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Abstract

Industrial materials images are an important application domain for content-based image retrieval. Users need to
quickly search databases for images that exhibit similar appearance, properties, and/or features to reduce analysis
turnaround time and cost. The images in this study are 2D images of millimeter-scale rock samples acquired at
micrometer resolution with light microscopy or extracted from 3D micro-CT scans. Labeled rock images are
expensive and time-consuming to acquire and thus are typically only available in the tens of thousands. Training a
high-capacity deep learning (DL) model from scratch is therefore not practicable due to data paucity. To overcome
this “few-shot learning” challenge, we propose leveraging pretrained common DL models in conjunction with
transfer learning. The “similarity” of industrial materials images is subjective and assessed by human experts based
on both visual appearance and physical qualities. We have emulated this human-driven assessment process via a
physics-informed neural network including metadata and physical measurements in the loss function.We present a
novel DL architecture that combines Siamese neural networks with a loss function that integrates classification and
regression terms. The networks are trained with both image and metadata similarity (classification), and with
metadata prediction (regression). For efficient inference, we use a highly compressed image feature representation,
computed offline once, to search the database for images similar to a query image. Numerical experiments
demonstrate superior retrieval performance of our new architecture compared with other DL and custom-feature-
based approaches.

Impact Statement

A dramatic reduction in cost of computing and storage has led to a huge increase in volume of images acquired
and intensity of image analysis. In this contribution, we focus on “digital rocks”, 2D and 3D images scanned from
subsurface porous rock samples that are used for oil and gas reservoirs evaluation, in mining, or in planning of
subsurface storage sites for CO2 and hydrogen. Finding rock images similar to a newly acquired sample image
with the proposed Double Siamese Neural Network can be done in seconds, compared to weeks or months
required by experimentation on rock samples. This orders-of-magnitude acceleration equates to millions of
dollars in monetary terms for each sample, and in higher values for missed industry opportunities.
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1. Introduction

Content-based image retrieval (CBIR) is an established application in computer vision (Gudivada and
Raghavan, 1995; Devareddi and Srikrishna, 2022; Kulkarni andManu, 2022). The objective is to retrieve
images similar in content to a query image from a large image database. Following the success of deep
learning (DL) in other computer vision applications (Voulodimos et al., 2018), DL has almost entirely
replaced targeted feature engineering and greedy-basedmatching approaches (see Alcantarilla et al., 2012
for a particularly sophisticated incarnation) as the dominant technical approach for CBIR. Multiple
comprehensive and comparative reviews demonstrate this in a variety of applications (Zagoruyko and
Komodakis, 2015; Zheng et al., 2018; Rian et al., 2019; Chen et al., 2022; Simran et al., 2021; Dubey,
2022). The majority of CBIR studies use common photographic images, and new approaches are almost
always developed and calibrated in this rich public domain.

Providing efficient CBIR in an industrial image domain allows experts to quickly infer properties about
the query image without the need for expensive or time-consuming physical experimentation. Industrial
images provide different challenges, and have different requirements and properties. While state-of-the-
art DL models on photographic images can be trained on datasets in the millions, industrial image
databases are usually smaller because the images are more costly to collect and curate. This lends itself to
DL architectures of smaller capacity. Some prior work addresses the use of databases and convolutional
neural networks (CNNs) for analyzing images of common industrial materials (e.g. segmentation and
classification in Bell et al., 2015; Ahuja et al., 2022), and the medical community is routinely using
DL-based CBIR (Pradhan et al., 2021). However, CBIR applications in the industrial and materials
domain are scarce.

In this article, we consider a database of “digital rock” images acquired in 2D via light microscopy or
projected from 3D microcomputer tomography to 2D (Saxena et al., 2019b). They are of fundamental
importance in the Earth science domain and have led to a revolution in the understanding of deep-Earth
phenomena, such as fluid transport through porous media (Blunt et al., 2002; Andrä et al., 2013;
Al-Marzouqi, 2018; Saxena et al., 2019a, 2019b). Computer simulation and DL-based image analysis
have already greatly advanced the field of rock and fluid science (Araya-Polo et al., 2018; Saxena et al.,
2021; Ahuja et al., 2022). Here, we focus on the specific CBIR challenges presented by the materials
imaging domain with digital rock as a high-value example. We focus on resolving the following critical
issues: (a) data paucity, (b) “expert knowledge” subjectivity, and (c) uncommon statistical image
properties.

