set, close
to the human performance (92.8 percent). However, the RTE set was kept
in SuperGLUE since system performance was nearly eight points lower than
the human performance (93.6 percent). Currently, RTE’s human threshold is
already beaten by PaLM (Chowdhery et al., 2022).
Recently the NLP community started to actively create numerous inference

datasets that focus on certain phenomena (Rogers & Rumshisky, 2020) to eval-
uate the competence of LLMs. This opened the door to two new evaluation
modalities, in addition to the standard train-and-test regime: adversarial testing
and challenge testing. While the former targets the weak points of a model to
emphasize its brittleness, the latter tries to evaluate the model’s competence
on a particular linguistic phenomenon, which is usually out of the training set
distribution.
Interestingly and somewhat unexpectedly, while the large models beat the

SOTA on standard inference benchmark datasets (such as SNLI, MNLI, and
RTE), new targeted inference datasets have been created that reveal the incom-
petence of these large models on a certain set of phenomena. Even if the models
achieve human parity on (semantically) challenging inference datasets, there
is substantial room for improving benchmarking in the textual inference task
(Bowman & Dahl, 2021), which will significantly affect the evaluation results.

3 Compositionality
Compositionality of linguistic meaning is responsible for construction of prop-
ositional meanings from components put together combinatorially in tandem
with the syntax of language.
Compositionality usually assumes a syntactic structure used as an input

to interpretation. Typical deep learning models, however, operate on surface
strings rather than syntactic structures. The assumption is that the relevant
aspects of syntactic parsing are learned implicitly during end-to-end learn-
ing. This is plausible as neural models have shown good results in rele-
vant tasks, namely recognizing recursive languages (Bernardy, 2018; Weiss,
Goldberg, & Yahav, 2018) and learning constrained interpreted languages
(Hudson & Manning, 2018; Lake & Baroni, 2018). Sometimes, instead of the
general notion of compositionality, the more special property of systematic-
ity is explored, for example, in Lake and Baroni (2018). Systematicity means
extending semantic interpretation to combinations with new (atomic) lexical
items.
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Recursive compositional interpretation has been mainly explored on artifi-
cial languages of arithmetic expressions and sequence operations (Hupkes
et al., 2020; Hupkes, Veldhoen, & Zuidema, 2018; Nangia & Bowman, 2018).
In what follows, we review proposed methods of assessing compositional
properties of neural systems (Andreas, 2019b; Ettinger et al., 2018; Mickus,
Bernard, & Paperno, 2020; Soulos et al., 2020). Kim and Linzen (2020), for
instance, include depth of recursion as one of the many aspects of systematic
semantic generalization. We then explicate the computational processes and
representations that mirror compositionality in SOTA computational models,
most notably the Transformer.
The study of compositionality in current machine-learning models sig-

nificantly overlaps with the study of generalization (Hupkes et al., 2022) as
compositionality is the mechanism that enables semantic generalization to
unseen combinations of linguistic elements.

Notions of Compositionality Philosophers of language and formal semanti-
cists assume a notion of compositionality for (linguistic) signs that goes back to
the ideas of Gottlob Frege and his student Rudolf Carnap, whereby the mean-
ing of a complex expression is a function of the meanings of its parts and
the way they are combined. This notion, although argued to be rather weak
(Kracht, 2011), imposes certain constraints on the nature of the underlying
objects. Namely, one distinguishes the (linguistic) forms and their meanings
and assumes certain combination operations applied to them. The assumptions
of structure-building operations, while weakening the notion of composition-
ality, are nonetheless useful, because they allow for an elegant account for
structural ambiguity; the sentence Mary saw a man with binoculars has two
readings (Mary used the binoculars vs. the man had the binoculars), which are
derived from combining the same words in different ways.
In contrast to this Fregean notion of compositionality, some researchers

in machine learning and cognitive science discuss compositionality of con-
cept representations within a model without necessarily a link to a natural
or formal language that may express those concepts. Sometimes this is dis-
cussed under the name of combinatorial properties – for example, conjunctions
of properties (the concept of being round and striped) are concidered com-
positional combinations of more basic concepts. Here, instead of (symbolic)
linguistic expressions (such as the phrase round and striped), one focuses on
learned meaning representations in cognitive or computational systems (e.g.,
the model’s hidden states corresponding to round and striped objects). This
literature (e.g., Tokmakov, Wang, & Hebert, 2019) investigates whether the
system learned representations correspond to a decomposition of the inputs that
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are represented; inputs’ combination is assumed to follow structure-building
rules, explicitly building on the analogy with syntactic structure in language
(Andreas, 2019b). For instance, Du, Li, and Mordatch (2020) compose prop-
erties of objects such as shape, color, and position for the purposes of image
generation. Modern language and vision models such as CLIP (Radford et al.,
2021) are known to learn the primitive concepts well, but concept compositions
still fail to exhibit a correct treatment (Yun et al., 2022).

3.1 Tests of Compositionality
To a great extent, current neural approaches to language are black boxes.
While architectures such as the Transformer are in principle Turing complete
(Pérez, Barceló, & Marinkovic, 2021) and therefore capable of learning hierar-
chical syntax and compositional semantics accompanying it, they are not trying
to implement these properties of language directly. Rather, compositionality is
more of an emergent property.
Assume that a learner acquires a correspondence between language and a

semantic representation. How can we tell if the resulting mapping is compo-
sitional? This question has been most persistently investigated in the study of
emergent communication systems, – for example, Kirby et al. (2015).
A common method of measuring compositionality of the meaning-form

mapping is correlation analysis, as proposed, for example, by Kirby, Cornish,
and Smith (2008). It can be applied regardless of whether the meaning-form
mapping arises via iterated artificial language learning in humans, or in compu-
tational simulations that may or may not include neural network models. The
idea is as follows: If we have a similarity metric defined on linguistic forms
(such as the Levenstein string edit distance) and a similarity metric defined
on meaning representations (such as cosine of two vector representations of
meaning), the similarities in form versus meaning should correlate. Pearson’s
product moment is used as a metric of compositionality. Alternative but related
compositionalitymetrics have also been explored (Chaabouni et al., 2020). The
correlation-based methods are of course a very rough measure of composi-
tionality as defined in philosophy of language. If the meaning of a complex
expression is a function of the meanings of its parts, containing largely the
same parts does not guarantee relatedness of meaning. Indeed, functions can
map related expressions to very different values. Take the example of predicate
logic where each formula is interpreted as 0 or 1. An arbitrarily large formula
ϕ can be very close to ¬ϕ in terms of the string edit distance (1 edit), but its
semantic value is opposite.
But even when we stay away from extensionally interpreted predicate logic

and close to natural language examples, meaning–form correlation appears
to be problematic as a measure of compositionality. Common linguistic
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phenomena such as ambiguity and semantically irrelevant morphosyntactic
variation can bring meaning–form correlation scores to very low values even in
an otherwise perfectly compositional language, and meaning–form correlation
as measured on naturalistic data is indeed strikingly low (Mickus et al., 2020).

