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Abstract

In this paper, we introduce a novel regularization method for detecting differential item

functioning (DIF) in two-parameter logistic (2PL) models. Existing regularization methods

require researchers to choose a reference group and then use an L1 penalty to shrink the item

parameters of focal groups toward those of the reference. This approach has two key limi-

tations: (1) shrinking all focal groups toward a reference is inherently unfair, as results are

affected by the choice of reference and direct comparison among focal groups is not available;

(2) the L1 penalty leads to biased estimates because it overly shrinks large nonzero parame-

ters toward zero. These limitations are particularly problematic when detecting intersectional

DIF, where various identity aspects intersect to create multiple smaller groups. Our proposed

method addresses these issues by penalizing item parameter differences between all pairs of

groups using a truncated L1 penalty, thus allowing equal treatment of groups and avoiding

excessive penalization of large parameter differences. Simulation studies demonstrate that the

proposed method outperforms existing approaches by accurately identifying items that exhibit

DIF even when there are multiple small groups. Application to two real-world datasets with

multiple groups further illustrates the method’s utility. We recommend this method as a more

equitable and precise tool for DIF detection. The proposed method is implemented as the

function D2PL pair em() in the R package VEMIRT, which is publicly available at https://map-

lab-uw.github.io/VEMIRT.

Keywords: Regularization; differential item functioning; intersectionality; truncated L1

penalty

1

Weicong Lyu, Chun, Wang, Gongjun Xu

This is a “preproof'” accepted article for Psychometrika.
This version may be subject to change during the production process. 
DOI: 10.1017/psy.2025.10034

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, 
distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written 
permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

https://doi.org/10.1017/psy.2025.10034 Published online by Cambridge University Press

https://url.avanan.click/v2/r02/___https://map-lab-uw.github.io/VEMIRT___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOjJlMjQwMGMwN2JjYzlkMDJiMjgyODIwODc5NjlmMWUzOjc6YjVjYToyNWJkZjVjODk4ZDNlYWI3Y2I5MTViMTZjNTgzMzBjMzc1YmIxOGE1ZjQwYzBiYzY3MGIxMjRhZDExNDY2YTJiOnA6VDpG
https://url.avanan.click/v2/r02/___https://map-lab-uw.github.io/VEMIRT___.YXAxZTpjYW1icmlkZ2Vvcmc6YTpvOjJlMjQwMGMwN2JjYzlkMDJiMjgyODIwODc5NjlmMWUzOjc6YjVjYToyNWJkZjVjODk4ZDNlYWI3Y2I5MTViMTZjNTgzMzBjMzc1YmIxOGE1ZjQwYzBiYzY3MGIxMjRhZDExNDY2YTJiOnA6VDpG
https://doi.org/10.1017/psy.2025.10034


1 Introduction

Differential item functioning (DIF) has long been a significant concern in psychometrics. In

simple terms, DIF occurs when individuals with the same ability level respond differently to a

particular test item. For instance, a math question might seem easier to a male student but more

difficult to a female student, despite both having the same overall math ability. Previous research

has demonstrated that DIF is prevalent across various educational and psychological assessments,

possibly due to differences in sex, ethnicity, language, culture, and curriculum (Huang, Wilson,

& Wang, 2016; Taylor & Lee, 2011; Teresi, Wang, Kleinman, Jones, & Weiss, 2021; Zenisky,

Hambleton, & Robin, 2004).

Addressing DIF is crucial for ensuring measurement accuracy. Psychometric models typically

assume that test items function uniformly for all respondents. When this assumption is violated,

it leads to biased estimates of respondent and item parameters, rendering subsequent analyses

and conclusions questionable (Borsboom, Mellenbergh, & Van Heerden, 2002; Millsap, 2010).

The biased estimates may lead to a significant fairness issue, particularly in high-stakes testing

scenarios. If an item disproportionately favors one group of respondents, it artificially inflates

their scores, thereby misrepresenting their true abilities and creating an unfair advantage over

others (N. S. Cole & Zieky, 2001; Zumbo, 2007).

Numerous approaches for detecting DIF have been proposed, many of which are based on item

response theory (IRT). When researchers have prior knowledge that certain items are definitely

DIF-free, these items can serve as anchors to help calibrate the parameter estimates of other items

(Kopf, Zeileis, & Strobl, 2015a). However, in practice, such prior knowledge is often unavailable,

leading to the development of DIF detection methods that automatically identify anchor items

(Y. Chen, Li, Ouyang, & Xu, 2023; Cohen, Kim, & Wollack, 1996; Kopf, Zeileis, & Strobl,

2015b; Lyu, Wang, & Xu, 2025; Tutz & Schauberger, 2015; Wang, Zhu, & Xu, 2023). Among

these, the regularization approach is particularly promising. This method involves estimating a

multiple-group IRT model while using the L1 (lasso) penalty (Tibshirani, 1996) or its variants to

shrink group differences in item parameters towards zero. Previous studies have demonstrated
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its effectiveness (Belzak & Bauer, 2020; Lyu, Wang, & Xu, 2025; Magis, Tuerlinckx, & De Boeck,

2015; Schauberger & Mair, 2020; Tutz & Schauberger, 2015; Wang et al., 2023).

Despite its promise, the existing regularization approach has several limitations. Firstly, like

lasso regression with dummy variables, it requires researchers to specify a reference group and

shrink the differences between each focal group and this reference group towards zero. Researchers

often choose a large, advantaged group, such as White males, as the reference because the esti-

mation for larger groups tends to be more accurate, and comparisons between the advantaged

group and others are often of interest. However, this approach does not offer a direct comparison

between focal groups such as White females and Black males. Instead, it requires re-estimating

the model with one focal group as the new reference. This not only increases computational time

but also introduces asymmetry and potential confusion: DIF found for group B when group A is

the reference might not appear for group A when group B is the reference. Moreover, selecting

one group as the reference is inherently unfair to other groups, as all focal groups are shrunk

towards the reference group, disregarding differences among the focal groups themselves.

A trickier and more subtle issue related to unfairness is model identification. When we allow

groups to differ in both ability distributions (i.e., impact) and item parameters (i.e., DIF), the

IRT model is not identified (J.-H. Chen, Chen, & Shih, 2014). That is, we cannot statistically

distinguish between alternative explanations for observed group differences. For instance, the

same response pattern could be attributed either to (1) Group A having a much lower mean

ability than Group B with no DIF, or to (2) the two groups having equal mean ability but all

items strongly favoring Group B. Intermediate cases—such as Group A having slightly lower mean

ability and all items slightly favoring Group B—are also statistically indistinguishable from these

two possibilities. While this is an extreme example, similar identification issues arise in more

realistic settings. For example, one cannot statistically distinguish between (1) Group A having a

lower mean ability with 40% of the items favoring Group A, and (2) the groups having equal mean

ability with the remaining 60% of the items favoring Group B. Regularization methods address

this problem by automatically identifying anchor items through penalization (Wang et al., 2023),
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based on the implicit sparsity assumption that most DIF parameters are zero (Y. Chen et al.,

2023). In other words, group differences are primarily attributed to impact whenever possible,

and only residual differences are attributed to DIF. Again, the automatic selection of anchor items

depends on the choice of the reference group because anchor items are chosen by minimizing DIF

between focal groups and the reference, while DIF among focal groups is not explicitly taken into

account. As a result, existing regularized DIF detection methods, which require a prespecified

reference group, lead to a local rather than a global optimum.

Secondly, the L1 penalty can produce biased estimates because it shrinks all parameter esti-

mates towards zero, even very large ones (Tibshirani, 1996). To address this, two-step estimation

procedures are often used in practice: a first step with the L1 penalty for variable selection and

then a second debiasing step. Building on this concept, for instance, Wang et al. (2023) extended

the expectation-maximization (EM) algorithm for IRT model estimation to the expectation-

maximization-maximization (EMM) algorithm. Although EMM has shown good performance in

simulation studies, its theoretical performance guarantee has yet to be established.

