E. OkassaNagoya Math. J.Vol. 115 (1989), 63-71

RELÈVEMENTS DES STRUCTURES SYMPLECTIQUES ET PSEUDO-RIEMANNIENNES À DES VARIÉTÉS DE POINTS PROCHES

EUGÈNE OKASSA

On considère une variété différentielle M, paracompacte de classe C^{∞} . Etant donné une algèbre locale A (algèbre commutative unitaire de dimension finie sur \mathbb{R} dont l'idéal maximal m est de codimension 1 sur \mathbb{R}), on rappelle qu'un point proche de $x \in M$ d'espèce A est un homomorphisme d'algèbres ξ de $C^{\infty}(M)$ [algèbre des fonctions numériques de classe C^{∞} sur M] dans A tel que $\xi(f) \equiv f(x) \mod m$ pour toute fonction $f \in C^{\infty}(M)$ [9]. En notant M_x^A l'ensemble des points proches de x d'espèce A, $M^A = \bigcup_{x \in M} M_x^A$ est une variété différentielle de dimension $n \times \dim A$ où $n = \dim M$. Si $A = \mathbb{R}[T_1, \cdots, T_s]/(T_1, \cdots, T_s)^{k+1}$, la variété M^A s'identifie à la variété des jets, $J_0^k(\mathbb{R}^s, M)$, des applications différentiables de classe C^{∞} de \mathbb{R}^s dans M ayant $0 \in \mathbb{R}^s$ pour source.

Si f est une fonction de classe C^{∞} sur M, f^{A} : $M^{A} \to A$ est définie par $f^{A}(\xi) = \xi(f)$ pour tout $\xi \in M^{A}$.

§ 1. Relèvement des formes différentielles

On désigne par $\Omega(M)=\bigoplus_{p\in\mathbb{N}}\Omega^p(M)$ le $C^\infty(M)$ -module gradué des formes différentielles sur M et $\mathfrak{X}(M)$ le $C^\infty(M)$ -module des champs de vecteurs sur M.

Proposition 1. Etant donné une forme différentielle ω de degré p sur M, il existe une forme différentielle de degré p et une seule ω^{A} sur M^{A} à valeurs dans A telle que

$$\omega^{A}(a_1X_1^A, a_2X_2^A, \cdots, a_pX_p^A) = a_1\cdots a_p[\omega(X_1, \cdots, X_p)]^A$$

pour tous a_1, \dots, a_p dans A et X_1, \dots, X_p dans $\mathfrak{X}(M)$; X^A désigne le prolongement à M^A du champ de vecteurs X sur M.

Démonstration. En chaque point $\xi \in M^A$, les $a.X^A(\xi)$, où $a \in A$ et Received March 29, 1988.

 $X \in \mathfrak{X}(M)$, engendrent l'espace $T_{\varepsilon}M^{A}$. Il s'ensuit donc que ω^{A} est unique. Quant à l'existence, elle est immédiate.

Lorsque $\varphi \in A^*$ est une forme linéaire sur A et ω une forme différentielle sur M, on dira que la forme scalaire $\varphi \circ \omega^A$ est une relevée de ω à M^A . Si ω est une forme différentielle de degré p sur M, si $(F_a)_{a \in I}$ est une base de A et $(F_a^*)_{a \in I}$ la base duale, on a:

$$(\varphi\circ\omega^{\scriptscriptstyle A})(a_{\scriptscriptstyle 1}X_{\scriptscriptstyle 1}^{\scriptscriptstyle A},\,a_{\scriptscriptstyle 2}X_{\scriptscriptstyle 2}^{\scriptscriptstyle A},\,\cdots,\,a_{\scriptscriptstyle p}X_{\scriptscriptstyle p}^{\scriptscriptstyle A})=\sum\limits_{\scriptscriptstylelpha\in I}\varphi(a_{\scriptscriptstyle 1}\cdots a_{\scriptscriptstyle p}F_{\scriptscriptstyle lpha})F_{\scriptscriptstyle lpha}^{*}\circ[\omega(X_{\scriptscriptstyle 1},\,\cdots,\,X_{\scriptscriptstyle p})]^{\scriptscriptstyle A}\,.$$