3.1.1 Similarity-Based Tests

One approach to establishing whether compositional vector semantic repre-
sentations are satisfactory relies on the notion of similarity. Vector spaces have
inherent similarity structures that can be measured numerically with metrics
like the cosine. The cosine values serve as the models’ similarity or related-
ness predictions for pairs of sentences or phrases, and are compared to numeric
similarity or relatedness scores produced by human annotators for the same
phrase or sentence pairs. Metrics of choice for composition model evaluations
are typically correlation coefficients (Pearson’s or Spearman’s).
The first such similarity datasets were rather small – for example, human

similarity judgments for adjective–noun, noun–noun, and verb–object com-
binations for 108 phrase pairs for each type in Mitchell and Lapata (2010);
determiner–noun combinations (Bernardi et al., 2013) and sentences with tran-
sitive verbs (Kartsaklis, Sadrzadeh, & Pulman, 2013).
These small controlled datasets featuring dozens of phrases or sentences

raise concerns of generality and ecological validity. They might not be repre-
sentative of semantic composition in general. As a result, a model might work
well for this data but fail to extend to other phrases or more complex data.
This motivated more ecologically valid datasets consisting of varied sen-

tences with a range of syntactic structures. The Semantic Textual Similarity
(STS) task, introduced by Agirre et al. (2012), presents sentence pairs anno-
tated on a scale from 0 (“on different topics”) to 5 (“completely equivalent”).
The original sentences in the pairs were taken from a variety of sources, such
as image and video descriptions and outputs of machine translation mod-
els. The SICK dataset (Marelli et al., 2014) tries to control for phenomena
such as proper nouns that may affect model predictions but are distinct from
composition and could confound the evaluation of compositional models.
There are also alternatives to human judgments on similarity or relatedness

for evaluation of compositional representations. One proposal is that the simi-
larity of vector representations of phrases should correspond to how often one
of the components in the phrase is expressed by the same lexical item across
languages (Ryzhova, Kyuseva, & Paperno, 2016). For example, the vector of
the phrase sharp knife is expected to be more similar to that of sharp saw
than sharp needle because across languages the former two consistently use
the same translation for sharp (e.g., French tranchant), while the latter often
differs (French aigu).
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There is also the rank approach to intrinsic similarity-based evaluation.
While ingenious, it has limited applicability and can only be used with vector
models that can produce vector representations of phrases that are comparable
to vectors of words. One can think of such amodel as processing a corpus where
every occurrence of the phrase red car is represented as a single token red_car.
Such a model can then estimate a vector for the phrase red car (the observed
phrase vector) just like it creates vectors for words red and carwhen they occur
outside of the phrase. Ideally, an adequate composition model should predict
a compositional vector for red car that closely resembles the observed vector
of red_car. One metric of success for a compositional model is the rank: If the
observed phrase vector is closer to the compositional one than vectors of other
words and phrases, the model’s prediction is on the right track and the rank is 1;
if the compositional model is further off track, the rank of the “correct” phrase
vector is higher.
Rank evaluation of vector composition was first applied by Baroni and Zam-

parelli (2010) and extended more broadly by Dima et al., (2019). See also
Boleda, Baroni, McNally, et al. (2013) on adjective–noun vector composition
for non-intersective adjectives.

3.1.2 Representation Testing on Downstream Tasks

Compositionality of models can also be estimated indirectly via downstream
tasks. The assumption is that solving the specific task requires adequate seman-
tic representations, which must be compositional. Such tasks include inference
(section 2), sentiment analysis (determining how positively a text, typically
customer feedback, describes a certain object), and QA (Rajpurkar et al.,
2016):

(15) passage:
In meteorology, precipitation is any product of the condensation of
atmospheric water vapor that falls under gravity. < · · · >
question:
What causes precipitation to fall?

Closely related to QA, the LAMBADA task (Paperno et al., 2016) is a fill-
in-the-blank task where understanding of a whole passage above and beyond
the immediate sentential context of the masked word is required to fulfill
the task successfully. The LAMBADA task therefore approximately measures
the ability of LMs to process compositional meaning of discourse. The
LAMBADA task was challenging to all models at the time the dataset was
introduced, but large LMs with few-shot learning on the task (Brown et al.,
2020; Chowdhery et al., 2022) showed impressive progress on LAMBADA.
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Such tasks have been instrumental in validating models; they all clearly
involve compositional meaning. For example, a negation placed in a well-
chosen position in the text can completely change the entailment relation
between two sentences, the set of correct answers to a question about the text,
or the text’s sentiment. In other cases, a negation placed elsewhere might not
interfere with the meaning of the text in the same ways, showing that proper
treatment of negation requires compositionality: deriving the meaning of a
complex text both from the elements in the text and the way they are combined.

3.1.3 Compositional Tasks

Toy Tasks Researchers used dedicated toy tasks to study the ability of deep
learning models to learn recursive compositional behavior. The Arithmetic
Language task (Hupkes et al., 2018) consists in interpreting nested arithmetic
expressions with + and − operations. For example, ((4 − 2) − 1) maps to the
value 1.
Paperno (2022) proposes the Personal Relations task focusing on recursive

composition in referring phrases. For example, learning systems are expected to
mapAnn’s friend’s child toDonnawhen trained on data that includes a mapping
of Ann’s friend to Bill and Bill’s child to Donna.
Lake and Baroni (2018) propose the SCAN task consisting in mapping com-

mands such as jump twice to action sequences such as I_JUMP I_JUMP. The
dataset includes recursive structures like jump twice and walk twice. The SCAN
dataset supports multiple data splits into training, development, and testing par-
titions. The most challenging one is the jump split whereby the training data
contains the word jump only as the name of an atomic action I_JUMP while
the test set includes complex examples with jump such as jump twice and
walk twice. This split is intended to demonstrate true recursive generalization
from simple to complex examples, as opposed to learning to fill gaps in large
numbers of superficially similar examples.
Hupkes et al. (2020) developed a more complex “PCFG” task of process-

ing commands that produce sequences, for example append swap F G H ,
repeat I J produces G H F I J I J: the sequence F G H gets the first ele-
ment swapped into the last position and appended to sequence I J repeated
twice.
In all of these toy tasks, deep learning models showed mixed results.