To solve the data paucity issue, we use DLmodels that are pretrained on common photographic images
in conjunction with “few-shot” transfer learning (Wang et al., 2020). A model pretrained on several
related tasks is fine-tuned with limited new data which helps the model generalize to unseen samples.
Rather than solely relying on expert subjectivity in image similarity labeling, we use the metadata from
physical measurements as additional labels for training. We present a novel custom DL architecture that
combines Siamese neural networks where two neural networks share the same weights and produce
comparable output vectors for similarity learning (Bromley et al., 1993; Wiggers et al., 2019; Chicco,
2021; Ahuja et al., 2022) and the efficient ResNet architecture (He et al., 2016). We train this Double
Siamese Neural Network (DSNN) with a loss function that integrates classification and regression terms
to train with both image and metadata similarity (Thiele et al., 2020) in a form of “physics-informed
learning” (Kim et al., 2021). During inference, we use a computationally efficient search for the closest
matches in the database using a highly compressed image feature representation. We describe an
implementation in Pytorch (Paszke et al., 2019) on an Nvidia V100 multi-GPU system.

The remainder of this article is organized as follows: Section 2 describes the novel Double Siamese DL
architecture used in this study along with the training process, loss function, and inference process.
Section 3 contains details of the experiments that were conducted, describes the computational platform
and performance, and quantifies the approximation and prediction error. We analyze the DSNN perform-
ance in detail and compare it with alternative architectures. In Section 4,we present comparative visuals of
the image retrieval performance on several representative “real-world” examples. We discuss the three
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main factors behind the superior performance of our novel architecture. Section 5 presents our conclu-
sions and lists future work.

2. Network Architecture

The first CBIR DL architectures were based on convolutional neural networks (Krizhevsky et al., 2012)
and autoencoders (Ballard, 1987). While convolution and autoencoders provide a natural mechanism for
image dimensionality reduction, single autoencoder networks proved difficult and time-consuming to
train, and were limited in image retrieval performance. Wiggers et al. (2019) have shown that Siamese
networks perform better than simple CNNs and autoencoders, andwe build upon this work.We propose to
leverage both physics and “expert knowledge” in a novel “Double Siamese Neural Network” architecture
composed of four networks, each using ResNet-18 and a regression module for incorporating physics-
informed properties.

In contrast to a conventional Siamese network where only one backbone network is used for image
similarity learning, we employ an additional network to leverage both metadata and image similarity. To
do the latter, an additional regression term is added to the objective function, similar to multi-task learning
(MTL). The purpose of MTL is to train one or multiple shared networks with different tasks for improved
prediction performance over networks trained individually with each task. MTL has been used in other
CBIR applications, such as in Pisov et al. (2018), where a ResNet-like network is trained with multiple
heads for classification and segmentation.

Instead, we opted to follow the approach taken by Standley et al. (2020), by designing a model that can
improve our main image retrieval performance with another, possibly conflicting, task of estimating
metadata (e.g., porosity and permeability for digital rocks). In this vein, we add another Siamese network
for training image similarity alongwithmetadata similarity.OurDSNN’s loss function is thus composedof a
classification and a regression component (see Figure 1). The classification term determines whether a pair
of images is similar and the regression term quantifies the mismatch in the metadata space of the image pair.

2.1. Training and the loss function

To avoid the issue of overfittingwhile still maintaining high-capacity CNNs, we use transfer learning (Tan
et al., 2018; Wiggers et al., 2019) by incorporating two pretrained backbone ResNet-18 networks
(He et al., 2016) that were trained with the ImageNet database (Russakovsky et al., 2015). This warm-
start of the model parameters helps the model transition from images in the natural domain to digital rock
images taken from microscopy or other sensors. We also considered freezing layers of our network, but
note superior empirical CBIR recovery using the warm starting approach.

Using similarity labels generated by human experts for a range of image pairs is too costly and work-
intensive in our application. We have instead chosen to codify the process by which human experts assess
similarity: Visual perception combined with the matching of physical properties is how Earth scientists
perform such assessment, and we have mapped this process into our loss function.