EXEMPLE. $M=\mathbb{R}^n$; $A=\mathbb{D}$ l'algèbre des nombres duaux. Soit (x_1,\cdots,x_n) le système de coordonnées canonique sur \mathbb{R}^n , (y_1,\cdots,y_n) les coordonnées sur la fibre de $M^{\mathbb{D}}=T\mathbb{R}=\mathbb{R}^{2n}$. Soit $(1,\varepsilon)$ une base de \mathbb{D} avec $\varepsilon^2=0$ et $(1^*,\varepsilon^*)$ la base duale. Si $\omega=\sum_{i=1}P_idx_i$ est une forme différentielle de degré 1 sur \mathbb{R}^n , alors on a;

$$egin{aligned} \omega^{ ext{D}} &= 1 \otimes \left(\sum\limits_{i=1}^n P_i \, dx_i
ight) + \, arepsilon \otimes iggl[\sum\limits_{i=1}^n \left(\sum\limits_{j=1}^n y_j rac{\partial P_i}{\partial x_j}
ight) \! dx_i + \sum\limits_{i=1}^n P_i \, dy_iiggr] \ &1^* \circ \omega^{ ext{D}} &= \sum\limits_{i=1}^n P_i \, dx_i \ &arepsilon^* \circ \omega^{ ext{D}} &= \sum\limits_{i=1}^n \left(\sum\limits_{j=1}^n y_j rac{\partial P_i}{\partial x_j}
ight) \! dx_i + \sum\limits_{i=1}^n P_i \, dy_i \end{aligned}$$

Propriétés.

- i) $(\omega_1 + \omega_2)^A = \omega_1^A + \omega_2^A$ pour tous ω_1 et ω_2 dans $\Omega(M)$
- ii) $(\omega_1 \wedge \omega_2)^A = \omega_1^A \wedge \omega_2^A$ pour tous ω_1 et ω_2 dans $\Omega(M)$
- iii) $d(\omega^A) = (d\omega)^A$ pour tout $\omega \in \Omega(M)$: d est l'opérateur de différentiation extérieure.
- iv) Pour tout champ de vecteurs X sur M, pour tout $\omega \in \Omega(M)$, et pour tout $\alpha \in A$, on a: $\theta_{\alpha X^A}(\omega^A) = \alpha(\theta_X \omega)^A$ où θ_X est la dérivée de Lie par rapport au champ de vecteurs X.
- v) Pour toute dérivation δ de A et pour tout $\omega \in \Omega(M)$, on a: $\theta_{\delta_M}\omega^A = -\delta \circ \omega^A$ où δ_M est le champ de vecteurs sur M^A associé à la dérivation δ [5].

On désigne par μ_A : $A \times A \to A$ la multiplication dans A.

PROPOSITION 2. Soit (M, ω) une variété symplectique. Etant donné $\varphi \in A^*$, on a rang $(\varphi \circ \omega^A) = \operatorname{rang}(\varphi \circ \mu_A) \times \dim M$.

Démonstration. En chaque point $\xi \in M^A$, montrons que le noyau de $(\varphi \circ \omega^A)(\xi)$ est $\ker(\varphi \circ \mu_A) \cdot T_{\xi}M^A$.