On both the Arithmetic Language and Personal Relations tasks, recurrent
models such as GRU showed good generalization behaviors, but only for
left-branching structures, and robust composition with alternative architec-
tures such as Transformers or CNNs has not been reported. For the SCAN
task, generalization for the hard jump split has been achieved by custom
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modifications of learning models that have no (Nye et al., 2020) or only a weak
independent justification (Chaabouni, Dessì, & Kharitonov, 2021). However,
the chain-of-thought approach of Zhou et al. (2022) does appear to generalize
to compositional tasks above and beyond SCAN. For the PCFG data, only some
of the quantitative measures of compositionality showed high values for neural
models.
Larger Tasks Above and beyond intrinsic similarity-based evaluation and
toy tasks, compositional properties of neural models have been explored in
machine translation by Dankers, Bruni, and Hupkes (2022) and Hupkes et al.
(2020), who argue that more training data makes neural models’ generalization
more compositional.
Kim and Linzen (2020) proposed the COGS dataset to test models semantic

parsing: translation of natural language sentences into logical formulae that
represent their meanings. For example, A cat smiled is translated into (16):

(16) cat(x1) AND smile.agent(x2,x1)

On COGS, neural models showed good generalization in cases that could be
treated as lexical substitution but struggled to generalize to novel structural
configurations, for example - created by deeper recursive syntactic embedding
(e.g., The cat liked that the dog liked that the mouse liked that the girl saw the
rat).
Srivastava et al. (2022) presented a benchmark of 204 language tasks (BIG-

bench) that are supposed to go “beyond the imitation game” and test true
linguistic generalization of LMs. Some of these tasks are designed to probe
compositional semantics behavior, and they can include reasoning, as in the
cause-and-effect task:

(17) For each example, two events are given.Which event caused the other?
choice: It started raining.
choice: The driver turned the wipers on.

Many other aspects of compositionality in LMs are still waiting to be explored.

3.2 Methods for Compositionality
3.2.1 Levels of Composition

Compositional models exist for all levels of linguistic structure. For mor-
phology, there were different attempts to use morpheme decomposition
in computing vector representations of derived words (Botha & Blunsom,
2014; Lazaridou et al., 2013; Luong, Socher, & Manning, 2013). Vector-based
representations are thereby learned for individual morphemes. Soricut and Och
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(2015) combine a simple composition model with morphology induction. Most
current NLP models do away with morphemes altogether. The simple and effi-
cient fastText model (Bojanowski et al., 2017) approximates a word’s vector
as the sum of its character n-gram embeddings: rather than simply using the
distribution of, for example, hipster across contexts, the system collects and
sums the distributions of n-grams of characters – for example, hips, ipst, pste,
ster. The contrasts in distributional informativeness of hips or ster versus ipst
or pstemight effectively approximate the effect of segmenting a word into mor-
phemes. Another approach, standard in modern LMs, is subword tokenization,
which may or may not correspond to morphemes. At the same time, there is
evidence suggesting that morphologically informed segmentation might out-
perform sub-word segmentation (Hofmann, Pierrehumbert, & Schütze, 2021).
Among sub-word-based alternatives (including BPE but also others, e.g.,
Jinman et al., 2020; Pinter, Guthrie, and Eisenstein 2017; fastText remains
a robust method for producing rare word vectors (Prokhorov et al., 2019;
Vulić et al., 2020).
In phrase- and sentence-level composition, many earlier models relied on

parse tree representations as input, and therefore featured recursive compo-
sition following grammatical structure (Clark, Coecke, & Sadrzadeh, 2008;
Irsoy & Cardie, 2014; Le & Zuidema, 2015; Paperno, Pham, & Baroni, 2014;
Socher et al., 2012; Socher et al., 2013). However, state-of-the-art LMs are
instead trained end to end on text data without explicit parsing.
The general principle of having the same composition model for all levels

of language structure up to the level of discourse has evolved as computational
models grew more sophisticated. It was already present in latent semantic anal-
ysis (Landauer & Dumais, 1997) in the simple form of vector addition. Modern
LMs such as BERT and GPT employ a much more flexible mechanism of self-
attention that has the same cross-level coverage from tokens up to monological
or dialogical texts.

3.2.2 Theoretically Simple Models of Composition

The Additive Model of Composition Assume that two items such as words
that have vector representations are combined. What is the vector represen-
tation of their combination? The simplest approach to vector composition
consists in adding up vectors of component words together. Repeated addition
effectively treats text as a bag of words, meaning that word order and syntactic
structure are ignored; texts with the same words in them are processed identi-
cally. Despite its simplicity, vector addition is surprisingly effective and robust
in practice. For example, the sum of high-quality word vectors outperformed
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more sophisticated approaches to vector composition in the study of preposition
ambiguity (Ritter et al., 2015). Vector addition has been used as a method for
arriving at meaning representations of phrases, sentences, and even texts at
least since Landauer and Dumais (1997). More recently, sentence representa-
tions as summed contextualized token vectors from Transformer-based models
were suggested (Cer et al., 2018). Additive composition is efficient for a good
reason. Ultimately, dimensions of word vectors are used to predict in which
contexts the word is likely to be used; this is the objective of word embeddings
and neural LMs. This means that values in word vectors translate into scores
of statistical association between words and their contexts, which are usually
related to the Pointwise Mutual Information (PMI) score (Levy & Goldberg,
2014):

PMI(w,c) = log p(w,c)
p(w)p(c) , (6)

where p(w),p(c) are probabilities of the word and the context and p(w,c) is
the probability of their joint occurrence. Under the idealizing assumption that
two words’ associations with contexts do not interact non-trivially, it follows
that the sum of two words’ PMI values for a given context approximates these
two words’ combination’s PMI for the same context. As a result, if vector
dimensions of words correspond to PMIs as they do in models like GloVe and
skip-gram, then the sum ®car+ ®red approximates the distributional profile of the
phrase red car (Paperno & Baroni, 2016). If dimensions of ®car indicate that
car raises the probability of context c by a orders of magnitude, and dimen-
sions of ®red indicate that red raises the probability of context c by b orders of
magnitude, then the phrase red car plausibly raises the probability of context c
by a + b orders of magnitude. This suggests additive vector composition as a
strong baseline to the extent that words’ PMI scores are linear functions of their
vector dimensions. For models that do not include log transformation in the
calculation of association scores, as in Mitchell and Lapata (2010), pointwise
multiplication rather than addition is competitive.