The loss function used for training the DSNN has classification and regression terms. As will be
described in the next sections in detail, the classification term has an image similarity component based on
the images’ reduced-dimension feature representation but also a component related to the mismatch of
physical properties with additional regression terms in the loss function. Some examples of the approxi-
mately 10,000 images used in this study (a small subset of those in our rock image database) are shown in
Figure 2. They are acquired through specialized borehole drilling operations and come from various deep
subsurface porous rock formations (“reservoirs”) across the globe. Millimeter-size pieces of rock (“rock
samples”) are then cut into slices and subjected to micrography (“thin slices”) or scanned and digitized
using x-rays (“micro-CT”). We use the rock sample identifier as the label: If a pair of images come from
the same sample, they have identical labels. This is because different rock samples from the same reservoir
can still exhibit different appearance and properties due to subsurface heterogeneity. The reservoir
identifier is used here only during testing, not during the training phase.
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2.1.1. Binary classification
Consider two backbone network models f 1 and f 2 for feature extraction. The networks f 1 and f 2 have the
same network architecture but the weights are not shared. As noted earlier, we select ImageNet-pretrained
ResNet-18s as the initial networks. The ImageNet dataset includes a large number of annotated
photographs intended for computer vision research. A pair of images A

!
and B

!
, which are randomly

Figure 1. Proposed Double Siamese Neural Network (DSNN) architecture. The blue Siamese part of the
network is trained with image similarity and the gray Siamese part is trained with image and metadata
similarity in classification. The dark gray part is trained with metadata for regression. “x,” “+,” “-

“designate multiplication, addition, and subtraction. The green and yellow images are pairs of images,
with binary classification label “similar” or “different.”After the training phase the networks are used in
the inference phase for image retrieval and metadata regression as shown in Figure 3. See text for the

mathematical details and symbols.

Figure 2.Examples of 2Dmicro-CTand thin-section rock images. Micro-CT images are gray scale, while
thin-section images are RGB.
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chosen with 50 % probability from the same or different samples, are passed on to the networks f 1 and f 2
for feature extraction.

h
!
1 ¼ f 1 A

!� �
, h
!
2 ¼ f 1 B

!� �
, h

!
3 ¼ f 2 A

!� �
, h
!
4 ¼ f 2 B

!� �
: (2.1)

After extracting the features from the images (here: a vector of length 512), the difference in latent
space is calculated with element-wise absolute difference as follows.

w!1 ¼ ∣h
!
1� h

!
2∣, w!2 ¼ ∣h

!
3� h

!
4∣ (2.2)

w!1 and w!2 are then concatenated and the resulting vector w! passed to a fully connected (FC) layer for

gating the outputs,w!
0
1 andw

!0
2, fromeachmodel (see Patel et al., 2017 and Figure 1) for late fusion. The gated

outputs are fused with an element-wise mean operation w!
0
1 +w

!0
2

� �
=2 and passed into an output layer,

producing a scalar output z as FC(w!), which is processed through a sigmoid function σ to quantifywhether a

pair of images A
!

and B
!

is similar or not. Lastly, each output (w!1 and w!2) from the models f 1 and f 2 is
individually passed into a fully connected output layer with a sigmoid nonlinearity and used in constructing

the loss function over N image pair samples, σ z1ð Þ and σ z2ð Þ, where z1 is FC(w!1), and z2 is FC(w
!
2).

The loss function in the classification training process employs the standard binary cross entropy
(BCE) for image similarity in a Siamese neural network architecture,

BCE y,byð Þ¼� 1
N

XN
i¼0

yi log byið Þ+ 1� yið Þ log 1�byið Þð Þ (2.3)

whereby¼ σ zð Þ, a given target label y (0 and 1 representing “not similar” and “similar,” respectively), and
N is the number of samples in the dataset.

We now define two sets of classification labels to compose the overall classification loss. If during
training a pair of images is selected from the same rock sample, we define y¼ 1, otherwise y¼ 0. For

Figure 3. Image retrieval system with the trained DSNN. Note that the feature encoding for the images in
the data base (top) is computed offline and not during inference for a new query image (bottom).
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metadata similarity labels, if a pair of images A
!
and B

!
have similar metadata, where the relative difference

of themetadata is less than a threshold of 10%, thenwe define y0 ¼ 1, otherwise y0 ¼ 0. Based on these two
labeling methods, the classification loss Lclf is defined as follows:

Lclf ¼BCE y � y0,σ zð Þð Þ+BCE y,σ z1ð Þð Þ+BCE y0,σ z2ð Þð Þ (2.4)

(the blue, orange, and gray output sections of the network in Figure 1, respectively). The cross term
y � y0 ensures that images are only counted as “similar” during training when both branches of the double
Siamese network classify them as similar.