These limitations are particularly problematic when analyzing a large number of groups, espe-

cially when intersectionality is involved. Intersectionality examines how various identity aspects

intersect to create multiple smaller groups (also known as social strata), which will further com-

plicate DIF detection (E. R. Cole, 2009). Although some existing approaches can handle multiple

covariates (i.e., multiple axes of identities), they mostly considered different aspects of identities

as additive (Hancock, 2007). This additive approach treats the advantages or disadvantages

conferred through simultaneous possession of multiple social positions as simply accumulated,

whereas intersectionality theorists posit that inequalities are generated by numerous interlocking

systems of privilege and oppression such as sexism and ageism (Bowleg, 2012). Adding interac-

tion terms helps address intersectionality, but inevitably introduces computation challenges due

to complex, saturated models that often require large sample sizes.

Some other existing DIF methods have been adapted for intersectional DIF scenarios. In

particular, Russell, Szendey, and Kaplan (2021) applied the standardized D-static method pro-
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posed by Dorans and Kulick (1986), which estimates abilities using total scores and compares the

percentage of correct responses across groups, both of which can be contaminated by DIF. Their

method may also lack statistical power when the sample size is small. Belzak (2023) applied

logistic regression with regularization to respondent-level covariates and person ability measured

by total scores. While this approach can accommodate nonadditive effects of covariates, the total

score is not an ideal proxy for ability because it may be contaminated by DIF. Parker, Ren, Li,

and Wang (2024) recently explored intersectional DIF in an introductory computing assessment

using the item-focused tree approach proposed by Tutz and Berger (2016). However, the recur-

sive partitioning algorithm is computationally demanding, and as a greedy algorithm, it does

not guarantee a globally optimal solution. Other approaches, such as the likelihood ratio test

introduced by Thissen, Steinberg, and Wainer (1988), may also be applicable to intersectional

DIF detection, although significance testing also often struggles with small sample sizes.

To overcome the limitations of current regularization approaches, this study proposes a new

regularization method for DIF detection in the context of the two-parameter logistic (2PL) model,

which is among the simplest and most widely used IRT models for dichotomous responses. To

address the first limitation, rather than shrinking each focal group towards the reference group,

we shrink the differences between every pair of groups towards zero, ensuring that no group is

designated as a reference or focal group. Instead, all groups are treated equally. To address the

second limitation, instead of the commonly used L1 penalty, we adopt a truncated L1 penalty ap-

proach, which does not further penalize large differences but remains constant when the difference

exceeds a certain threshold. For the estimation, we develop an efficient EM algorithm using the

difference convex (DC) programming (Tao & Souad, 1986) and the alternating direction method

of multipliers (ADMM; Boyd, Parikh, Chu, Peleato, & Eckstein, 2010). Our simulation study

demonstrates the clear advantages of the proposed method. The R code implementing the pro-

posed method is provided as the function D2PL pair em() in the R package VEMIRT, which is avail-

able at https://map-lab-uw.github.io/VEMIRT. The source code for the function can be accessed

directly at https://github.com/MAP-LAB-UW/VEMIRT/blob/master/R/D2PL pair em.R.
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The remainder of this paper is organized as follows. First, we present our proposed method in

detail. Next, we describe the design of our simulation study and discuss the results. We then apply

the proposed method to real-world datasets to demonstrate its practical applicability. Finally,

we conclude the paper with a discussion of our findings and suggestions for future research.

2 Method

2.1 Overview

2.1.1 Model Setting

Under the original 2PL framework, the probability that respondent i answers item j correctly is

modeled as

Pr(yji = 1 | θi) = exp(ajθi − bj)
1 + exp(ajθi − bj) ,

where θi is respondent i’s latent trait, and aj and bj are item j’s slope and negative intercept

respectively. Under this setting all the items function in the same way across all the respondents.

When respondents come from S social strata or groups, we replace ajθi − bj with ajsθis − bjs for

the ith respondent from group s. Here each group is allowed to have its own item parameters,

and our goal is to decide whether item parameters are different across groups.

Let N , Ns, and J denote the total number of respondents, the number of respondents in

group s, and the total number of items respectively. The probability that the ith respondent of

group s gives response vector yis = (y1is, . . . , yJis) ∈ {0, 1}J is

Pr(yis | θis) =
J∏

j=1

exp[yjis(ajsθis − bjs)]
1 + exp(ajsθis − bjs) , (1)

and the method of marginal maximum likelihood estimation maximizes the log marginal likelihood

function

ℓ(∆) =
S∑

s=1

Ns∑
i=1

log
∫ ∞

−∞
Pr(yis | θis)ϕ(θis | µs, σ2

s)dθis, (2)
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where

∆ =
S⋃

s=1

J⋃
j=1
{µs, σs, ajs, bjs}

is the set of item and group parameters to estimate, and ϕ(θis | µs, σ2
s) is the probability density

of θis ∼ N (µs, σ2
s). Even when there is only one group, the model in (1) is not identified because

the metric of the latent variable θis is not determined. The conventional way is to assume that

θis follows a standard normal distribution such that it has zero mean and unit variance (Bock

& Aitkin, 1981). In this study, we allow impact to be present, i.e., latent traits of respondents

from different groups may have different distributions. One possible way to fix the metric is to

let θi1 ∼ N (0, 1) and freely estimate µs and σs for s = 2, 3, . . . , S.

To detect item parameter heterogeneity among groups, we impose a penalty over item pa-

rameter differences across groups and expect that small differences are shrunk to exactly zero.

Existing regularization methods require researchers to select one group as the reference, and all

other groups become focal groups. These focal groups are then shrunk toward the reference by

penalizing the differences in item parameters between each focal group and the reference. For

example, Wang et al. (2023) and Lyu, Wang, and Xu (2025) specified Group 1 as the reference

and imposed the L1 penalty (LP), i.e.,

λ
J∑

j=1

S∑
m=2

[|ajm − aj1|+ |bjm − bj1|] ,

where λ > 0 is a tuning parameter that controls the strength of regularization. As discussed in the

introduction, this LP approach has several limitations, such as inequity across groups, no direct

comparisons among focal groups, asymmetry of DIF detection, and bias caused by overshrinkage

of LP.

2.1.2 Regularization with Truncated L1 Penalty

Ideally, we hope to impose the L0 penalty, λ1{d ̸= 0}, which leads to sparsity by penalizing all

nonzero differences equally. However, the L0 penalty presents computational challenges because
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it is neither continuous nor convex. As a result, the LP is commonly adopted as a surrogate.

Different from the L0 penalty, LP penalizes more heavily when the magnitude of d gets greater,

which is undesirable and leads to biased estimates due to overshrinkage (Tibshirani, 1996). To

solve this problem, it is required that the penalty should work similarly to LP when d is close to

zero but stay constant when |d| is large. In this study, we propose using the truncated L1 penalty

(TLP; Shen, Pan, & Zhu, 2012),

Jτ (d) = min(|d|, τ),

for regularization because its simple structure leads to a relatively simple optimization algorithm.