Soit ξ un point proche de $x_0 \in M$ d'espèce A. On suppose dim M=2n. Soit (x_1, \dots, x_{2n}) un système de coordonnées locales dans un voisinage U de x_0 tel que $\omega/U(\partial/\partial x_i, \partial/\partial x_{i+n})=1$ pour tout $i=1, 2, \dots, n$ et $\omega/U(\partial/\partial x_i, \partial/\partial x_j)=0$ pour $j\neq i+n$. On considère $(a_\alpha)_{\alpha\in I}$ une base de A et $(a_\alpha^*)_{\alpha\in I}$ la base duale. Soit $X=\sum_{\substack{i=1,2,\dots,2n\\\alpha\in I}}\lambda_{i\alpha}\,a_\alpha(\partial/\partial x_i)^A(\xi)$ un vecteur de $T_\xi M^A$ tel que $(\varphi\circ\omega^A)(\xi)(X,Y)=0$ pour tout $Y\in T_\xi M^A$. On a donc

$$\sum_{\substack{i=1,2,\cdots,2n\\ \alpha\in F}} \lambda_{i\alpha}(\varphi\circ\omega^A)(\xi) \left(a_\alpha \left(\frac{\partial}{\partial x_i}\right)^A(\xi), \ b\left(\frac{\partial}{\partial x_j}\right)^A(\xi)\right) = 0$$

pour tout $b \in A$ et pour tout $j = 1, 2, \dots, 2n$. On déduit que

$$\sum_{\substack{i=1,2,\cdots,2n\ a\in I; \beta\in I}} \lambda_{ia} arphi(lpha_a lpha_eta b) a^*_eta \Big[\xi \Big(rac{\omega}{U} \Big(rac{\partial}{\partial x_i}, rac{\partial}{\partial x_j} \Big) \Big) \Big] = 0 ext{ pour tout } j=1,2,\cdots,2n$$
 .

Pour $j=1,2,\cdots,n$ on a $\sum_{\alpha\in I}\lambda_{j+n}\,\varphi(a_{\alpha}b)=0$ pour tout $b\in A$. D'où $\sum_{\alpha\in I}\lambda_{j+n}\,a_{\alpha}$ est un élément de $\ker(\varphi\circ\mu_{A})$. Pour $j=n+1,\ n+2,\cdots,2n,$ $\sum_{\alpha\in I}\lambda_{i\alpha}\,a_{\alpha}$ est un élément de $\ker(\varphi\circ\mu_{A})$ pour $i=1,2,\cdots,n$. On conclut donc que $\sum_{\alpha\in I}\lambda_{k\alpha}\,a_{\alpha}$ appartient à $\ker(\varphi\circ\mu_{A})$ pour $k=1,2,\cdots,2n$. On déduit donc que $X\in\ker(\varphi\circ\mu_{A})\cdot T_{\xi}M^{A}$.

Inversement, soit Z un élément de $\ker(\varphi \circ \mu_A) \cdot T_{\varepsilon}M^A$. On écrit

$$Z = \sum_{\sigma \in \sigma_1} f_\sigma V_\sigma$$
 où $f_\sigma \in \ker(\varphi \circ \mu_A)$ et $V_\sigma \in T_{\varepsilon} M^A$.

On a donc

$$Z = \sum_{\stackrel{i=1,2,\cdots,2n}{a\in I: a=\mathrm{fini}}} \lambda_{ia}^{\sigma} f_{\sigma} \ a_{a} \Big(rac{\partial}{\partial x_{i}} \Big)^{A} (\xi) \ .$$

Pour tout β dans I et pour $j = 1, 2, \dots, n$ alors

$$egin{aligned} (arphi \circ \omega^{A})(\xi) \Big(Z, \, a_{eta} \Big(rac{\partial}{\partial x_{j}} \Big)^{A}(\xi) \Big) &= \sum\limits_{\substack{i=1,2,\ldots,2n \ lpha,\gamma \in I; \, \sigma = ext{fini}}} \lambda_{ilpha}^{\sigma} arphi(f_{\sigma} a_{lpha} a_{eta} a_{\gamma}^{st}) a_{\gamma}^{st} \Big[\xi \Big(\omega / U \Big(rac{\partial}{\partial x_{i}}, \, rac{\partial}{\partial x_{j}} \Big) \Big) \Big] \ &= \sum\limits_{lpha \in I} \lambda_{j+n,\,lpha}^{\sigma} arphi(f_{\sigma} a_{lpha} a_{eta}) \; . \end{aligned}$$