2.1.2. Metadata regression
As described earlier, we augment the loss function with a metadata regression term to preferentially
retrieve images with similar properties in the inference phase. For our digital rock application, we choose
porosity and permeability (see Saxena et al., 2019a).Model f 2 is regularizedwith a regression lossLreg. A
regression module composed of a fully connected layer and an output layer is added in f 2, as colored with
dark gray in Figure 1. Our approach does not rely on segmentation but predicts rock properties directly
from input images via the regression module trained with lab measurements as labels. We use an L1 loss
for the metadata regression task Lreg because it provides the best performance.

The total loss function is a combination of the classification and regression loss:

L¼Lclf + αLreg (2.5)

Note that the regression term in (2.5) is multiplied with an adjustable scaling factor α to balance the two
loss terms so that the magnitude of the classification loss approximately equals the regression loss. Here,
we selected a scaling factor α¼ 10. Please see pseudo code of training DSNN in supplementary material
section below for details.

2.2. Inference

After training our DSNN, the backbone networks f 1 and f 2 are used for image retrieval and metadata
prediction as shown in Figure 3. Before inference, we first precompute the encoded features from the two
trained backbone networks f 1 and f 2 for all samples in the existing database, including partially labeled
samples that were not used for training.When a new query image is presented, its encoded features h

!
1 and

h
!
3 are computed through the two trained backbone networks f 1 and f 2, respectively. A similarity measure

containing both image andmetadata terms can be computed for all existing samples in our data base using
these encoded features. First, the outputs of both networks, f 1 and f 2, are fused with an element-wise

mean operation as z!¼ h
!
1 + h

!
3

� �
=2. Then, the Euclidean distance is used to compare a query image with

the images in the data base (see Figure 3) and retrieve the closest matches. In addition, the output of model
f 2 is connected with the trained regression module to separately predict metadata for the query image
(here: the physical properties porosity and permeability). The DSNN then predicts physical properties in
addition to the main CBIR task.

3. Results and Discussion

3.1. Experimental setup

We now demonstrate the performance of our physics-informed DSNN architecture on the two datasets of
micro-CTand thin-section images, as shown in Figure 2. All calculations were run on a workstation with a
2.50Ghz Intel Xeon® Gold 6248 v80 CPU with 4 Nvidia Tesla® V100-SXM2 GPUs. Our DSNN takes
8 hours for training using 7740 images of 2D micro-CTwith 1000 epochs and 12 hours for training with
12240 images of the thin-section dataset with 600 epochs. The most time-consuming part of the training
process in every epoch is convolution. The DSNN is implemented with Pytorch 1.7.1 (Paszke et al.,
2019). The (pretrained) ResNet-18 (He et al., 2016) is used as a backbone network for DSNN, the last two
ResNet layers were removed for feature extraction. The number of trainable parameters is 22.4 million
with 26 GB memory usage on each GPU.
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The DSNN is trained with a balanced set of selected pairs of images (i.e. half of the pairs are from the
same rock samples, see above). We down-sampled all images to 224× 224, randomly flipped images
horizontally and vertically with 50% probability for data augmentation, and then normalized with
z-scaling. For hyperparameters, we select 1000 epochs for micro-CT and 600 epochs for the
thin-section dataset. We set the batch size to 1024 and the learning rate to 0.00001 and 0.0001 for the
micro-CT and thin-section dataset, respectively. We use the Adam optimizer to minimize the objective
function. To compare with other approaches, we use an ImageNet-pretrained ResNet-34 ("Vanilla
ResNet") as the baseline for image retrieval performance. It matches the number of trainable weight
parameters of our Double Siamese ResNet-18 network to allow for a fair comparison.

3.1.1. 2D micro-CT image dataset
We have access to a proprietary database of 3Dmicro-CT images with image sizes 10003 or 13003, where
pixel size ranges from 1.01 μm to 2.12 μm. From these raw samples, 90 2D slices are sampled from each
3D image, which provides a total of 9000 2D slices. 7740 slices are used for training and 1260 slices used
for testing the regression performance. To test the image retrieval performance, a separate test set of 1527
2D slices out of 509 3D images is used.