Figure 1 shows both LP and TLP. Note that TLP becomes LP as τ → +∞. When |d| < τ , the

0−τ τ−2τ 2τ

τ

2τ

d

Jτ (d)

LP
TLP

Figure 1: L1 and Truncated L1 Penalties

two penalties are the same, so both shrink small values to zero. When d is already large (i.e.,

|d| > τ), TLP is capped at τ , i.e., it applies a constant penalty when d is too large to be shrunk

to zero. As a result, TLP has less bias than LP and is hence preferable. Moreover, when τ → 0,

Jτ (d)/τ , a rescaled version of the TLP, becomes the ideal L0 penalty, thus it performs the model

selection task of the L0 function by providing a computationally efficient surrogate (see Section

2.2 for computational details).
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2.1.3 Group Pairwise Comparison and Penalty

Existing regularization methods penalize differences between each focal group and the reference

only, while differences among focal groups are disregarded. Instead, our proposed penalty term

is

r(∆) = λ
J∑

j=1

S−1∑
m=1

S∑
n=m+1

[Jτ (ajm − ajn) + Jτ (bjm − bjn)] , (3)

which we call group pairwise TLP because we penalize the item parameter differences between

every pair of groups. Similar ideas have been adopted by previous studies, including the fused

lasso (Tibshirani, Saunders, Rosset, Zhu, & Knight, 2005) and a grouping pursuit algorithm (Shen

& Huang, 2010). In this study, we extend them to accommodate TLP. It is worth noting that (3)

imposes a common tuning parameter λ for both the a and b parameters, a choice also made in prior

studies (Belzak & Bauer, 2020; Lyu, Wang, & Xu, 2025; Wang et al., 2023). While this approach

simplifies the model and computation, it may not yield optimal performance in practice because

a and b have different scales. Using separate tuning parameters (i.e., λa and λb) could potentially

improve performance. However, in this study we adopt a shared λ for two reasons. First, it offers

greater computational efficiency. (3) already involves two tuning parameters, λ and τ , requiring

a two-dimensional grid search. Introducing a third parameter would increase the search space

to three dimensions, making computation substantially more intensive. Second, because the L0

penalty is scale-invariant and TLP approximates the L0 penalty, TLP is less sensitive to variable

scales than LP. Indeed, Shen et al. (2012) showed that under certain conditions, TLP achieves

consistent variable selection using a common tuning parameter, suggesting that using a common

λ in (3) remains effective in large samples.

Multi-group IRT models with both impact and DIF are not identified, making DIF detection

highly dependent on identifying DIF-free items that serve as anchor items. By applying a pairwise

penalty across groups, the proposed method imposes stricter penalties on DIF parameters for

DIF-free items because it involves comparisons across
(S

2
)

pairs, rather than the S − 1 pairwise

comparisons between focal groups and a single reference group in traditional approaches. When
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item parameters among focal groups differ only by a small amount in opposite directions relative

to the reference group, existing methods struggle to detect this subtle DIF, even though DIF

among focal groups is more substantial. In contrast, the pairwise penalty approach identifies and

leverages these larger DIF parameters among focal groups, resulting in more accurate detection.

Consider a hypothetical case where there are four groups and Item 1 is DIF-free. For simplicity

we use the L1 penalty and focus on the estimates of Item 1’s difficulty parameters, b1, b2, b3 and

b4. Traditional regularization methods penalize

r0 = |b2 − b1|+ |b3 − b1|+ |b4 − b1|

if Group 1 is chosen to be the reference, while our proposed method penalizes

r1 = |b2 − b1|+ |b3 − b1|+ |b4 − b1|+ |b3 − b2|+ |b4 − b2|+ |b4 − b3|.

Suppose that the estimates of b1, b2, b3 and b4 by the traditional method are 0,−0.1, 0.1 and 0

respectively. Since the penalty term r0 = 0.1 + 0.1 + 0 = 0.2 is small, the traditional method fails

to shrink both b2 and b3 to b1. In contrast, the group pairwise penalty is r1 = 0.1 + 0.1 + 0 +

0.2 + 0.1 + 0.1 = 0.6, where focal groups are also directly compared. This larger penalty is more

likely to finally result in perfect shrinkage, b1 = b2 = b3 = b4. That is, Item 1 is more likely to be

correctly identified as DIF-free and hence work as an anchor under the proposed penalty. As the

number of group increases, the group pairwise penalty will penalize item parameter differences in

DIF-free items even more strongly, so our proposed method is expected to have higher accuracy

of DIF detection.

In addition, compared to existing DIF detection methods, this novel pairwise penalty is es-

sential for the method to work with small sample sizes. That is, the specific type of penalization

encourages similarity across groups, hence a group with a small sample size (e.g., a certain unique

intersectional identity) can leverage data from other larger groups it shares common identities

with. The idea also bears resemblance to fair regression in machine learning (Berk et al., 2017).
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2.1.4 Optimization Problem for Model Estimation

Summarizing the discussions in Sections 2.1.1–2.1.3, our goal is to maximize the penalized log

marginal likelihood function ℓ(∆)− r(∆), or equivalently to minimize

−ℓ(∆) + r(∆).

Imposing penalties on differences between item parameters rather than parameters themselves

makes it challenging to directly solve the optimization problem, so we introduce the difference

parameters

d
(a)
jmn = ajm − ajn and d

(b)
jmn = bjm − bjn

as the item parameter differences to be penalized, and define

d =
J⋃

j=1

S−1⋃
m=1

S⋃
n=m+1

{
d

(a)
jmn, d

(b)
jmn

}
.

Then under the reparametrization, the penalty term becomes

r(d) = λ
J∑

j=1

S−1∑
m=1

S∑
n=m+1

[
Jτ

(
d

(a)
jmn

)
+ Jτ

(
d

(b)
jmn

)]
,

and hence we can estimate the same model by solving the constrained optimization problem

minimize S(∆, d) ≜ −ℓ(∆) + r(d)

subject to d
(a)
jmn = ajm − ajn, d

(b)
jmn = bjm − bjn

(4)

where ℓ(∆) is defined in (2). The optimization problem (4) presents two challenges: (a) the TLP

term Jτ (d) is non-differentiable and non-convex; (b) the constraints defining d
(a)
jmn and d

(b)
jmn. We

address these computational issues in the next section.
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2.2 Computational Algorithm

Although the TLP term Jτ (d) is not a convex function, it is piecewise linear and can be decom-

posed into a difference of two convex functions as

Jτ (d) = min(|d|, τ)

= −max(−|d|,−τ)

= |d| −max(0, |d| − τ),

which allows us to use DC programming to gain computational advantage (Shen et al., 2012; Xu

& Shang, 2018). In particular, following Ma, Ouyang, and Xu (2023), we consider the following

DC decomposition:

S(∆, d) = S1(∆, d)− S2(d),

where

S1(∆, d) = −ℓ(∆) + λ
J∑

j=1

S−1∑
m=1

S∑
n=m+1

[∣∣∣d(a)
jmn

∣∣∣ +
∣∣∣d(b)

jmn

∣∣∣]
and

S2(d) = λ
J∑

j=1

S−1∑
m=1

S∑
n=m+1

[
max

(∣∣∣d(a)
jmn

∣∣∣− τ, 0
)

+ max
(∣∣∣d(b)

jmn

∣∣∣− τ, 0
)]

.

During the estimation, we iteratively construct a sequence of upper approximations of S(∆, d)

by replacing S2(d) at iteration t + 1 with its minorization,

S
(t)
2 (d) = S2

(
d(t)

)
+ λ

J∑
j=1

S−1∑
m=1

S∑
n=m+1

[(∣∣∣d(a)
jmn

∣∣∣− ∣∣∣d(a,t)
jmn

∣∣∣) · 1 (∣∣∣d(a,t)
jmn

∣∣∣ ≥ τ
)

+
(∣∣∣d(b)

jmn

∣∣∣− ∣∣∣d(b,t)
jmn

∣∣∣) · 1 (∣∣∣d(b,t)
jmn

∣∣∣ ≥ τ
)]

,
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which reduces the objective function to

S(∆, d) ≤ S1(∆, d)− S
(t)
2 (d)

= −ℓ(∆) + λ
J∑

j=1

S−1∑
m=1

S∑
n=m+1

[∣∣∣d(a)
jmn

∣∣∣ 1
(∣∣∣d(a,t)

jmn

∣∣∣ < τ
)

+
∣∣∣d(b)

jmn

∣∣∣ 1
(∣∣∣d(b,t)

jmn

∣∣∣ < τ
)]

− S2
(
d(t)

)
+ λ

J∑
j=1

S−1∑
m=1

S∑
n=m+1

[
τ · 1

(∣∣∣d(a,t)
jmn

∣∣∣ ≥ τ
)

+ τ · 1
(∣∣∣d(b,t)

jmn

∣∣∣ ≥ τ
)]

,

whose last two terms can be omitted because they do not involve any parameters in ∆ or d.