Comme $f_{\alpha} \in \ker(\varphi \circ \mu_{A})$, on a

$$(\varphi \circ \omega^{\scriptscriptstyle A})(\xi) \Big(Z, \, a_{\scriptscriptstyle eta} \Big(rac{\partial}{\partial x_{\scriptscriptstyle j}} \Big)^{\!\scriptscriptstyle A}(\xi) \Big) = 0 \, ext{ pour } j = 1, \, 2, \, \cdots, \, n \ .$$

De la même façon, on a

$$(\varphi \circ \omega^{A})(\xi)\Big(Z, a_{\beta}\Big(\frac{\partial}{\partial x_{\beta}}\Big)^{A}(\xi)\Big) = 0 \text{ pour } j = n+1, n+2, \dots, 2n.$$

On conclut que $(\varphi \circ \omega^4)(\xi)(Z, Y) = 0$ pour tout $Y \in T_{\xi}M^A$. Etant donné un idéal I de A, on a $\dim(I \cdot T_{\xi}M^A) = \dim(I) \times \dim M$ [6]. Comme $\ker(\varphi \circ \mu_A)$ est un idéal de A, alors $\operatorname{rang}(\varphi \circ \omega^A) = \operatorname{rang}(\varphi \circ \mu_A) \times \dim M$.

LEMME. Soit \mathfrak{m} l'idéal de A et $\operatorname{ann}(\mathfrak{m})$ l'annulateur de \mathfrak{m} . Il existe une forme linéaire φ sur A telle que la forme bilinéaire symétrique $\varphi \circ \mu_A$: $A \times A \to \mathbb{R}$ soit non-dégénérée si et seulement si $\dim[\operatorname{ann}(\mathfrak{m})] = 1$.

Démonstration.

Condition nécessaire. Désignons par $\pi:A\to\mathbb{R}$ l'augmentation. Soit $\varphi\in A^*$ une forme linéaire sur A telle que $\varphi\circ\mu_A$ soit non-dégénérée et $a\in \mathrm{ann}(\mathfrak{m})$. Supposons $\varphi(a)=0$. Pour tout $b\in A$, $ab=a.\pi(b)$. D'où $\varphi(ab)=\pi(b)\varphi(a)=0$ pour tout $b\in A$. Comme $\varphi\circ\mu_A$ est non-dégénérée alors a=0. Ainsi la restriction de φ à $\mathrm{ann}(\mathfrak{m})$ est injective: d'où $\mathrm{dim}[\mathrm{ann}(\mathfrak{m})]=1$.

Condition suffisante. On suppose $\dim[\operatorname{ann}(\mathfrak{m})] = 1$. Soit ε une base de $\operatorname{ann}(\mathfrak{m})$ et $\varphi \in A^*$ une forme linéaire sur A telle que $\varphi[\operatorname{ann}(\mathfrak{m})] \neq 0$. On note h la hauteur de A: $(\mathfrak{m}^h \neq (0))$ et $\mathfrak{m}^{h+1} = (0)$. La suite croissante d'idéaux

$$\mathfrak{m}^h \subset \mathfrak{m}^{h-1} \subset \mathfrak{m}^{h-2} \subset \cdots \subset \mathfrak{m}^2 \subset \mathfrak{m}$$

induit la suite décroissante

 $\mathfrak{m} = \operatorname{ann}(\mathfrak{m}^h) \supset \operatorname{ann}(\mathfrak{m}^{h-1}) \supset \operatorname{ann}(\mathfrak{m}^{h-2}) \supset \cdots \supset \operatorname{ann}(\mathfrak{m}^2) \supset \operatorname{ann}(\mathfrak{m}).$

Soit $a \in A$ tel que $\varphi(ab) = 0$ pour tout b dans A.

1er cas: $b = \varepsilon$ base de ann(m).