3.1.2. Thin-section Image dataset
The thin-section image dataset is composed of 264 16-bit RGB raw 2D images of image size 5000× 5000
with pixel size of 1.41 μm. Similar to the 2Dmicro-CT image dataset, 60 2D slices are extracted from each
raw image, for a total of 15840 slices. 12240 images are used for training, and 3600 images for testing the
regression performance. For testing image retrieval performance, 37 out-of-sample images are used, a
random slice from each of the 37 samples. Porosity is used for regression in this dataset because the
permeability is not broadly available.

3.2. Image retrieval performance

For the retrieval performance (estimation error) metric, we use mean average precision at k (mAP@k)
(Christopher et al., 2008). It captures how many of the known similar images the network can retrieve on
average when a query input image is presented. The total similarity between the query image and the
retrievals in the testing phase is quantified with the known “reservoir” designation of the rock samples
from which the images were captured (see Section 2). True to the practical application of our method,
images are labeled “similar” in the test set if their origin is the same subsurface reservoir. Note that this is
different from the DSNN training process where “rock sample” was used as label. Based on this metric,
our DSNN outperforms the pretrained (“vanilla”) ResNet-34 by 9.8%, the Siamese ResNet-18 by 3.1%
and the Siamese ResNet-34 by 1.4% in the 2D micro-CT dataset (see Table 1). In addition to the vanilla
ResNet-34, a single Siamese ResNet-18 and a ResNet-34 network was post-trained with our rock images
as described above for the DSNN. Comparing with these single Siamese networks, our Double Siamese
ResNet-18 shows superior performance.

On the thin-section dataset, our DSNN also outperforms the vanilla ResNet-34 by 22.5%, a Siamese
ResNet-18 by 4.3% and a Siamese ResNet-34 by 4.0%. Even though ResNet-34 has more trainable
parameters, it does not perform as well as a ResNet-18, which we attribute to overfitting. Generally
speaking, we note that all algorithms and models do not perform as well on thin-section data as the micro-
CT data due to the lower number of raw samples. Despite that, our DSNN again shows the best image
retrieval performance due to the added rock properties.

3.3. Regression performance

As noted earlier, the regression portion of the DSNN network not only improves the image retrieval
performance but also enables the prediction of physical properties for a query image. This can happen in
two ways: First, the user retrieves the set of best-matching images from the database using the DSNN
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and “manually” looks up the physical properties of those. Second, and in a more automated fashion,
the trained regression module (Figure 1) can be used directly to predict the physical properties of a
query image. The performance of this process (approximation error and estimation error from out-of-
sample testing) is shown in Figures 4 and 5. The coefficient of determination R2 is defined as
1�P

i yi� f ið Þ2=Pi yi� yð Þ2, where f i and y represent prediction and mean of prediction, respectively.
Note that only our DSNNhas a regressionmodule that can be used in this way, the other neural networks
used for comparison in this study cannot predict physical properties. The log of permeability is scaled
with a min-max normalization for the training process and permeability itself is then calculated back for
testing the regression performance. In terms of rock property prediction accuracy, the R2 for both
porosity and permeability, respectively, is 0.8 and 0.9 with our DSNN on the test set after 1000 training
epochs.

For the thin-section dataset, we only use porosity in the regression due to the small sample size of
available permeability data. Figure 5 shows a finalR2 ¼ 0:7 for porosity prediction. This is still considered
excellent predictive performance in rock physics and on par with orders-of-magnitude more time-
consuming direct computer simulation (Saxena et al., 2017). Our predictive DL approach thus provides
a viable alternative to computationally expensive pore-scale flow simulations.

Table 1. Image retrieval performance comparison.

Algorithm

mAP@10

2D Micro-CT (%) Thin-section (%)

KAZE 71.7 63.5
Vanilla ResNet-34 65.1 49.8
Siamese ResNet-18 71.8 68.0
Siamese ResNet-34 with MTL 72.5 69.6
Siamese ResNet-34 73.5 68.3
Double Siamese ResNet-18 (scratch) 65.1 64.8
Double Siamese ResNet-18 74.9 72.3

Note. The KAZE results (Thiele et al., 2020) are listed for reference.