Parametric Approaches to Vector Composition The additive model has
clear practical advantages. However, its conceptual issues are equally obvi-
ous. For instance, addition is effectively a bag-of-words model, agnostic of
word order and syntactic structure. Addition predicts the exact same vectors
for sentences Cats chase mice andMice chase cats.
This observation motivates various parametric approaches to vector com-

position. This means that the vector of the phrase includes not just vector
representations of the words involved, but also additional numeric parameters.
Such parameters can be learned from distributional properties of phrases that
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can themselves be encoded in vectors. One simple parametric approach that
proved efficient in different evaluations such as Mitchell and Lapata (2010) is
weighted addition:

®AB = α®A + β®B (7)

where α and β are scalar factors. For example, the phrase vector ®redcar can be
computed by combining vectors for words red and car with different weights
(e.g., 0.6 ®red + 0.4 ®car)
In Mitchell and Lapata’s experiments, different weight combinations were

estimated for different types of phrases. the first component (adjective) received
a high weight in adjective–noun phrases while the second component (noun)
had a higher weight in noun–noun compounds. One problem of the weighted
addition is its monotonicity. If relations between vectors are expected to be
useful in predicting entailment relations between words and phrases, the com-
position system should allow for different monotonic properties of elements
in composition. For example, the determiner some maintains the entailment
properties between nouns it combines with while no reverts them; however, in
the case of (weighted) addition, relations between some dog versus some ani-
mal and no dog versus no animal would be characterized by the exact same
linear offset. In contrast, richer models of composition allow for both mono-
tonic and non-monotonic computation, and more powerful transformer-based
LLMs discussed in what follows are known to exploit context monotonicity
(Bylinina & Tikhonov, 2022; Jumelet et al., 2021).
These issues of additive models of composition are addressed by richer

parametric models, which allow compositional combinations to proceed in
more differentiated, even idiosyncratic ways. Directly inspired by type-driven
semantic theory, the Lexical Function model (Baroni & Zamparelli, 2010)
treats one element in the phrase as a function and the other as its argument. The
functions in question are linear, so composition reduces to the multiplication
of the argument vector by the function-specific matrix:

®AB = mat(A)®B, (8)

An extension of the lexical functionmodel to higher-order functions includes
using multidimensional tensors in addition to matrices (Grefenstette et al.,
2013). However, the increase in the number of parameters brought about with
the introduction of tensors renders such compositional models increasingly
impractical, motivating proposals such as the Practical Lexical Function model
(Paperno et al., 2014).
In contrast to Lexical Function and versions thereof, other highly paramet-

ric approaches apply matrix weights to both elements of the composition and
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related highly parametric approaches (Dima et al., 2019; Guevara, 2011; Socher
et al., 2012, 2013):

®AB = mat1®A + mat2®B. (9)

where the matrices mat1,mat2 can be specific for the lexical items B,S com-
bined, or be shared across lexical items. Some studies, such as Gamallo (2021),
experimented with a different compositional approach based on syntactic
dependencies rather than constituent structure.
The problem with all the parametric approaches to vector composition is

in scaling up to diverse use cases on arbitrarily complex examples. End-to-
end approaches such as LLMs work better for most tasks. They are not only
more robust as they scale up rather easily to bigger input data, but they also
do not depend on parsing quality or efficiency, all while sharing parameters of
composition across different types of constructions.

3.2.3 Composition in State-of-the-Art Transformer Models

Attention-Based Composition Modern computational models based on the
Transformer architecture have at their heart the self-attention mechanism,
combined with feedforward neural network sublayers. There are many dif-
ferent instances of both self-attention and feedforward layers in multilayer
Transformers.
In practice, this means that Transformers are naturally adapted to execute the

simple and relatively interpretable vector composition strategies discussed ear-
lier in section 3.2.2. Both self-attention and feedforward steps include vector
addition and input multiplication by a matrix. As such, Transformers can eas-
ily emulate (weighted) addition, (practical) lexical function, and other simple
methods based on weighted sums and weight matrix multiplication.
Ability for step-by step-computation (chain of thought) is also useful not

only for reasoning, but also for complex semantic composition. Zhou et al.
(2022) propose least-to-most, a custom version of the chain-of-thought tech-
nique that allows GPT-3 to achieve good generalization on SCAN from
just fourteen examples, as well as two other simple compositional tasks.
Drozdov et al. (2022) show further that least-to-most also helps in more real-
istic compositional tasks such as COGS.

3.3 Interim Conclusion
The problem of compositionality in neural systems has been seriously addressed
long before the present-day Transformer systems. Already Smolensky (1990)
tried to design a principled neural treatment of compositionality using filler/role
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decomposition, with final representations derived from combinations of vector
representations of elements combined (“fillers”) and their roles in the structure.
More recently, Smolensky and colleagues attempted to establish such filler-role
structures inmodern trained recurrent neural networks (McCoy et al., 2019) and
to enhance Transformers with explicit filler-role representations (Schlag et al.,
2019).
There is active ongoing research on compositional generalization using

vector-based and neural network systems. This includes methods for helping
achieve compositional goals (e.g., few-shot prompting and chain-of-thought
reasoning), research on testing compositional generalization (e.g., development
datasets like COGS), as well as interpretability of the composition process.
Ideally, a successful system will make correct predictions on examples that
require compositional understanding of language (here some systems already
show promising behavior, e.g., for SCAN), while also using vector representa-
tions that make semantic composition interpretable; the latter is a more remote
goal, although analyses like the one by Merullo et al. (2023) already go in this
direction.
From different strands of this research emerges ample evidence that the

nature and the order of presentation of training data have a significant effect
on the compositional behavior of trained neural models (e.g., Paperno, 2022).
Chan et al. (2022) show that statistical distributions of data in natural cor-
pora enable essentially compositional few-shot behavior of LMs. Akyürek and
Andreas (2022) and Andreas (2019a) propose and test methods of generating
additional training data (data augmentation) that helps neural models arrive
at compositional behavior. In their experiments, improvements are observed
for various tasks that involve compositional behavior, including language
modeling, SCAN, and COGS.

4 Grounding: Language and Vision
So far, we have mainly been discussing capabilities of deep learning models
when it comes to meaning-related tasks that are defined on text – and, conse-
quently, can be formulated for text-only models. Let us now take a step back
and return to the theoretical debate we introduced in Section 1.2: Can text-based
models develop representations that contain semantic information, given that
such models lack an explicit separate, nonlinguistic, space to ground language
in?We concluded, both on principled grounds and based on empirical results of
text-only models’ behavior, that aspects of linguistic semantics are inferrable
from non-grounded text. Are models with non-grounded meaning represen-
tations qualitatively inferior and defective semantically when compared to
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models that are trained to connect linguistic representations to nonlinguistic
objects and structures?
While for some researchers the answer is a definite yes (Bender & Koller,