Letting

r(t)(d) = λ
J∑

j=1

S−1∑
m=1

S∑
n=m+1

[∣∣∣d(a)
jmn

∣∣∣ 1
(∣∣∣d(a,t)

jmn

∣∣∣ < τ
)

+
∣∣∣d(b)

jmn

∣∣∣ 1
(∣∣∣d(b,t)

jmn

∣∣∣ < τ
)]

,

Our objective function to be minimized at iteration t + 1 becomes

S(t+1)(∆, d) = −ℓ(∆) + r(t)(d).

To deal with the constraints in (4), we apply ADMM (Boyd et al., 2010), which leads to the

augmented Lagrangian

L(t+1)
ρ (∆, d, y) =S(t+1)(∆, d)

+
J∑

j=1

S−1∑
m=1

S∑
n=m+1

{
y

(a)
jmn

[
d

(a)
jmn − (ajm − ajn)

]
+ y

(b)
jmn

[
d

(b)
jmn − (bjm − bjn)

]}

+ ρ

2

J∑
j=1

S−1∑
m=1

S∑
n=m+1

{[
d

(a)
jmn − (ajm − ajn)

]2
+

[
d

(b)
jmn − (bjm − bjn)

]2
}

,

where y
(a)
jmn and y

(b)
jmn are dual variables (or Lagrange multipliers) of their corresponding con-

straints and ρ > 0 is a penalty parameter. Letting u
(a)
jmn = y

(a)
jmn/ρ and u

(b)
jmn = y

(b)
jmn/ρ be the
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scaled dual variables, ADMM can be expressed as (Boyd et al., 2010, p. 15)

∆(t+1) = argmin
∆

[
−ℓ(∆) + ρ

2

J∑
j=1

S−1∑
m=1

S∑
n=m+1

{[
d

(a,t)
jmn − (ajm − ajn) + u

(a,t)
jmn

]2

+
[
d

(b,t)
jmn − (bjm − bjn) + u

(b,t)
jmn

]2
}]

,

(5)

d(t+1) = argmin
d

[
r(t)(d) + ρ

2

J∑
j=1

S−1∑
m=1

S∑
n=m+1

{[
d

(a)
jmn −

(
a

(t+1)
jm − a

(t+1)
jn

)
+ u

(a,t)
jmn

]2

+
[
d

(b)
jmn −

(
b

(t+1)
jm − b

(t+1)
jn

)
+ u

(b,t)
jmn

]2
}]

,

(6)

u
(a,t+1)
jmn = u

(a,t)
jmn + d

(a,t+1)
jmn −

(
a

(t+1)
jm − a

(t+1)
jn

)
, (7)

u
(b,t+1)
jmn = u

(b,t)
jmn + d

(b,t+1)
jmn −

(
b

(t+1)
jm − b

(t+1)
jn

)
. (8)

Although (6) has closed form solutions

d
(a,t+1)
jmn =


a

(t+1)
jm − a

(t+1)
jn − u

(a,t)
jmn,

∣∣∣d(a,t)
jmn

∣∣∣ ≥ τ,

Sλ/ρ

(
a

(t+1)
jm − a

(t+1)
jn − u

(a,t)
jmn

)
,

∣∣∣d(a,t)
jmn

∣∣∣ < τ,

d
(b,t+1)
jmn =


b

(t+1)
jm − b

(t+1)
jn − u

(b,t)
jmn,

∣∣∣d(b,t)
jmn

∣∣∣ ≥ τ,

Sλ/ρ

(
b

(t+1)
jm − b

(t+1)
jn − u

(b,t)
jmn

)
,

∣∣∣d(a,t)
jmn

∣∣∣ < τ,

where

Sη(d) = sign(d) max(|d| − η, 0),

there is no closed form solution for (5). Since (5) involves integration with respect to latent

variables, we use Gaussian quadrature to approximate the integrals and apply the EM algorithm

for estimation. In the E-step, we compute the posterior distribution of the latent variable θ

for each respondent. In the M-step, we minimize the expectation of (5) with respect to ∆ and

update other parameters using (6), (7) and (8). There are closed form update rules for impact

parameters µs and σs, and the L-BFGS algorithm (Liu & Nocedal, 1989) is applied for updating

14
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item parameters ajs and bjs. We fix µ1 = 0 and σ1 = 1 for model identification. Our final

algorithm is shown in Algorithm 1, where the convergence criterion can be that the absolute

change in every parameter between the current and the last iterations is smaller than some small

value, such as ε = 0.001. To initialize the algorithm, we first run Algorithm 1 with τ = +∞

Algorithm 1 DIF Detection Using TLP via EM and ADMM
Set hyperparameters λ, ρ and τ

Initialize parameters µs, σs, ajm, bjm, d
(a)
jmn, d

(b)
jmn, u

(a)
jmn, u

(b)
jmn

Let θ = (θ1, . . . , θQ) be a Gaussian-Hermite quadrature and c = (c1, . . . , cQ) be the corre-
sponding weights
µ1 ← 0
σ1 ← 1
while not converged do

for s← 1 to S do ▷ E-step: for each θis compute weights on the Gaussian quadrature
θs ← µs + σsθ
for i← 1 to Ns do

for q ← 1 to Q do
wqis ←

cq Pr(yis | θqs)∑Q
q=1 cq Pr(yis | θqs)

for s← 2 to S do ▷ M-step (part 1): update impact for each group
µs ← 1

Ns

∑Ns
i=1

∑Q
q=1 wqisθqs

σs ←
√

1
Ns

∑Ns
i=1

∑Q
q=1 wqis(θqs − µs)2

while not converged do ▷ M-step (part 2): update item parameters

∆← argmax
a,b

[
S∑

s=1

Ns∑
i=1

Q∑
q=1

wqis log Pr(yis | θqs)

− ρ

2

J∑
j=1

S−1∑
m=1

S∑
n=m+1

{[
d

(a)
jmn − (ajm − ajn) + u

(a)
jmn

]2
+

[
d

(b)
jmn − (bjm − bjn) + u

(b)
jmn

]2
}]

for j ← 1 to J do
for m← 1 to S − 1 do

for n← m + 1 to S do

d
(a)
jmn ←

ajm − ajn − u
(a)
jmn, |d(a)

jmn| ≥ τ

Sλ/ρ

(
ajm − ajn − u

(a)
jmn

)
, |d(a)

jmn| < τ

d
(b)
jmn ←

bjm − bjn − u
(b)
jmn, |d(b)

jmn| ≥ τ

Sλ/ρ

(
bjm − bjn − u

(b)
jmn

)
, |d(b)

jmn| < τ

u
(a)
jmn ← u

(a)
jmn + d

(a)
jmn − (ajm − ajn)

u
(b)
jmn ← u

(b)
jmn + d

(b)
jmn − (bjm − bjn)

to obtain initial values, where TLP becomes LP in this case and the corresponding optimization
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problem is easier to solve due to the convexity of LP.