Figure 4. Regression coefficient of determination R2 for porosity and permeability in the 2D micro-CT
dataset.
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3.4. Quantitative image retrieval analysis

In this section, we assess theDSNNperformance for rock property predictions.We compare query images
with their best-matching three retrievals in all samples of a separate test set. This is of paramount
importance for digital rocks because users often infer rock properties by studying “similar” rocks returned
from the CBIR query.

For the 2Dmicro-CT dataset, porosity and permeability of a query image and the top three retrievals are
compared in Figure 6,with amean and a standard deviation of (0.21, 0.07) for the porosity and (1.52, 1.01)
for permeability. For a high-performing network all top three retrievals should lie on the diagonal line.
From Figure 6a it is apparent that the vanilla ResNet-34 does not perform as well as our DSNN. This is
because it was not trained on rock images. The average perpendicular distance of the top-1,2,3 retrievals to
the diagonal line is 0.0043 from the vanilla ResNet, and 0.002 from our DSNN, about a two times better
retrieval quality in terms of similar porosity. Figure 6b shows that our DSNN retrieves most of the images
in each sample correctly. The average perpendicular distance from the diagonal of the top-1,2,3 retrievals
for permeability is 2.17 from the vanilla ResNet, and 0.42 from ourDSNN, about five times better in terms
of similar permeability. While some images are not retrieved from the same sample, the porosity
differences between the query and the retrievals are small. Due to the rock property similarity-based
labels and the regularization with the property regression module, the image retrieval quality goes up. In
Figure 7, the improved retrieval performance of our algorithm is shown in histogram form where the
horizontal axis represents metadata difference between query image and its top three retrievals. Our
DSNN retrieves rock samples which have better matching porosity and permeability than the vanilla
ResNet-34, as demonstrated by higher peaks near zero and lower peaks away from zero. The permeability
recovery performance for DSNN is also shown in Figure 7.

The thin-section image results are shown in Figure 8. Only porosity is used as physical quantity with
(0.26, 0.06) as mean and a standard deviation. Figure 8a shows that the vanilla ResNet-34 is unable to
consistently retrieve samples with similar porosity. More than half of the samples are far off the diagonal
line. Our DSNN (Figure 8b) reliably retrieves rock samples with similar porosity. Figure 8c,d demonstrate
that the DSNN retrieves more similar rock samples with a higher peak at zero compared with the vanilla
ResNet-34. In terms of the average perpendicular distance metric, the vanilla ResNet shows 0.03, and our
DSNN still shows improvements as 0.02.

4. Practical Examples with Discussion

Figures 9–12 show examples of actual (both Micro-CT and thin-section) rock images retrieved from the
Shell image database using both a vanilla ResNet-34 and our DSNN. A comparison demonstrates the

Figure 5. Regression coefficient of determination R2 for porosity in the thin-section dataset.
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superior performance of our DSNN architecture and training procedure. For the micro-CT dataset, in
Figures 9 and 10, the first row (red box) contains the top three ranking images retrieved from the same rock
sample as the query image. The ranking metric is the L2 distance of the feature vectors described in
Section 2.2. The second row (green box) includes the top three ranked retrievals from the same geological
subsurface rock formation (“reservoir”) as the query but not from the same physical rock sample. The
third row (blue box) shows the top three ranked retrievals from images of rock samples that originate in
different reservoirs than the query image. This similarity assessment is used in practice to identify
geologically similar rocks already in the database that can serve as useful analogs with known properties.
In these figures, porosity is abbreviated as por, permeability as perm, and absolute retrieval ranking as
ABS ranking. Note that the rock properties of many images in the database were not measured, as
indicated by NaN.

Figure 6. Cross plot of porosity and permeability of query images and their top three matching retrieval
images for the 2D micro-CT dataset. (a and b) are for porosity and (c and d) are for permeability. Our
DSNN (right panels) reliably retrieves rock samples with similar rock properties; most of the retrievals
are on the diagonal line. The top, second-, and third-best matches are colored blue, orange, and green,

respectively.
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In Figure 9, one slice of a rock sample from reservoir “E2” is used as query (top left in the first row).
Ideally, the images retrieved from the same rock sample as the query image should be among the top-
ranking images, and the query image itself should be the highest-ranked result. Note that the images
retrieved by the vanilla ResNet-34 from the same rock sample are the same ones as those retrieved by our
DSNN but have lower absolute ranking, an undesirable discrepancy. The secondand third-ranking images
retrieved by the vanilla ResNet-34 are from a different rock sample; the two retrieved images are also
visually dissimilar to the query image and belong to different rock types defined by distinct rock property
trends. That is despite the fact that the database included multiple 2D slices from the same rock sample
from which the query image was selected. It is apparent that a pretrained vanilla ResNet-34 does not
function well for retrieving similar images in the materials domain.