2020) and for others it is less obvious (Merrill et al., 2022; Piantadosi &
Hill 2022; Potts, 2020), there is little doubt that information from additional
modalities at least has potential to enrich models’ meaning representations.
This section explores such grounding: We will focus on models and tasks that
involve language in combination with additional, nonlinguistic information.
Linguistic data can be grounded in a variety of ways: the models can be

connected to knowledge bases explicitly storing fragments of world knowledge
(Du et al., 2022; Guu et al., 2020; Verga et al., 2020); texts can be associated
with visual data (Li et al., 2019; Lu et al., 2019; Tan and Bansal 2019), or even
some representation of smell (see an olfactory model in Kiela, Bulat, & Clark
2015).
Reviewing all existing types of grounding in deep learning models is hardly

possible within this Element, so we focus on just one type of grounding here:
visual grounding. Vision-and-language (V&L) models have shown the most
impressive breakthroughs recently, with the high quality of images generated
by the newest text-to-image models and fine-grained textual control of the
details in the image – see recent models like DALLE-2 (Ramesh et al., 2022),
Imagen (Saharia et al., 2022), Stable Diffusion (Rombach et al., 2021) and oth-
ers. Figure 3 shows the output of three recent text-to-image models given the
same textual prompt as an example. These generated images look impressive
at the time we are writing this Element, but they are most likely far from
SOTA when you are reading this. The rapid developments in the V&L field in

Figure 3 Images generated by DALLE-2a (left), Imagenb (middle) and
Stable Diffusionc models (right) with the same text prompt: A blue jay

standing on a large basket of rainbow macarons.
aGenerated on the https://labs.openai.com website, accessed October 10, 2022.
bExample from Saharia et al. (2022).
cGenerated on the Stable Diffusion demo page https://huggingface.co/spaces/stabi-
lityai/stable-diffusion, accessed October 10, 2022.
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combination with new and easier ways to personalize V&L models (Gal et al.,
2022; Ruiz et al., 2022), as well as addition of the visual modality to latest Chat-
GPT, are attracting a lot of attention of wider communities outside of NLP
and computer vision to mapping between language and images, which is, in
turn, likely to speed up the progress in this area and drive the progress of these
models as tools in digital creativity pipelines and beyond.
In the context of our survey, V&L models are most interesting not as a crea-

tive tool, but as a window into the role of extralinguistic grounding in linguistic
semantic representations. They give us two streams of information: In roughly
truth-conditional terms, we can think of them as “what is said” and “what is
meant,” ignoring obvious caveats. As Bender and Koller (2020) note, to solve
the symbol grounding problem, it is not enough to just have these two spaces:
In a hypothetical V&L model they use as an example, a model has access to
both texts and images, but the training objectives for textual data and for visual
data are totally independent from each other. Such a model is not expected to
make a connection between the two spaces – for example, it is not expected to
be able to perform non-randomly on tasks that require establishing a content-
ful relation between image and text, such as producing an image caption. For
grounding, a training objective needs to relate the two spaces somehow, and
there are different potential ways to formulate such a relation.
This section will not give an exhaustive overview of V&L architectures,

tasks, and results – it is a blooming field that is only partly relevant for the
topic of this Element. Instead, this section will aim to sketch a general idea of
how grounding language in visual modality can be approached, and of the main
linguistic aspects of such alignment.

4.1 A Grounding Strategy
Ideas about the best ways to connect text to images vary a lot, as do actual
implementations – from rather loose connections in terms of similarity (CLIP,
Radford et al., 2021) to two-stream models with additional connections in
terms of cross-modal attention (ViLBERT and ViLBERT 12-in-1, Lu et al.,
2019; Lu et al., 2020) to architectures handling data from arbitrary sources
and modalities as one single stream (VisualBERT, Li et al., 2019; Perceiver,
Hawthorne et al., 2022).
Let us focus on one particular setup – that of CLIP (Radford et al., 2021): It

is one of the simplest ones, but also the one that proved to provide a good basis
for more complicated architectures as one of their components.
CLIP is pretrained with a contrastive learning objective. What this means is

shown schematically in Figure 4: given a batch of image–text pairs, the model
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Figure 4 Summary of the core of CLIP training objective (Radford et al.,
2021): contrasting matching text–image pairs with other text–image

combinations from the same batch.

learns to distinguish the matching image–text pairs from the ones that do not
match. Negative examples (the nonmatching images and texts) are constructed
by mixing up images and texts from the original matching pairs. The model
learns to distinguish matching pairs from nonmatching ones by jointly training
two vector encoders – one for text and one for images – and encoding images
and texts into a joint latent space where texts and images matching each other
end up close to each other by cosine distance, and nonmatching ones are far
from each other by the same distance measure. The learning objective for the
model is to learn a contrast between such pairs, hence the objective name.
Part of the motivation behind this setup is the fact that there is a lot of data

of this type – matching image–text pairs – available, which makes it possi-
ble in principle to leverage supervision implicitly present in these pairings to
learn grounding of language in visual modality (CLIP is trained on 400 million
image–text pairs). Note that the model that results from this type of ground-
ing does not allow for text or image generation based on either modality – it
is a bimodal encoder, which means that the only thing this model allows for
without any additional components is to say, given an image and a text (or two
images or two texts), how far they are from each other in the resulting shared
space. This very simple objective gives rise to models that proved useful as
parts of generative models – for example, CLIP text encoder is a component in
the Stable Diffusion text-to-image model (Rombach et al., 2021).
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An important question about the training objective is, of course, what are
the properties of the grounding relation this procedure gives rise to – can sim-
ilarity be reasonably seen as reference, or any other relevant truth-conditional
notion? If not, what is the stronger training objective or model architecture
that is appropriate for this role? There is little to no work directly addressing
this theoretical question, but a relevant observation is made in Pezzelle (2023):
CLIP-like contrastive pretraining gives rise to grounding that is sensitive not
to truth-against-image specifically, but something quite different, a notion of
“good description” of an image that is sensitive to the level of specificity of
description that overrides truthful applicability. Real but wrong descriptions
(coming from a different image) are systematically predicted by CLIP to be a
better fit to an image than a description that is true but too general compared to
descriptions typically found in training data – for instance, a nearly universally
true description such as They are doing something here.
The space of possible V&L models and architectures is still waiting to be

explored from the point of view of what kind of matches between text and
image different types of training can give rise to (for a survey of Transformer
V&L models, see Khan et al. 2021; on V&L models before 2019/2020, see
Zhang et al., 2020).
But how do we evaluate the quality of the language-to-vision grounding? Let

us find out.