When the algorithm converges, no DIF is detected between groups m and n on item j if and

only if d
(a)
jmn = d

(b)
jmn = 0. If d

(b)
jmn = d

(b)
jnℓ = 0 for m < n < ℓ, then analytically bjm = bjn = bjℓ

because of the constraints in (4), and hence d
(b)
jmℓ = 0. Numerically, however, it is possible that

both d
(b)
jmn and d

(b)
jnℓ have already been shrunk to zero while d

(b)
jmℓ still takes a small nonzero value

because the algorithm does not explicitly check the equality transitivity on one hand, and on the

other hand, the algorithm stops when the convergence criterion is met, which only leads to an

approximation of the true extreme point. To reduce numerical error and guarantee the transitive

property, we directly assign d
(b)
jmℓ ← 0 in such cases. For each item parameter, we initially let each

group forms a cluster, and then each pair of clusters with the same item parameter is collapsed

into a bigger cluster. Finally, each cluster consists of groups that share the same item parameter.

This is implemented using the union-find data structure (Kleinberg & Tardos, 2005), which is

widely used in computer science literature. Figure 2 shows an example on how the union-find data

structure works. Each cluster is a tree whose root is its representative group x, which satisfies

that px = x. Here px indicates the parent of x. In the beginning, each group forms a single

cluster. To collapse clusters including Groups 1 and 2, we let p1 ← 2, so they form a bigger

cluster whose representative is Group 2. To collapse clusters including Groups 2 and 5, we let

p2 ← 5, so Group 1 indirectly points to the new representative, Group 5, by going through Group

2. Therefore, the representative of the cluster including Group x = 1 can be obtained by going

along the path indicated by p, i.e., x← px repeatedly until x = px. After we reach Group 5 from

Group 1, we let p1 ← 5 because there is no need to go through Group 2 again the next time we

start from Group 1. That is, every group along the path can point directly to the representative

in order to save time for future operations, a technique called path compression. The procedure

for collapsing groups to guarantee the transitive property is shown in Algorithm 2 and we apply

it to both d(a) and d(b) after Algorithm 1 converges.

To select the model with the best tuning parameters λ and τ , we try different values and then
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1 2 3 4 5 6

Union(1, 2) : p1 ← 2

1

2 3 4 5 6

Union(2, 5) : p2 ← 5

3 4 5 6

2

1

Union(6, 5) : p6 ← 5

3 4 5

2

1

6

Find(1) : p1 ← Find(2) = 5

3 4 5

1 2 6

Figure 2: An Illustration of the Union-Find Data Structure
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Algorithm 2 Collapsing Non-DIF Groups
function Find(m) ▷ Find the cluster that group m belongs to

if pm ̸= m then ▷ Group m is not the representative of the cluster
pm ← Find(pm) ▷ Recursively find the representative

return pm ▷ pm now points to the representative

function Union(m, n) ▷ Union the two clusters that m and n belong to
x← Find(m)
y ← Find(n)
px ← y ▷ Let the representative of one cluster point to that of the other

for j ← 1 to J do
for m← 1 to S do ▷ In the beginning, each group forms a separate cluster

pm ← m
for m← 1 to S − 1 do

for n← m + 1 to S do
if djmn = 0 then

Union(m, n)
for m← 1 to S − 1 do

for n← m + 1 to S do
if Find(m) = Find(n) then

djmn ← 0

choose the one with the lowest Bayesian information criterion (BIC),

−2ℓ(∆) +
[
k(a) + k(b)

]
log N,

where k(a) and k(b) are the numbers of distinct ajs and bjs parameters. Note that the value ρ

mainly affects the convergence rate but has little effect on the accuracy (Boyd et al., 2010).

3 Simulation Study

We consider two cases with S = 3 and S = 10 respectively. In both cases, there are J = 10

items and the item parameters for group 1 follow aj1 ∼ U(1.5, 2.5) and bj1 ∼ N (0, 1). Moreover,

the first M = 2 or M = 4 items have DIF. The simulation settings are shown in Tables 1 and

2. Besides DIF, the impact is also simulated, although we assume equal variance and only vary
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means across groups.

We run 100 replications for each setting. For each replication, we fix ρ =
√

N
2S , fit the model

with different combinations of λ ∈ {0.1
√

N
S , 0.2

√
N

S , 0.3
√

N
S , . . . , 1.5

√
N

S } and τ ∈ {0.05, 0.1, 0.15, . . . , 0.5},

and pick the one that leads to the lowest BIC. The convergence criterion is that the absolute

change in each parameter is smaller than ε = 0.001, and initial parameters are obtained by the

proposed method with LP (i.e., TLP with τ = +∞). The true and false positive rates among

the
(S

2
)

pairs of groups are computed and summarized across replications.

For comparison, we also apply two regularized DIF detection methods from the R pack-

ages VEMIRT (Lyu, Cheng, et al., 2025) and regDIF (Belzak, 2023). The VEMIRT package im-

plements the importance-weighted Gaussian variational expectation-maximization-maximization

(IW-GVEMM) algorithm with the L1 penalty, which has been shown to achieve accurate DIF

detection with efficient computation (Lyu, Wang, & Xu, 2025). The regDIF package supports

both the L1 penalty and the minimax concave penalty (MCP), and we specify MCP for this simu-

lation study. MCP is an alternative to TLP for reducing the estimation bias of the L1 penalty by

keeping the penalty constant when the parameter value is large (Zhang, 2010). Similar to TLP,

which includes a tuning parameter τ , MCP has a tuning parameter γ. We retain its default value

of γ = 3 because the algorithm becomes computationally slow even without fine-tuning γ. In a

few replications, regDIF failed to fully converge, suggesting that MCP’s performance could be

improved with an optimal choice of γ. Both methods require a reference group; therefore, we run

them S times, each time letting a different group be the reference to allow pairwise comparisons.

Then, an item is flagged as DIF between two groups if DIF is detected for both groups when the

other one is the reference group1.
1We also explored an alternative approach by flagging an item as DIF between two groups if DIF was detected

when either group served as the reference. However, this strategy resulted in too high false positive rates for both
IW-GVEMM and MCP.
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Table 1: Impact and DIF Parameters for S = 3 Groups
s 1 2 3
µs 0 1 −1
σs 1 1 1

ajs − aj1 (j = 1, . . . , M) 0 1 −1
bjs − bj1 (j = 1, . . . , M) 0 1.5 −1.5

Table 2: Impact and DIF Parameters for S = 10 Groups
s 1 2 3 4 5 6 7 8 9 10
µs 0 0 1 1 1 1 −1 −1 −1 −1
σs 1 1 1 1 1 1 1 1 1 1

ajs − aj1 (j = 1, . . . , M) 0 0 0.5 0.5 −0.5 −0.5 1 1 −1 −1
bjs − bj1 (j = 1, . . . , M) 0 0 1 −1 1 −1 1.5 −1.5 1.5 −1.5

3.1 Simulation I: Balanced Design

Under the balanced design, each group has either n = 500 or 1000 respondents, and the total

sample size is N = nS. DIF detection results are shown in Tables 3 and 4, and Figures 3 and 4

provide corresponding visualizations. DIF on a (slopes) generally has lower true and false positive

rates than DIF on b (intercepts), suggesting that all the methods are more sensitive to group

differences in b. Fixing S (number of groups), larger n (number of respondents in each group)

leads to higher true positive rates, which is expected. However, false positive rates also tend to

increase as n increases for LP and IW-GVEMM, while TLP and MCP consistently have better

performance with larger sample sizes. Fixing n, larger S leads to lower true positive rates. This

is not surprising because we are conducting
(S

2
)

group pairwise comparisons. When the number

of DIF items increases from M = 2 to M = 4, the performance of all methods becomes worse,

particularly due to higher false positive rates. When DIF items constitute a large proportion such

as 40%, model identifiability becomes a greater concern. In such cases, DIF in item parameters

may instead be absorbed into impact to maximize the penalized marginal likelihood function.