On the other hand, our DSNN successfully retrieves the secondand third-ranked images from the same
rock sample as the query image. Our DSNN also shows stable regression performance on porosity por’
and permeability perm’: A 10% error in porosity and log(permeability) is considered satisfactory in
practice (Andrä et al., 2013;Woods, 2014; Saxena et al., 2017). The blue box (third row; top three ranked
retrievals from different reservoirs) is a tool to assess which other reservoir rocks can be used as analogs
for the query rock sample. Rocks of similar geologic origin can be expected to have similar rock
properties. Reservoirs E2 (query image), E1, and Z are from the same geological formation but were
penetrated by differentwells several kilometers away from reservoir E2. The three reservoirs are located at
different depths. Reservoirs E2, E1, and Z have seen the same degree of rock compaction over geologic

Figure 7. (Porosity, permeability) of query and (porosity, permeability) of top three retrievals compared
for the 2D micro-CT dataset. (a and b) are for porosity and (c and d) are for permeability. The error
histogram for our DSNN shows a narrower spread around zero (perfect match) than the vanilla ResNet-

34.
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times, and are known to have similar rock properties and trends. Note how all images retrieved by our
DSNN are visually similar to the query image. Our DSNN correctly predicts reservoir E1 as a good analog
for reservoir E2. It also predicts reservoir Z as the next best analog for reservoir E2. The retrievals from the
vanilla ResNet-34 are not satisfactory since the top retrieved image from a different reservoir (blue box) is
from reservoir C which is from a very different geological formation. The next two predictions from the
vanilla ResNet-34, in the blue box, are from reservoir E1 which is the same geological formation as
reservoir E2 but is known to be less compacted and of higher porosity. Note also how multiple retrieved
images are visually dissimilar to the query image.

Figure 10 shows the same results as Figure 9 but for a different query image obtained from a rock
sample from reservoir “K”. The key difference between the results predicted by the two networks is in the
prediction of similar images from different reservoirs (bottom blue box in Figure 10). Results from the
vanilla ResNet-34 are not satisfactory for two important reasons: Firstly, for the query image from
reservoir K, the retrieved images from reservoirs R and T have significantly higher concentration of
“heavy”minerals (brighter pixels in the images) and are visually dissimilar to the query image. Secondly,
reservoirs R and T have different geologic origins to reservoir K. Reservoirs R and Tare aeolian deposits,
whereas reservoir K has a turbitic origin. Our DSNN predicts reservoir Z as a good analog for reservoir K;
both of these reservoirs are turbidite deposits and are correctly predicted to have similar porosity and
permeability.

The thin-section dataset results are shown in Figures 11 and 12. Only one thin-section sample was
analyzed for the purpose of our discussion here so that only two rows of images are shown. The first row

Figure 8. Comparison of the porosity of a query image and the top three ranked images retrieved in the
thin-section dataset. (a) and (b) are cross plots of porosity of query images and the top3matching retrieval
images. (c) and (d) are histograms to display the cross plots in terms of distributions. Similar to the results

in the 2D micro-CT dataset, our DSNN in (d) has a higher peak at zero.
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(green box) represents the top three retrievals from the same reservoir. The bottom row (blue box) includes
the top three retrievals from different reservoirs in our database. One slice of reservoir “U” is used as query
(Figure 11). Based on the absolute ranking from the retrieval, both the vanilla ResNet-34 and our DSNN

Figure 9. Qualitative retrieval results with reservoir E2 on 2D micro-CT dataset. Vanilla ResNet-34
(yellow) vs ourDSNN (purple). por and perm are lab-measured porosity and permeability. por0 and perm0

represent predicted porosity and permeability from DSNN.