4.2 Evaluation of Vision-and-Language Models
There is a vast literature centered around evaluation and interpretation of V&L
models. These efforts and corresponding datasets can be organized along two
axes: (1) the type of task used by the dataset; (2) which phenomena the dataset
targets.
For a comprehensive taxonomy of V&L tasks, see Li et al. (2022). The

most popular ones include textual output given an image or an image–text
combination:

• Visual question answering: Given an image, the system needs to produce
an answer to a textual question (Antol et al., 2015; Goyal et al., 2017; Hud-
son & Manning, 2019; Johnson et al., 2017; Suhr et al., 2017; Yi et al.,
2019); for an overview of the linguistic side of visual QA, see Bernardi and
Pezzelle (2021);

• Image captioning: The system generates a textual caption for an image
(Hong et al., 2019; Mao et al., 2016; Vedantam et al., 2017).
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Many of the tasks are applicable only to a subset of V&L models (e.g., those
that have a decoder component – either image decoding or text decoding). Tasks
that are applicable to V&L models across the board are those that solely rely
on the output of text and image encoding – we can call them matching tasks.
This type of task tests whether a model is able to distinguish between matching
image–text pairs and the ones that do not match: for example, given a picture
and two texts, tell which one is a better match for the picture, out of the two –
or, conversely, given a text and two pictures, tell which one fits the textual
description better. This type of task is defined, for instance, on a model like
CLIP that was described earlier in this Element – a model that does not have a
decoding component. Let us focus on matching for the rest of this section.
Wewill review three recent datasets organized in terms of matching for V&L

models, centered around different linguistic phenomena, and how they are
handled in models trained for visual grounding: VALSE (Parcalabescu et al.,
2022),Winoground (Thrush et al., 2022), and ARO (Yuksekgonul et al., 2022).
VALSE (Vision And Language Structured Evaluation) (Parcalabescu et al.,

2022) is a benchmark centered around linguistic phenomena that can be used
to evaluate visio-linguistic grounding of V&L models. Each task of VALSE
has the same structure: Given an image, a model needs to distinguish a real
caption from a foil. A foil is a modification of a real caption, where a word or
phrase is altered. The modification targets a particular linguistic phenomenon,
and is meant to have consequences for visual modality as well as the text itself
(i.e., has truth-conditional impact). VALSE covers the following phenomena:
existence, plurality, counting, spatial relations, actions, and entity coreference.
For existence, for example, the original caption might be 18a, and its foil will
have no inserted, as in 18b. The picture associated with the caption–foil pair
will have animals in it. The model should prefer 18a over 18b as a match for
the picture.

(18) a. There are animals shown. (Parcalabescu et al., 2022)
b. There are no animals shown.

Items for other target linguistic phenomena are structured in the same way.
VALSE data is sourced from existing V&L datasets with matching image–

text pairs, with textual foils constructed using a combination of techniques,
with additional filters that make sure that the foils are valid, are plausible, and
do not exhibit distributional bias – in order to prevent models from solving
the task disregarding the image, using just the clues from the text itself. As
a final filtering step, the items go through human annotation. The resulting
dataset consists of around 7,000 items in total, across linguistic phenomena.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009542340
Downloaded from https://www.cambridge.org/core. IP address: 3.15.25.100, on 11 Jan 2025 at 05:48:02, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009542340
https://www.cambridge.org/core


Semantics and Deep Learning 57

Figure 5 An example from Winoground (Thrush et al., 2022). The images
are expected to each match just one of two captions that contain the same

words but in a different order: some plants surrounding a lightbulb (left) and
a lightbulb surrounding some plants (right).

Out of five models benchmarked in the paper – CLIP (Radford et al., 2021),
LXMERT (Tan & Bansal, 2019), ViLBERT (Lu et al., 2019), ViLBERT 12- in-
1 (Lu et al., 2020), andVisualBERT (Li et al., 2019) –ViLBERT 12-in-1 shows
the best results across the board. As for linguistic phenomena, V&Lmodels are
generally able to identify the presence or absence of objects, but struggle with
everything else.
Winoground (Thrush et al., 2022) is a dataset with the structure of items

similar to that of VALSE, allowing for model evaluation in terms of matching
between images and text. Unlike in VALSE, the items consist of two images
and two captions each. An item (images I0 and I1 and captions C0 and C1)
satisfies the Winoground schema if and only if:

• (C0, I0) and (C1, I1) are a better match (and are preferred as such by
annotators) than (C1, I0) and (C0, I1); and

• C0 and C1 have the same words and/or morphemes but the order differs.

The constraint on pairs of captions having exactly the same words is a
consequence of the phenomenon the benchmark is targeting: The focus of
Winoground is compositionality in V&L models – that is, how the meaning
of the caption is built from the words used in it given the way these words
combine with each other. Figure 5 shows an example of a Winoground item.
The dataset was handcrafted by expert annotators and contains 400 items.
Performance on Winoground is computed using three metrics: (1) text score

(selecting the correct caption given an image); (2) image score (selecting the
correct image given a caption); (3) combination of the two (every combination
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for a given example must be scored correctly in order for the example to be
considered correct).
Evaluation of a variety of state-of-the-art V&L models on Winoground

shows that all of the models rarely, if at all, outperform chance. This is an indi-
cation that, effectively, existing V&L models act based on bag-of-word-like
representations.
ARO (Attribution, Relation, and Order) (Yuksekgonul et al., 2022) is a com-

positionality benchmark that contains about 50,000 test items and thus is more
than ten times larger than Winoground. This allows for statistical exploration
of the types of model failures on the subsets of data. ARO data is constructed
based on existing datasets (Visual Genome, Krishna et al. 2017; GQA, Hudson
andManning 2019; COCO, Lin et al. 2014; Flickr30k, Young et al., 2014). The
benchmark has four components:

• Visual Genome Relation: Relation participants are swapped in the caption
(the man is behind the tree vs. the tree is behind the man).

• Visual Genome Attribution: Attributes in the caption are swapped (the
crouched man and the open door vs. the open man and the crouched door).

• COCO - Order and Flickr30k - Order: Original captions are linearly
perturbed in several different ways.

After testing an array of state-of-the-art V&L models on ARO, the authors
confirm that the models fail at capturing any of the targeted phenomena, and
basically act as bag-of-word models.
From further experiments, the authors conclude that the widespread con-

trastive training objective does not give the model the incentive to learn
compositional information: For decent performance on typical V&L datasets,
it is enough to learn some strategy that shortcuts past compositionality. They
further propose a small fix for this problem: introducing hard negatives into
training. Hard negatives are examples that are similar to actuallymatching text–
image pairs but differ from them in a way that would only be possible to pin
down if compositional information is taken into account. For captions, these
involve NP or verb swaps; for images, this is achieved by including images
very similar to the target image (according to some encoder, e.g., CLIP) into
the batch during training. The goal of this is to enrich the notion of similarity
between texts and images that the model develops so that it is more structur-
ally aware. The reported results of such enrichment suggest that this is indeed
a direction that can lead to higher compositionality.
Finally, good performance of a V&L model does not necessarily mean that

the model has learned tightly coupled vision-language representations – it
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might not be relying on the two modalities symmetrically in its performance
(see Frank, Bugliarello, & Elliott 2021; Hessel & Lee 2020; Parcalabescu &
Frank 2022).