On $a:0=\varphi(a\varepsilon)=\varphi(\pi(a)\cdot\varepsilon)=\pi(a)\varphi(\varepsilon)$. Comme $\varphi(\varepsilon)\neq 0$, alors $\pi(a)=0$. Donc $a\in\mathfrak{m}$.

2e cas: $b \in \mathfrak{m}^{h-1}$ avec $a \in \mathfrak{m}$.

Ainsi $ab \in \mathfrak{m}^h = \operatorname{ann}(\mathfrak{m})$. On déduit que $ab = \lambda \varepsilon$. Comme $\varphi(ab) = 0$, alors ab = 0 pour tout $b \in \mathfrak{m}^{h-1}$. Donc $a \in \operatorname{ann}(\mathfrak{m}^{h-1})$.

 $3e \ cas: \ b \in \mathfrak{m}^{h-2} \ avec \ a \in ann(\mathfrak{m}^{h-1}).$

Pour tout $c \in \mathfrak{m}$, (ab)c = a(bc). Puisque $b \in \mathfrak{m}^{h-2}$ et $c \in \mathfrak{m}$, alors $bc \in \mathfrak{m}^{h-1}$. Comme $a \in \operatorname{ann}(\mathfrak{m}^{h-1})$, on conclut que (ab)c = 0 pour tout $c \in \mathfrak{m}$; donc $ab \in \operatorname{ann}(\mathfrak{m})$. Ainsi, $ab = \lambda \varepsilon$ et $\varphi(ab) = 0$ pour tout $b \in \mathfrak{m}^{h-2}$. On a

donc ab = 0 pour tout $b \in \mathfrak{m}^{h-2}$. D'où $a \in \operatorname{ann}(\mathfrak{m}^{h-2})$.

Supposons $b \in \mathfrak{M}^{h-i-1}$ avec $a \in \operatorname{ann}(\mathfrak{M}^{h-i})$. Pour tout $c \in \mathfrak{M}$, (ab)c = a(bc) = 0. Ainsi $ab \in \operatorname{ann}(\mathfrak{M})$. Comme $\varphi(ab) = 0$ alors ab = 0 pour tout $b \in \mathfrak{M}^{h-i-1}$. D'où $a \in \operatorname{ann}(\mathfrak{M}^{h-i-1})$. Lorsque i = h - 2, on a $a \in \operatorname{ann}(\mathfrak{M})$. Puisque $\varphi(a) = 0$ alors a = 0. La forme bilinéaire symétrique $\varphi \circ \mu_A : A \times A \to \mathbb{R}$ est donc non-dégénérée.

Remarque. Lorsque dim[ann(m)] = 1, les seules formes $\varphi \in A^*$ telles $\varphi \circ \mu_A : A \times A \to \mathbb{R}$ soient non-dégénérées sont celles qui ne s'annulent pas sur ann(m).

Exemple. Les algébres locales

$$\mathbb{R}[T]/(T^k); \ \mathbb{R}[T_1, \cdots, T_s]/(T_1^{k_1}, T_2^{k_2}, \cdots, T_s^{k_s})$$

avec $k \ge 1$, $k_1 \ge 1$, \dots , $k_s \ge 1$ sont telles que $\dim[\operatorname{ann}(\mathfrak{m})] = 1$.

COROLLAIRE. Soit (M, ω) une variété symplectique. Etant donné une forme linéaire $\varphi \in A^*$, la forme scalaire $\varphi \circ \omega^A$ est une forme symplectique sur M^A si et seulement si $\dim[\operatorname{ann}(\mathfrak{m})] = 1$ et $\varphi[\operatorname{ann}(\mathfrak{m})] \neq 0$.

Soit I un idéal de A. La distribution $\xi \to I \cdot T_{\xi} M^{\Lambda}$ est un système différentiel de dimension $\dim(I) \times \dim M$ [6].