Figure 10. Qualitative retrieval results with Reservoir K on 2D micro-CT dataset. Vanilla ResNet-34
(yellow) vs our DSNN (purple).
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generally retrieve similar rock samples from the same reservoir. The key difference between the two
networks is seen in the blue box (second row; top three retrievals from different reservoirs): The vanilla
ResNet-34 predicts rocks from reservoir D as the top analogs, whereas our DSNN predicts reservoir Was
the closest analog for reservoir rockU. ReservoirW (but not reservoir D) is known to have a similar degree
of rock compaction and range of rock properties as reservoir U. This confirms that our DSNN is able to
capture attributes that identify petrophysically similar rocks from different reservoir. The retrieval
performance is improved by adding a second Siamese network with a regression module and by training
with both image and metadata simultaneously.

Figure 12 shows the same analysis as in Figure 11 but for a query image from reservoir D. The vanilla
ResNet-34 predicts reservoir U as one of the top three images retrieved from different reservoirs (blue
box). However, the two rock images from reservoirs D andU are not only different in porosity but are also
dissimilar in texture and mineralogy. The images retrieved from our DSNN are consistent with the known
rock physics.

5. Conclusions

We propose a novel double Siamese network for content-based image retrieval of industrial materials
images in the form of “digital rocks.” The performance-limiting challenge is the low number of available
labeled images for supervised learning. To still maintain high-capacity networks without overfitting, we

Figure 12.Qualitative retrieval results for reservoir D on the 2D thin-section dataset. Vanilla ResNet-34
(yellow) vs our DSNN (purple).

Figure 11.Qualitative retrieval results with reservoir U on the 2D thin-section dataset. Vanilla ResNet-34
(yellow) vs our DSNN (purple). por is a lab-measured porosity and por0 represents porosity predicted

from DSNN.
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leverage pretrained ResNet-18 models to warm-start the training process. We also augment the training
loss by incorporating prior knowledge in the form of physical parameters, that is, porosity and perme-
ability.We demonstrate superior empirical performance for image similarity through the domain standard
map@k metric. Our approach also allows for estimation of metadata from images, and we observe
excellent predictive power in terms ofR2.We present a sample of qualitative search results, demonstrating
the ability of our DSNN to provide relevant and impactful image retrieval results. Future work includes an
extension to full 3D, that is, to using 3D images of rock samples and using 3D kernels in the neural
network. Permeability prediction could thus potentially be improved because its volumetric nature cannot
be captured completely with 2D kernels. Our novel approach has the potential to replace direct computer
simulation of physical properties in digital industrial materials images with orders-of-magnitude faster
direct prediction.

Pseudo code of our proposed DSNN on the training process is shown below.

Algorithm 1 Pseudocode for training the double Siamese Neural Network. See Figure 1 for the
diagrammatic representation.

I: Pairs of input images XA,XBð Þ, image similarity-based label y, metadata similarity-based label y’,
sigmoid σ, pairs of metadata label ymetaA,ymetaBð Þ, loss balancing term α¼ 10, number of iterations i
1: for 1 to i do
2: h

!
1 ¼ f 1 XAð Þ, h!2 ¼ f 1 XBð Þ ⊳ Feature extraction via backbone network f 1

3: h
!
3 ¼ f 2 XAð Þ, h!4 ¼ f 2 XBð Þ ⊳ Feature extraction via backbone network f 2

4: w!1 ¼ ∣h
!
1� h

!
2∣,w

!
2 ¼ ∣h

!
3� h

!
4∣ ⊳ Calculate feature absolute difference

5: w!¼ softmax w!1kw!2

� �
⊳Concatenate two vectors to generate two scalars s1,s2

6: w!
0
1 ¼ s1 �w!1,w

!0
2 ¼ s2 �w!2 ⊳Gating feature vectors

7: z¼FC w!
0
1 +w

!0
2

� �
=2

� �
⊳ A final output with late fusion

8: z1 ¼FC w!1

� �
⊳A final output frommodel f 1

9: z2 ¼FC w!2

� �
⊳ A final output from model f 2

10: Lclf ¼BCE y,σ z1ð Þð Þ+BCE y � y0,σ zð Þð Þ+BCE y0,σ z2ð Þð Þ ⊳ Apply BCE loss for classification

11: Lreg ¼ SmoothL1 ymetaA, h
!
3

� �
+ SmoothL1 ymetaB, h

!
4

� �
⊳ Apply SmoothL1 loss for regression

12: L¼Lclf + αLreg ⊳ Total loss function for backpropagation
13: end for
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