This agrees with Wang et al. (2023), who found that the bias due to lasso gradually accumulates

during the EM estimation process, and hence they proposed the EMM algorithm to reduce bias

after each EM iteration. Since TLP and MCP closely approximate the L0 penalty and do not
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strongly penalize large DIF parameters, such issue is less likely to happen. As a result, TLP and

MCP maintain reasonable false positive rates, whereas LP and IW-GVEMM exhibit excessively

high false positive rates, making them impractical for reliable DIF detection.

LP has higher true positive rates than TLP in most cases, especially when there are more

groups, at the cost of much higher and almost unacceptable false positive rates. Since the L1

penalty shrinks all the DIF parameters toward zero in a way that larger parameters are penalized

more, DIF parameter estimates are known to be biased (Wang et al., 2023). As a result, BIC,

which is based on maximum likelihood, has difficulty finding the best model under LP. In contrast,

TLP becomes constant for large DIF parameters, so they are not strongly biased toward zero.

That is, parameter estimates by TLP are more accurate and less biased. IW-GVEMM performs

worse than both TLP and LP—it has the lowest true positive rates and high false positive rates,

suggesting that IW-GVEMM is not suitable for group pairwise DIF detection. As discussed

earlier, this difference is mainly due to the differences in the ability to identify DIF-free items

that work as anchors for DIF detection. TLP and LP impose stronger penalty on item parameter

differences in DIF-free items compared to IW-GVEMM, so they identify DIF-free items more

accurately. In addition, we notice that IW-GVEMM sometimes fails to find anchor items when

impact is large, but this model identifiability issue becomes less of a problem for IW-GVEMM

when there is less impact among the groups (Lyu, Wang, & Xu, 2025). Among all methods,

MCP yields the lowest false positive rates. However, this comes at the cost of being conservative,

as reflected in its lower true positive rates compared to TLP and LP. In particular, MCP has

difficulty in detecting DIF in slopes. Since both TLP and MCP approximate the L0 penalty,

these results suggest the importance of imposing a group pairwise penalty, rather than shrinking

all focal groups toward a prespecified reference. In summary, TLP demonstrates superior overall

performance over LP, IW-GVEMM, and MCP.

21

https://doi.org/10.1017/psy.2025.10034 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10034


T a
bl

e
3:

M
ea

ns
(S

ta
nd

ar
d

D
ev

ia
tio

ns
)

of
Tr

ue
Po

sit
iv

e
R

at
es

ac
ro

ss
R

ep
lic

at
io

ns
of

Si
m

ul
at

io
n

I

T
LP

LP
IW

-G
V

EM
M

M
C

P
S

M
n

a
b

a
b

a
b

a
b

3
2

50
0

0.
71

3
(0

.1
55

)
0.

98
7

(0
.0

45
)

0.
71

5
(0

.0
99

)
0.

98
8

(0
.0

43
)

0.
48

5
(0

.2
15

)
0.

85
2

(0
.1

53
)

0.
54

0
(0

.2
00

)
0.

96
8

(0
.0

70
)

10
00

0.
83

8
(0

.1
26

)
1.

00
0

(0
.0

00
)

0.
77

3
(0

.1
15

)
1.

00
0

(0
.0

00
)

0.
69

8
(0

.1
78

)
0.

90
5

(0
.1

09
)

0.
73

5
(0

.1
77

)
0.

99
2

(0
.0

44
)

4
50

0
0.

68
7

(0
.1

46
)

0.
99

1
(0

.0
26

)
0.

73
3

(0
.1

17
)

0.
98

7
(0

.0
33

)
0.

43
8

(0
.1

69
)

0.
71

2
(0

.1
02

)
0.

55
9

(0
.1

89
)

0.
98

3
(0

.0
38

)
10

00
0.

76
7

(0
.1

02
)

1.
00

0
(0

.0
00

)
0.

77
0

(0
.0

82
)

0.
99

3
(0

.0
35

)
0.

62
3

(0
.1

49
)

0.
75

5
(0

.0
83

)
0.

72
0

(0
.1

45
)

0.
99

7
(0

.0
16

)

10
2

50
0

0.
43

0
(0

.2
20

)
0.

91
2

(0
.0

42
)

0.
52

4
(0

.1
89

)
0.

95
6

(0
.0

20
)

0.
21

6
(0

.0
59

)
0.

33
0

(0
.0

90
)

0.
10

1
(0

.0
73

)
0.

75
4

(0
.0

69
)

10
00

0.
68

1
(0

.1
59

)
0.

95
3

(0
.0

36
)

0.
74

3
(0

.1
53

)
0.

97
2

(0
.0

17
)

0.
47

4
(0

.1
00

)
0.

63
5

(0
.0

72
)

0.
26

4
(0

.1
26

)
0.

83
3

(0
.0

48
)

4
50

0
0.

35
0

(0
.1

97
)

0.
91

1
(0

.0
44

)
0.

49
0

(0
.1

53
)

0.
95

1
(0

.0
32

)
0.

24
4

(0
.0

39
)

0.
31

6
(0

.0
59

)
0.

10
3

(0
.0

63
)

0.
72

7
(0

.1
09

)
10

00
0.

58
2

(0
.1

89
)

0.
94

3
(0

.0
41

)
0.

67
1

(0
.1

62
)

0.
96

4
(0

.0
17

)
0.

40
6

(0
.0

63
)

0.
50

1
(0

.0
48

)
0.

27
3

(0
.1

36
)

0.
79

7
(0

.1
27

)

Ta
bl

e
4:

M
ea

ns
(S

ta
nd

ar
d

D
ev

ia
tio

ns
)

of
Fa

lse
Po

sit
iv

e
R

at
es

ac
ro

ss
R

ep
lic

at
io

ns
of

Si
m

ul
at

io
n

I

T
LP

LP
IW

-G
V

EM
M

M
C

P
S

M
n

a
b

a
b

a
b

3
2

50
0

0.
00

4
(0

.0
22

)
0.

01
8

(0
.0

35
)

0.
02

3
(0

.0
49

)
0.

09
2

(0
.0

90
)

0.
05

1
(0

.0
53

)
0.

08
4

(0
.0

72
)

0.
00

5
(0

.0
20

)
0.

01
6

(0
.0

40
)

10
00

0.
00

1
(0

.0
08

)
0.

01
4

(0
.0

36
)

0.
02

8
(0

.0
51

)
0.

12
2

(0
.1

02
)

0.
10

6
(0

.0
57

)
0.

14
2

(0
.0

85
)

0.
00

3
(0

.0
18

)
0.

02
2

(0
.0

39
)

4
50

0
0.

01
5

(0
.0

42
)

0.
02

9
(0

.0
68

)
0.

15
1

(0
.1

33
)

0.
33

4
(0

.1
76

)
0.

01
7

(0
.0

30
)

0.
42

8
(0

.1
26

)
0.

01
7

(0
.0

33
)

0.
02

8
(0

.0
50

)
10

00
0.

01
1

(0
.0

34
)

0.
02

1
(0

.0
49

)
0.

02
8

(0
.0

51
)

0.
20

3
(0

.1
53

)
0.

38
0

(0
.1

83
)

0.
59

3
(0

.1
27

)
0.

01
6

(0
.0

40
)

0.
03

1
(0

.0
48

)

10
2

50
0

0.
00

8
(0

.0
05

)
0.

01
5

(0
.0

10
)

0.
03

8
(0

.0
40

)
0.

07
6

(0
.0

59
)

0.
03

1
(0

.0
25

)
0.

04
9

(0
.0

40
)

0.
00

1
(0

.0
02

)
0.

00
7

(0
.0

06
)

10
00

0.
01

0
(0

.0
09

)
0.

01
6

(0
.0

09
)

0.
05

5
(0

.0
42

)
0.

11
9

(0
.0

80
)

0.
19

3
(0

.0
36

)
0.

30
9

(0
.0

60
)

0.
00

3
(0

.0
03

)
0.

01
3

(0
.0

10
)

4
50

0
0.