4.3 Linguistic Effects of Visual Grounding
General evaluation of V&Lmodels, while providing insight about what models
learn as a result of multimodal pretraining, does not answer the question of
what the impact of an additional, visual modality on linguistic representations
is. Despite the fact that V&L models are used in a plethora of downstream
applications, there is still not a lot of work that directly compares their text
representations to those of language-only models.
Studies making such comparisons almost unanimously report advantages of

multimodal pretraining for the quality of text representations. Most evidence
for the advantages of multimodality comes from similarity judgments. Text
embeddings produced by V&L models give rise to similarity scores between
pairs of words that correlate systematically better with human similarity judg-
ments than scores from text-only models (De Deyne et al., 2021; Hill, Cho, &
Korhonen 2016; see also Baroni 2016).
But there is also work that reports better performance of models equipped

with language-to-vision grounding on a whole battery of classic text-only
tasks. Tan and Bansal (2020) show that both BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), equipped with additional knowledge about vis-
ual counterparts of text tokens, outperform their text-only counterparts on all
tasks included in the experiment – probably most notably, NLI tasks (QNLI
and MNLI benchmarks; see Section 2).
Even though these results pointing in the direction of text representation

improvement via visual grounding seem systematic and unanimous, it is often
hard to reliably attribute the differences between models to the presence or
absence of an additional modality – pretraining datasets for different mod-
els very rarely differ minimally (in presence vs. absence of images) – the
textual component of data also differs quite a lot, captions being quite a spe-
cial class of texts, linguistically. This makes targeted comparison between
V&L and text-only models very hard. In particular, different types of texts
might be subject to reporting bias to a different extent: Certain properties
of objects (e.g., their color) could be under-mentioned in texts across the
board, but also tend to be mentioned less or more in different text genres.
Additionally, reporting bias is a potential source of weakness of linguistic rep-
resentations in models trained only on text – but it is hard to disentangle the
role of this bias in different aspects of pretraining. Zhang et al. (2022) focus
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specifically on reporting bias and whether visual grounding helps deal with it.
They suggest a way to measure reporting bias by using information about co-
occurrences in text corpora against visual co-occurrence extracted from Visual
Genome (Krishna et al., 2017). They introduce the Visual Commonsense Tests
(ViComTe) dataset with several property types for more than 5,000 objects. The
dataset is exclusively textual and contains templates such as [subj] can be
of color [obj], where one of the matching subject–object pairs would be
(sky, blue). In a series of experiments, the authors test both V&L and text-
only models on the task of matching entities with the correct physical attributes
and conclude that visual grounding helps decrease the harms of reporting bias:
Multimodal models perform better than text-only ones in reconstructing attrib-
ute distributions. Still they suffer from reporting bias, albeit to a smaller degree.
Finally, varying model sizes did not have an effect on performance, which
suggests that data is key.
Pezzelle, Takmaz, and Fernández (2021) look at V&Lversus text-onlymodel

performance with particular attention to lexical semantics: Rather than testing
text representations across the board, they partition their dataset into concrete
versus abstract subsets and make separate comparisons for each of them. Like
some of the previous work, they use semantic similarity as the window into
representation quality, by comparing similarity measures derived from models
to human similarity judgments. The results point in the direction of advantage
of multimodal representations for concrete lexicon, but not for abstract words.
It is maybe not surprising that the impact of visual grounding is not the

same across semantic lexical classes. The detailed landscape of these effects
given different lexical semantic properties is still waiting to be explored (see,
however, Tikhonov, Bylinina, & Paperno 2023 for some initial observations).
Among five models tested by Pezzelle et al. (2021), Vokenization (Tan &

Bansal, 2020) exhibits the most robust results. This suggests, according to
the authors, that it might be due to the way visual modality is incorporated
into training. Unlike, for example, in CLIP (Radford et al., 2021), Vokeniza-
tion aligns images with text on a token-by-token basis – each text token is
paired with a corresponding image. Tentatively, this can lead to more fine-
grained grounding, unlike sentence-level alignment seen in most other models,
which might lead to less structured linguistic representations. Recall a sim-
ilar complaint about text-level contrastive pretraining in Yuksekgonul et al.
(2022), with hard negatives as a way to impose additional structure on linguistic
representations.
Overall, different ways of evaluating V&L models seem to give somewhat

contradictory results. On the one hand, visual grounding has been demon-
strated to systematically improve linguistic representations. On the other hand,
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as shown by performance on V&L benchmarks that target particular linguistic
phenomena that we discussed earlier in this Element, V&L models barely per-
form above chance. How should onemake sense of this apparent contradiction?
One possibility is that it boils down to the distinction between lexical and com-
positional aspects of linguistic representations targeted by different types of
tests: Visual grounding helps lexical semantics, but it damages compositional
properties of meanings of complex expressions.
To what extent this is a correct empirical characterization or an artifact

of training data or objectives of particular models currently remains an open
question (see, e.g., recent work suggesting that lexical representations in V&L
models do not obey fundamental constraints on lexical meaning, in particular,
ambiguous words can exhibit two readings at the same time, Rassin, Ravfogel,
& Goldberg 2022).
Grounding and the landscape of its effects on linguistic meaning is an area

rich in intriguing open research questions that can be given an empirical turn
with the help of deep learning models.

4.4 Interim Conclusion and a Theoretical Note
We discussed deep learning models that connect linguistic and visual modality.
We looked into one way of making such a connection and explored the resulting
models. Before closing the discussion, a theoretical note is due.
Throughout this section, we treated images as something that a linguistic

description can be true or false of. Practically, we looked at the space of possible
images as a space of possible situations (worlds, states of affairs), which are
related to sentences by the notion of truth. Recall the sketch of the interpretation
function discussed in the introduction:

I(A cat is sitting on a chair) ©« ª®¬ = True. (10)

The function I relates sentences in natural language to states of affairs. This
one particular state of affairs with a black cat sitting on a chair is shown by
means of a picture in this equation, but that does not mean that the interpretation
of the sentence A cat is sitting on a chair involves the picture – it is just a
convenient shortcut because we cannot put an actual situation on a page as part
of a formula. The picture simply represents it.
In fact, according to a prominent view, pictures themselves are content-

bearing objects that can be input to an interpretation function quite like
sentences in natural language. In pictorial semantics, pictures can be true or
false with respect to a world and a bunch of additional parameters – quite
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like sentences in natural language semantics (Abusch, 2020; Greenberg, 2013,
2021; Schlenker, 2018):

(19) Truth of a picture (simplified from Schlenker 2018)
A picture P is true in world w relative to viewpoint v along the system
of projection S iff w projects to P from viewpoint v along S, or in other
words: projS(w,v) = P.

This setup does not support pictures as an interpretation space for language.
Rather, pictures and language are two different types of content-bearing sys-
tems with (partially) shared mechanisms of semantic mapping on to an external
interpretation space. This might seem like theoretical nitpicking, but taking the
interpretational relation between different modalities seriously has the potential
to guide architectures and analyses of models involving extralinguistic ground-
ing. A connection between this theoretical view and practical work in shared
V&L representations in deep learning models is waiting to be made.