PROPOSITION 3. Soit (M, ω) une variété symplectique. Etant donné $\varphi \in A^*$, l'orthogonal de $I \cdot T_{\xi} M^A$ par rapport à $\varphi \circ \omega^A$ est $I^{\perp}_{\varphi \circ \mu_A} \cdot T_{\xi} M^A$ où $I^{\perp}_{\varphi \circ \mu_A}$ est l'orthogonal de I par rapport à $\varphi \circ \mu_A$.

Démonstration. Soit ξ un point proche de x_0 d'espèce A, (x_1, \dots, x_{2n}) un système de coordonnées locales dans un voisinage U de x_0 tel que

$$\omega/U\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_{i+n}}\right) = 1 \text{ pour } i = 1, 2, \dots, n$$

et

$$\omega/U\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = 0 \ \ \mathrm{pour} \ j \neq i + n \, .$$

Soit $X = \sum_{i=1,2,\ldots,2n} \lambda_{ia} \alpha_a (\partial/\partial x_i)^A(\xi)$ un vecteur de $T_{\xi}M^A$ qui appartient à l'orthogonal de $I \cdot T_{\xi}M^A$ par rapport à $\varphi \circ \omega^A$. Ainsi $(\varphi \circ \omega^A)(\xi)(X, Y) = 0$ pour tout $Y \in I \cdot T_{\xi}M^A$. On a donc

$$\sum_{\substack{i=1,2,\dots,2n\\\alpha\in I;\beta\in I}} \lambda_{\alpha} \varphi(a_{\alpha}a_{\beta}b) a_{\beta}^* \left[\xi \left(\omega/U \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) \right) \right] = 0 \text{ pour tout } j = 1, 2, \dots, 2n.$$

On vérifie que $\sum_{\alpha\in I} \lambda_{i_{\alpha}} \varphi(a_{\alpha}b) = 0$ pour tout $i = 1, 2, \dots, 2n$ et pour tout $b \in I$. On conclut que $(\varphi \circ \mu_{A})(\sum_{\alpha\in I} \lambda_{i_{\alpha}}a_{\alpha}, b) = 0$ pour tout $b \in I$, c'est-à-dire que $\sum_{\alpha\in I} \lambda_{i_{\alpha}}a_{\alpha}$ appartient à l'orthogonal de I par rapport à $\varphi \circ \mu_{A}$. Le vecteur X appartient ainsi à $I_{\varphi \circ \mu_{A}}^{\perp} T_{\xi} M^{A}$. La réciproque se vérifie facilement.

COROLLAIRE 1. Soit (M, ω) une variété symplectique. Si A est une algèbre locale telle que $\dim[\operatorname{ann}(\mathfrak{m})] = 1$, alors pour toute forme linéaire $\varphi \in A^*$ qui ne s'annule pas sur $\operatorname{ann}(\mathfrak{m})$, l'orthogonal de $I \cdot T_{\varepsilon} M^{\Lambda}$ par rapport à $\varphi \circ \omega^{\Lambda}$ est $\operatorname{ann}(I).T_{\varepsilon} M^{\Lambda}$.

COROLLAIRE 2. Soit (M, ω) une variété symplectique, A une algèbre locale telle que $\dim[\operatorname{ann}(\mathfrak{m})] = 1$ et $\varphi \in A^*$ une forme linéaire qui ne s'annule pas sur $\operatorname{ann}(\mathfrak{m})$. Il n'existe pas sur $M^{\scriptscriptstyle A}$ de champ d'éléments de contact lagrangien de la forme $\xi \to I.T_\xi M^{\scriptscriptstyle A}$ pour $\varphi \circ \omega^{\scriptscriptstyle A}$ lorsque A est de dimension impaire.

Démonstration. En effet, si A est telle que $\dim \operatorname{ann}(\mathfrak{m}) = 1$, on a: $\dim I + \dim \operatorname{ann}(I) = \dim A$ pour tout idéal I de A. Si le champ d'éléments de contact $\xi \to I.T_{\xi}M^A$ est langrangien, alors $\operatorname{ann}(I) = I$. Ce qui implique que $\dim A = 2\dim I$. Ce qui signifie que A est de dimension paire.