03
4

(0
.0

33
)

0.
05

6
(0

.0
41

)
0.

14
0

(0
.0

85
)

0.
28

1
(0

.1
19

)
0.

08
0

(0
.0

23
)

0.
19

1
(0

.0
39

)
0.

00
7

(0
.0

09
)

0.
01

8
(0

.0
12

)
10

00
0.

04
5

(0
.0

42
)

0.
06

4
(0

.0
44

)
0.

21
1

(0
.1

00
)

0.
33

4
(0

.1
20

)
0.

18
9

(0
.0

34
)

0.
36

2
(0

.0
33

)
0.

01
9

(0
.0

16
)

0.
03

2
(0

.0
20

)

22

https://doi.org/10.1017/psy.2025.10034 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10034


S = 3, n = 500 S = 3, n = 1000 S = 10, n = 500 S = 10, n = 1000
M

 =
 2

M
 =

 4

TLP LP IW MCP TLP LP IW MCP TLP LP IW MCP TLP LP IW MCP

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

Tr
ue

 P
os

iti
ve

 R
at

e
Item Parameter a b

Figure 3: Mean True Positive Rates across Replications of Simulation I
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Figure 4: Mean False Positive Rates across Replications of Simulation I
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3.2 Simulation II: Unbalanced Design

The simulation setting of the unbalanced design is the same as the balanced design except that

groups have different sizes. Tables 5 and 6 show the proportion of group sizes relative to N .

DIF detection results are shown in Tables 7 and 8, and Figures 5 and 6 provide corresponding

visualizations. Basically they show the same patterns as Tables 3 and 4, but the unbalanced

design results in lower true positive rates than the balanced design for all the methods. The false

positive rates of TLP, LP and MCP tend to become higher; those of IW-GVEMM are lower,

although still too high to be useful. The reason is that some groups are so small that their item

parameters become very difficult to estimate and tend to be shrunk toward other groups. Still,

TLP turns out to work well, especially on detecting DIF on intercepts.

Table 5: Group Sizes for S = 3 Groups under Unbalanced Design
s 1 2 3

ns/N 0.6 0.2 0.2

Table 6: Group Sizes for S = 10 Groups under Unbalanced Design
s 1 2 3 4 5 6 7 8 9 10

ns/N 0.1 0.1 0.15 0.15 0.05 0.05 0.15 0.15 0.05 0.05
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Figure 5: Mean True Positive Rates across Replications of Simulation II
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Figure 6: Mean False Positive Rates across Replications of Simulation II
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4 Applications

In this section, we apply our proposed methods to two real-world datasets, one from large-scale

international assessment, and the other one from an adaptive language assessment.

4.1 Cross-Economy Data from PISA

The Programme for International Student Assessment (PISA) is an international large-scale as-

sessment for 15-year-old students created by OECD. A subset of PISA 2018 science data is ana-

lyzed, which includes 6,319 students from 10 countries or economies and 19 dichotomous items.

We consider countries and economies as groups for DIF detection because, in an international

assessment like PISA, it is crucial to ensure that test items function consistently and equitably for

students across all countries and economies. Failing to do so would render any international com-

parison based on the assessment results invalid. Table 9 shows these 10 countries or economies.

For simplicity, we will refer to both countries and economies as “economies” throughout this

discussion.

Table 9: Countries and Economies in the PISA Analysis

Abbreviation Country or Economy
1 EST Estonia
2 FIN Finland
3 FRA France
4 GBR United Kingdom
5 GEO Georgia
6 GRC Greece
7 HKG Hong Kong
8 HRV Croatia
9 HUN Hungary
10 IDN Indonesia

TLP suggests that all 19 items have some level of DIF, i.e., all these items will have at least two

sets of different parameters. For each item, we collapse economies that do not have DIF among

them and compute the number of distinct groups, which are shown in Table 10. Most items

divide the 10 economies into 3 to 6 homogeneous groups. Figure 7 shows the item characteristic
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curves (ICC) of two items that divide the 10 economies into 3 and 5 groups respectively. It is

clear that the ICCs are quite distinct across groups.

Table 10: Frequency Table of Numbers of Distinct Groups

Number of Distinct Groups 2 3 4 5 6 7 8
Number of Items 1 5 2 6 3 1 1

The sample size and estimated impact of each economy are shown in Table 11, and pairwise

comparison DIF results are shown in Figure 8. Most economy pairs have DIF in more than 10

items, which account for more than half of the total items. Economies 10 (Indonesia) and 4

(United Kingdom) tend to have the most DIF items. As these are the two largest groups in the

data, their item parameter estimates tend to be more accurate and easier to separate from other

groups. It is also worth noting that the latent trait distributions differ a lot across economies.

In particular, the mean math ability of respondents from Economy 10 (Indonesia) is much lower

than other economies.

Table 11: Sample Sizes and Estimated Impact of Economies

s 1 2 3 4 5 6 7 8 9 10
ns 586 607 505 1347 237 404 512 401 471 1249
µs 0 −0.20 −0.30 −0.36 −1.35 −1.01 −0.08 −0.63 −0.64 −1.63
σ2

s 1 1.40 0.77 1.37 0.79 0.78 0.86 1.12 1.13 0.73

4.2 An Adaptive Language Assessment

To demonstrate the flexibility of the proposed method, we also consider a data set from a large-

scale adaptive language assessment. Unlike the PISA data, these assessment data have a unique

feature: a large item bank relative to sample size per item because the items were generated with

assistance of AI and the assessment is adaptive. As a result, the response matrix of respondent

by item is very sparse, and the overall sample size is large. Since this is a proprietary, high-stakes

assessment, the data was provided to us from the test owner, and they pulled the data in such a
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Figure 7: Item Characteristic Curves of PISA Items

way that each item was answered by at least 500 respondents. This ensures a sufficient sample

size per item, especially when we evaluate the DIF on multiple subgroups. However, this data

extraction scheme results in incomplete responses per respondent. Hence, latent ability estimates

from a complete operational test, derived using a proprietary psychometric model, are provided
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Figure 8: Numbers of DIF Items between Pairs of Economies Using TLP with ρ = 0.5

alongside the response data. Based on these estimates, four respondents whose ability estimates

were more than five standard deviations below the mean were excluded. However, these ability

estimates are not used in the subsequent DIF analysis. Instead, we apply our proposed method

to the response data without relying on the original ability estimates, as they may have been

contaminated by the presence of DIF.

One specific item type was explored. For this type, respondents are asked to type the missing

letters to complete the text. That is, they will fill in the blanks of unfinished words in a passage.

This item type aims to measure reading, literacy, and comprehension. We analyze subtasks that
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are scored as 0 or 1. Groups are formed by the interaction of self-reported native language and

gender. We drop people from the non-binary gender category because they only account for less

than 0.1% of the respondents in the data.

The 6 largest native language groups (Chinese – Mandarin, English, Spanish, Arabic, Hindi

and Portuguese) form 12 groups by interacting with gender. Table 12 shows the basic information

for each group. This subsample has 3,734 respondents and 234 items, each item is answered by

at least 500 respondents. DIF is detected in 27 of 234 items and pairwise comparison results are

shown in Figure 9. The two Chinese (Mandarin) groups have the most DIF items compared to

other linguistic groups, and somewhat surprisingly, there are 21 DIF items between the Chinese

female and Chinese male groups. Besides, when each of the eight non-Chinese and non-Spanish

groups is compared with the Spanish groups, approximately four DIF items are consistently iden-

tified, whereas comparisons among these eight groups themselves yield fewer DIF items overall.