5 Conclusions,OpenProblems, and FurtherDirections
Our Element described the general landscape of semantics-related research in
the field of deep learning. Deep learning allows us to develop computational
models for what semanticists care about: (compositional) meaning represen-
tations, reasoning based on these representations, and language grounding in
(visual) reality. State-of-the-art deep learning models are treating these tasks
in quite crude ways, but are constantly improving and achieving good results
on current evaluation benchmarks, which themselves become more and more
sophisticated and hard to fool with simple shortcuts.18

Having in mind that our readers would typically have background either in
NLP/computational linguistics or in theoretical semantics, our conclusions and
thoughts prompted by our discussion could fall into two groups as well: (1)
further directions of progress in semantic technologies; (2) relevance of deep
learning models for research in theoretical semantics and for language theory
in general.

5.1 The Future of Semantic Technologies
Training efficiency. While modern deep learning models often show some-
thing like compositional behavior, they seem to achieve this in a nonhuman
way. In particular, a lot of training data is required. Future progress in deep

18 See code illustrations for the topics of this Element at https://github.com/kovvalsky/SemDL.
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learning will permit achieving compositional solutions from smaller data. Few-
shot learning in LLMs is already a step in that direction; however, the amounts
of data and computation necessary for a quality model make this approach
unsustainable.
Better evaluation. There is a need for a consensus on a principled set of

evaluation criteria for fundamental semantic phenomena like compositionality
or semantic inference. Linguists and philosophers of language can potentially
have a significant impact here for the AI enterprise as a whole.
At the same time, expert-generated handcrafted datasets are usually rel-

atively small in size and lack diversity. One natural direction in semantic
evaluation is to use ensembles of datasets of different types.
Agent-oriented perspective. So far, the bulk of deep learning approaches

in computational treatment of language focus on themodeling perspective. This
can be in the context of language modeling, which creates a probabilistic model
of the text, or language and vision modeling, which leans somewhat more in the
direction of grounded semantics, with images serving as models for a textual
description. However, the agency of the speaker largely remains out of focus.
As a result, a wealth of meaning-related phenomena in language within the
domains of deixis and pragmatics escapes researchers’ attention. We expect
this to limit the modeling of natural communication within AI systems. In the
future, we expect further breakthroughs in the field to take into account a more
complex communicative situation including the speaker’s agency and intent.
Linguists should take the lead in showing the way forward in these fields and
designing datasets for development and testing relevant computational models.
From classification to structure prediction. While interpretation and

semantic inference is a process, a lot of semantic NLP tasks are framed as clas-
sification. This only takes into account the final result and ignores the inner
workings of the process. As a result, DNNs often learn shortcuts to predict
correct inference classes instead of sound algorithms.
We can force deep learning systems to learn sound faithful reasoning behind

the correct labels by making them learn the reasoning process that causes the
gold label. This automatically yields systems that are inherently explainable.
Learning proofs and inference labels have been recently pursued by Clark,

Tafjord, and Richardson (2021), Saha et al., (2020), and Tafjord, Dalvi, and
Clark (2021). Unfortunately, there is no reliable automatic way to evaluate
system-generated explanations of this type. We think that this is an important
direction for future work.
Methods for comprehensive dataset creation. Due to the high demand

for large data, all large (>10,000) semantics datasets are created with the help
of crowdsourcing, data recasting, or automatic generation of synthetic data.
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These methods are not practical for designing high-coverage datasets with
comprehensive semantics-aware annotations. Collecting such datasets requires
well-developed annotation guidelines and a group of trained annotators. This is
practical in current settings as we already have examples of such large datasets
with expert annotations: Universal Dependencies (Nivre et al., 2020), Parallel
Meaning Bank (Abzianidze et al., 2017), andAbstractMeaning Representation
corpora (Banarescu et al., 2013).
Recently Dalvi et al. (2021) collected about 1,800 multistep entailment trees

that represent proof trees where children nodes collectively entail the parent
node.19 Putting more resources and leveraging crowdsourcing for developing
such annotation-rich datasets targeting semantic phenomena will result in more
comprehensive training and evaluation.

5.2 The Future of Semantic Research
Between language, neural models, and linguistic theory. There is a lot of
work in the general field of deep net interpretability that probes the linguistic
knowledge of LMs (see, e.g., Rogers, Kovaleva, and Rumshisky 2020 for an
overview). These are experiments that establish the degree, quality, and limits
of linguistic generalizations exhibited by, for example, models like BERT or
GPT. Despite the growing amount of such work, its results have barely had
any consequence for theories and analyses in theoretical linguistics, including
theoretical semantics.
The reason, we believe, is mainly methodological: What is the place of the

results of LM interpretability experiments in the process of constructing or
revising linguistic theories? If a certain linguistic property of LM represen-
tations is discovered as a result of probing, why would language theory care?
After all, this does not say anything about how people represent language, at
least not directly.
There are several potential answers to this methodological stumbling block.
DNNs as theories. The first potential answer suggests treating models them-

selves as linguistic theories, albeit very different from the ones we are used to in
theoretical linguistics at the moment (Baroni, 2022). Models’ representations
and weights that result from exposure to training data can be seen as ways of
making sense of this data that also come with means to make predictions about
new data (e.g., expectations about sentence acceptability). In this way, LMs can
be seen as algorithmic linguistic theories. Manipulating different properties of
models and training data in different ways and exploring the effects of such

19 As they report, it took in total circa 600 hours of work carried out by three graduate and
undergraduate annotators.
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manipulations on the resulting “algorithmic theory” can uncover causal links
between prominent generalizations and data or structures that trigger them.
Modeling of acquisition and learnability. This leads to learnability and

language acquisition – another area where deep learning can be particularly
helpful. Artificial learners such as deep nets can be used in testing which
settings or which types of data or learning curricula lead tomore humanlike lan-
guage acquisition trajectories and results (Warstadt & Bowman, 2022). This,
in turn, allows us to reverse-engineer hypotheses about mechanisms used by
human language learners.
Finally, uncovering systematic misalignments between linguistic “knowl-

edge” of neural LMs and implicit generalizations that guide humans’ linguistic
behavior is important for the learnability debate (Davis, 2022). Are there
aspects of language, and, in particular, linguistic meanings, that can never be
learned successfully by learning agents only exposed to texts, regardless of
the model architecture or the amount of data? If yes, what do these aspects of
language rely on? Would visual grounding be enough for successful learning?
Maybe some meanings crucially rely on world knowledge or communicative
reinforcement. These are all questions that are crucial for shaping our theories
of meaning and language, and deep learning models provide rich experimental
ground for theoretical advances in this domain.
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