§ 2. Relèvements des tenseurs symétriques de type (0)

PROPOSITION 4. Soit $g: \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$ un tenseur symétrique de type $\binom{0}{2}$ sur M. Il existe un tenseur symétrique de type $\binom{0}{2}$ et un seul g^{A} sur M^{A} à valeurs dans A tel que: $g^{A}(aX^{A}, bY^{A}) = ab[g(X, Y)]^{A}$ pour tous a, b dans A et X, Y dans $\mathfrak{X}(M)$.

La démonstration se fait de la même façon que pour la proposition 1. Si $\varphi \in A^*$ est une forme linéaire sur A, on dira que $\varphi \circ g^A$ est un relevé de g à M^A .

PROPOSITION 5. Soit g un tenseur symétrique sur M de type $\binom{0}{2}$ et de rang constant. Pour toute forme linéaire φ sur A, on a: rang $(\varphi \circ g^A)$ = rang $(\varphi \circ \mu_A) \times$ rang(g).

Ceci découle du lemme suivant:

Lemme. Soit g un tenseur symétrique de type $\binom{0}{2}$ sur M, de rang constant et de signature (p, q). Soit $\varphi \in A^*$ une forme linéaire sur A et (s, t)

la signature de $\varphi \circ \mu_A$. Alors la signature de $\varphi \circ g^A$ est (sp + tq, sq + tp).

Démonstration. Soit ξ un point proche de x_0 et g_{x_0} la forme bilinéaire symétrique sur $T_{x_0}M$ induite par g et (v_1, v_2, \dots, v_n) une base orthogonale de $T_{x_0}M$ pour g_{x_0} . Soit $(a_a)_{a\in I}$ une base de A orthogonale pour $\varphi \circ \mu_A$ et $(a_a^*)_{a\in I}$ la base duale. D'où:

Il s'ensuit que la signature de $\varphi \circ \mu_A$ est (sp + tq, sq + tp).

COROLLAIRE. Soit (M, g) une variété pseudo-riemannienne et $\varphi \in A^*$ une forme linéaire sur A. Le tenseur symétrique de type $\binom{0}{2}$, $\varphi \circ g^A$, est une pseudo-métrique sur M^A si et seulement si $\dim[\operatorname{ann}(\mathfrak{m})] = 1$ et $\varphi[\operatorname{ann}(\mathfrak{m})] \neq 0$.

EXEMPLE. Soit (M, g) une variété pseudo-riemannienne de dimension n. Soit $A = \mathbb{D}$, l'algèbre des nombres duaux, et $(1, \varepsilon)$ une base de \mathbb{D} avec $\varepsilon^2 = 0$, $(1^*, \varepsilon^*)$ la base duale. Si (x_1, \dots, x_n) est un système de coordonnées locales de M et (y_1, \dots, y_n) les coordonnées sur la fibre de $M^{\mathbb{D}} = TM$ et si $g(\partial/\partial x_i, \partial/\partial x_j) = g_{ij}$, alors

$$arepsilon^* \circ oldsymbol{g}^{ ext{D}} = \left[egin{array}{c|c} \sum_{k=1}^n y_k rac{\partial oldsymbol{g}_{ij}}{\partial x_k} & oldsymbol{g}_{ij} \ \hline oldsymbol{g}_{ij} & oldsymbol{O} \end{array}
ight].$$

Remarques.

- 1) La relevée d'une métrique n'est jamais une métrique.
- 2) Si (M, g) est une variété pseudo-riemannienne, pour toute forme linéaire $\varphi \in \mathbb{D}^*$ qui ne s'annule pas sur l'idéal maximal de \mathbb{D} , la signature de $\varphi \circ g^{\mathbb{D}}$ ne dépend pas de la singature de g.