Table 12: Groups in the Language Assessment

s Native Language Gender ns µs σ2
s

1 Arabic Female 212 −0.30 0.96
2 Arabic Male 223 −0.26 0.90
3 Chinese – Mandarin Female 502 0.57 1.37
4 Chinese – Mandarin Male 527 0.50 1.31
5 English Female 409 0.06 0.84
6 English Male 395 0.09 0.90
7 Hindi Female 152 −0.18 0.94
8 Hindi Male 238 −0.07 0.85
9 Portuguese Female 182 −0.06 0.65
10 Portuguese Male 161 −0.09 0.94
11 Spanish Female 370 −0.16 0.80
12 Spanish Male 363 −0.03 0.83

Note. Group means (µs) and variances (σ2
s) are computed from the original ability estimates,

which are provided for reference only and not used in the DIF analysis.

There are potentially two caveats when interpreting the results. First, because the response

data matrix is sparse—that is, the number of items answered by each respondent varies and is

sometimes very small—directly estimating latent abilities from the data may lead to inaccurate
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Figure 9: Numbers of DIF Items between Pairs of Groups in the Language Assessment Using
TLP with ρ = 0.25

results. Second, we treat each subtasks as independent, ignoring the innate nested structure (i.e.,

subtasks are nested within a paragraph). Hence, we use this data set to demonstrate that our

algorithm can work on large sparse data sets, but the conclusions drawn therefrom should be

further validated based on item content.

To further verify the findings in Figure 9, we apply IW-GVEMM from the VEMIRT package to

the same data set for DIF detection. The IW-GVEMM algorithm is chosen as a reference because

the variational method avoids the reliance on quadrature based integral (or Monte Carlo integral),

and since it only contains one tuning parameter, the IW-GVEMM method is computationally
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much faster than many other methods. We are unable to apply the regDIF package because, as

of version 1.1.1, it does not work with item responses containing missing values. The results are

shown in Figure 10. Unlike the simulation study, the matrix here is not symmetrized for a more

detailed view of the output from IW-GVEMM. Each column indicates the numbers of DIF items

when the group corresponding to this column is the reference. While Figure 10 reveals certain

similarities with Figure 9, noticeable differences in the overall pattern are also evident. The most

notable similarity is that both analyses indicate a high number of DIF items between Groups 3

and 4 and the remaining groups. However, IW-GVEMM only detects this pattern when groups

other than Groups 3 and 4 serve as the reference. This observation again emphasizes the key

issue with the traditional approach, which relies on a reference group and overlooks other group

pairs: when either Group 3 or 4 is used as the reference, it tends to overly shrink all other groups

toward itself, leading to an underestimation of DIF effects. In general, there are fewer DIF items

detected in Figure 10 compared to Figure 9, which is consistent with the simulation finding that

the new method is more powerful in detecting DIF, especially when there are multiple small

groups.

5 Discussion

In this study, we propose a novel regularization approach for detecting differential item function-

ing (DIF) in two-parameter logistic (2PL) models. The method employs a truncated L1 penalty

(TLP) applied to the differences in item parameters across all group pairs, thereby addressing

several limitations of existing techniques. Standard L1 penalties are known to overly shrink large

DIF parameters toward zero, leading to biased estimates. In contrast, the TLP is designed to re-

main constant for large differences, effectively mitigating this bias and allowing for more accurate

estimation of substantial DIF effects. A key innovation of our approach lies in its treatment of

group comparisons. Traditional methods typically require the specification of a reference group

and shrink all focal groups toward it. This practice introduces asymmetry and may lead to unfair

DIF detection, as it privileges the reference group and prevents direct comparisons among focal
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Figure 10: Numbers of DIF Items between Pairs of Groups in the Language Assessment Using
IW-GVEMM

groups. Our method avoids this issue by applying a group pairwise penalty structure, enabling

symmetric, interpretable, and direct comparisons between all groups. These advantages make

the proposed method particularly effective for detecting DIF in settings involving a large number

of small groups. Through simulations, we demonstrate that the proposed method consistently

outperforms existing approaches, particularly due to its ability to correctly identify anchor items.

This advantage arises from the design of the penalty.

Ensuring that test items are free from DIF is essential for maintaining fairness and validity

in educational and psychological assessments. As the development and integration of informa-
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tion technology continue to transform the field of assessment, increasingly large and diverse item

response datasets are becoming available. These data often come from large-scale testing pro-

grams involving wide-ranging populations, and include items of growing complexity—some even

generated by artificial intelligence. In such data-rich environments, it becomes not only feasible

but also valuable and necessary to detect DIF in highly granular subgroup structures, such as

those arising from intersectionality, where multiple demographic or contextual variables interact

to create numerous small subgroups. These challenges are especially prominent in large-scale

assessments and high-stakes testing contexts, including university admissions, workforce certifi-

cation exams, and psychological evaluations. In such settings, fairness across subpopulations is

a critical concern, and the consequences of unaddressed measurement bias can be severe. Tra-

ditional DIF detection methods often struggle under these conditions due to limited subgroup

sizes and methodological asymmetries, such as the need to prespecify a reference group. The pro-

posed method addresses these limitations by enabling flexible, symmetric comparisons among all

group pairs, thereby improving the detection and correction of potential biases. In this way, our

approach supports ongoing efforts to enhance equity and accountability in assessment practices.

Its adoption can inform more inclusive and representative test development, contribute to fairer

outcomes for examinees, and help align measurement practices with broader societal goals related

to justice, diversity, and inclusion. As testing programs increasingly seek to serve heterogeneous

populations, the ability to detect subtle and complex forms of DIF will be critical to ensuring

that assessments remain defensible and ethically responsible.

To demonstrate the practical utility of the proposed method, we apply it to two real-world

datasets and find that, despite their long-standing and widespread use, these assessments continue

to exhibit notable DIF. However, detecting DIF is not the final goal; rather, it constitutes a crucial

first step in the broader process of building equitable assessments. Ultimately, psychometricians

should collaborate with subject-matter experts to interpret the results, and to review, revise, or

remove flagged items as appropriate. Such interdisciplinary collaboration is key to promoting

fairness, reducing bias, and enhancing the interpretability, credibility, and validity of test scores
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across diverse populations.

Although the proposed method demonstrates superior performance in terms of high true pos-

itive rates and low false positive rates in simulation studies, it also presents several limitations

that suggest directions for future research. First, the method requires the specification of two

tuning parameters: λ, which controls the overall strength of the penalty, and τ , which determines

the truncation threshold in the TLP. Fine-tuning these parameters via a two-dimensional grid

search is computationally intensive, particularly in large-scale applications. Future work could

explore more efficient tuning strategies to alleviate this computational burden. Second, model es-

timation is carried out using the EM algorithm in conjunction with Gaussian quadrature. While

effective, this approach can be computationally demanding and is only practical for models with

low-dimensional latent traits. A promising alternative is the use of Gaussian variational estima-

tion methods, which have demonstrated strong performance in high-dimensional settings (Cho,

Wang, Zhang, & Xu, 2021; Lyu, Wang, & Xu, 2025; Ma, Ouyang, Wang, & Xu, 2024). Adopting

such approaches could significantly improve scalability and broaden the method’s applicability

to more complex testing scenarios. Third, while the current approach is designed for the two-

parameter logistic model, extending the approach to accommodate other IRT models, such as

the graded response model or the partial credit model, would enhance its utility for polytomous

items. Similarly, applications to assessments containing items of mixed formats are increasingly

relevant and warrant further investigation. Finally, although this study employs the TLP to ad-

dress the bias introduced by the L1 penalty, several alternative debiasing strategies exist. These

include the adaptive lasso (Schauberger & Mair, 2020; Wang et al., 2023; Zou, 2006), the minimax

concave penalty (MCP; Belzak, 2023; Zhang, 2010), and the smoothly clipped absolute deviation

(SCAD) penalty (Fan & Li, 2001). A comprehensive empirical comparison of these regularization

techniques—considering both computational efficiency and statistical accuracy—would provide

valuable guidance for methodologists and practitioners working on DIF detection.
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