PROPOSITION 6 [4]. Etant donné une connexion linéaire ∇ sur M, il existe une connexion linéaire ∇^A et une seule sur M^A telle que: $\nabla^A_{aX^A}bY^A = ab(\nabla_X Y)^A$ pour tous a, b dans A et X, Y dans $\mathfrak{X}(M)$.

Proposition 7. Soit V une connexion linéaire sur M. Pour tout

tenseur symétrique g de type $\binom{0}{2}$ sur M, on $a: \nabla^A g^A = (\nabla g)^A$. De plus, $\nabla^A (\varphi \circ g^A) = \varphi \circ (\nabla g)^A$ pour toute forme linéaire φ sur A.

La démonstration ne présente aucune difficulté.

COROLLAIRE. Soit (M,g) une variété pseudo-riemannienne et ∇_g la connexion linéaire sur M déduite de g Si A est une algèbre locale telle que $\dim[\operatorname{ann}(\mathfrak{m})]=1$, alors pour toute forme linéaire $\varphi\in A^*$ qui ne s'annule pas sur $\operatorname{ann}(\mathfrak{m})$, $(\nabla_g)^A$ est la connexion linéaire sur M^A déduite de $\varphi\circ g^A$.

Remarque. Soit $\operatorname{ann}(\mathfrak{m})^{\perp}$ l'espace des formes lineaires sur A qui s'annulent sur $\operatorname{ann}(\mathfrak{m})$ et $\mathbb{P}(A^*/\operatorname{ann}(\mathfrak{m})^{\perp})$ l'espace projectif de $A^*/\operatorname{ann}(\mathfrak{m})^{\perp}$. Soit (M, ω) une variété symplectique (respectivement soit (M, g) une variété pseudo-riemannienne). Si $\dim[\operatorname{ann}(\mathfrak{m})] = 1$ et si $\varphi \in A^*$, le fait que $\varphi \circ \omega^A$ ou $\varphi \circ g^A$ soit non-dégénérée ne dépend pas de φ mais de la classe de φ dans $\mathbb{P}(A^*/\operatorname{ann}(\mathfrak{m})^{\perp})$. De même si $\varphi \circ g^A$ est une pseudo-métrique sur M^A , la connexion linéaire sur M^A déduite de $\varphi \circ g^A$ ne dépend pas de φ mais de la classe de φ dans $\mathbb{P}(A^*/\operatorname{ann}(\mathfrak{m})^{\perp})$.

BIBILIOGRAHPIE

- [1] Morimoto, A., Prolongations of G-structures to tangent bundles of higher order, Nagoya Math. J., 38 (1970), 153-179.
- [2] —, Liftings of some types of tensor fields and connections to tangent bundles of p^r -velocities, Nagoya Math. J., 40 (1970), 13-31.
- [3] —, Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120.
- [4] —, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom., 11 (1976), 479-498.
- [5] Okassa, E., Prolongement des champs de vecteurs à des variétés de points proches,
 C. R. Acad. Sci. Paris, série I Math. t. 300, 6 (1985), 173-176.
- [6] —, Prolongement des champs de vecteurs à des variétés de points proches, Prépublication de l'Institut Fourier, Grenoble, 1987.
- [7] Yano, K. and Ishihara, S., Tangent and cotangent bundles, Diff. Geom. Marcel Dekker, New-York, 1973.
- [8] Yano, K. and Patterson, E. M., Vertical and complete lifts from a manifold to its cotangent bundles, Jour. Math. Soc. Japan, 19 (1967), 91-113.
- [9] Weil, A., Théorie des points proches sur les variétés différentiables, Colloque Geom. Diff. Strasbourg, 111-117, 1953.

Université de Grenoble I
Institut Fourier
Laboratoire de Mathématiques
B.P. 74
38402 ST-MARTIN-D'HÈRES (France)

Université Marien Ngouabi Faculté des Sciences Département de Mathématiques B.P. 69 BRAZZAVILLE (Congo)