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INTRODUCTION

Risk Theory for Life Insurance is simplified by the fact that the
distribution T (x) of claim amounts x approximately coincides
with the distribution of "Risk sums" (not exactly, owing to differ -
aences in the claim frequency with age and actual state of health),
ond this distribution is comparatively stable *).—The dependence
on the claim frequency is eliminated by the introduction of a new time
variable, and the system reduced to a (stationary) Poisson Process,
which should be valid at least for large risk systems and for the
total Life branch for a moderate sequence of years.

In almost all non-life branches, partial claims will dominate and
*F (x) can only be determined by risk statistics, leaving a certain
space of indetermination, in particular for large claims and for
mediumsized statistical risk groups.

In my previous analyses, in particular New York 1957, interest
has been concentrated on traffic and motor car insurance, where the
risk depends on cars insured and on the meeting traffic (including
road conditions). In one year the same car can be involved in many
accidents and double claims (=collisions) are rather frequent.—
According to my experience, this system is best represented by a
sequence of single and double risk situations in time (for individual
cars or for risk groups).

Analysis is simplified for Fire Insurance (and many other non-life
branches), because the risk system is composed of mostly independent
insurances (or risk objects), which are best described by the ordinary
Individual Risk Theory.

In the following text, I will try to give methods and formulas,
which are the result from many years of practical risk analysis and

*) I have conserved the notation Y(#) from New York 1957 m order to
simplify eventual comparisons.
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studies in risk statistics. In particular, I will try to prove that
numerical analysis in Individual Risk Theory is almost as simple
as in Collective Risk Theory, although the risk system is non-
stationary and non-homogeneous.

THE RISK MODEL

Individual Risk Theory analyses a finite system of Risk Objects,
representing insurances or part of insurances.

Every risk object is characterized by some parameters, representing
tariff classes and well-defined statistical parameters. In analysis,
however, continuous parameters are always reduced to risk intervals,
owing to the fact that risk statistics are always limited to a fairly
small number of risk groups or risk classes. Further subdivision
will lead to diffuse, figures, where the stochastic error will generally
exceed figures obtained by statistics.

Claims are generated from these risk objects under the following
Hypotheses: (i) For every fixed period—in particular for every
insurance year—and for every risk object (i) there exists a well-
defined probability (pi) for the occurrence of one claim and in case of
a claim occurred also for the distribution ^¥i(x) of the claim amount (x).

(2) All claims in fire (and other non-life branches) are positive (x
> 0) and uniformly bounded.

(3) The corresponding probability for two, eventually three, claims
(p»2 P»3 ^iz{x) ^hi*) is small in comparison with p; and is often
neglected.

(4) Contagion from neighbouring risks is included in pi—if this
risk is insured in the same risk system there will be a small error or
correction for number of claims but the claim amount is given correctly.
Otherwise risk objects are independent.

From this system follows that individual risk theory is con-
structed with a minimum of hypotheses, in principle reduced to
the existence of a definite probability for claims and claim amounts
for each individual risk object, and for every statistic period.

This existence is proved or at least made extremely plausible, if
we start from the modern concepts of physical science and neglect
the problem of free will. In this case the probabilities will exist
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as definite probabilities at the beginning of each insurance year.
On the other hand, the risk for each individual risk object for a
sequence of time intervals will oscillate and evolve with an unknown
trend. Evidently the system is well defined, but not stationary, and
probably the risk in fifty years will be radically changed.

Even if we admit free will, most arbitrary changes will occur at
definite times before the corresponding risk situations, for example
choice of new tenants in a house insured. In that case definite
probabilities will still exist before claims, although not at the
beginning of the insurance year.

Finally, remaining indetermination might be expressed by an
error term Q', similar to the term Q which is analysed in a following
section as an effect of inhomogenity.

COMPARISON WITH RISK STATISTICS

In most cases risk statistics are analysed by punched cards,
with one card for each period and risk object insured, and one card
for every claim occurred. These cards are divided into a series of
risk groups by tariff classes and eventually some additional risk
parameters, and the statistic material takes the form

Risk classes and year = a (3 y 8 (=indices)

Risk objects within a risk class, number = N
total sum insured = S

Claims occurred d: o number = n*
individual amounts = XJ* (j = i,. .«*)
total amount = y* = 2 xj* ,,
approximate distribution = *F* (x).

Derived quotients: loss frequency = <p* =n* /N in °/00

mean value = x* = y*/n*
risk premium = y* = y*/N
d: o relative = q* = y*/S in °/oO

where * signifies statistical values = values a posteriori.

For an independent system of risk objects (within the risk group
(a p y 8) the corresponding mean values a priori are expressed by

n = 2 pi n • W (x) = S ?i Wi{x) ; = i,2,...Na(3y8

y = 2 pj • Xi where X{ = J x d T» (x)
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Observe that W (x) represents the mean conditional distribution
of one claim once a claim has occurred. The distributions of n and
y are obtained by more complicated methods, C/6 (y).

Inversely figures from risk statistics represent approximations
of risk figures which can be used as a basis for risk analysis.

This fact explains, why analysts with extensive practical ex-
perience, always accentuate the mean values or a priori values

n, x, y = n . x, VP (x) and »*, x*, y* = n* . x*, W* (x)

as the principal object for risk statistics, and also for an independent
system that, when joining arbitrary risk groups,

N, S, — n, y = nx, n . W (x), — n*, y* = n* . x*, n* .W* (x)

are additive.

By this comparison we have defined the principal object of risk
theory as

a) the determination of the distribution of total claim amount
0(y) from n and Y {x).

b) aids in the analysis of risk structure from statistical figures
for a system (a (S y 8) of risk groups or risk parameters.

QUESTION OF INHOMOGENITY

Risk theory is simplified if we assume that statistical risk classes
are homogeneous, and this hypothesis is reasonable in preliminary
analysis. A direct analysis of homogenity, however, is possible in
branches with a large claim frequency, say, ioo °/00 per annum or
more, in particular motor car and accident insurance—simply by
comparing the relative frequency of risk objects withno, i, 2, 3, etc.
claims in the same period (year) with the common Poisson distribu-
tion. Different figures have been published from Sweden, Germany,
USA and other countries, proving an inhomogenity, more or less
similar to my own figures for motor car

75 % with frequency = cp0, 24,5 % with 3.cp0, 0,5 % with 9 > 1.
In some analyses the influence of the last group (=very bad

risks) covers an important part of the total risk volume (=claim
amount).

In fire insurance where the claim frequency for a risk group
varies from 1 °/00 to, say, 10 °/00, a direct analysis seems impossible.
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On the other hand, logical analysis of a well-defined risk group—
say one-family houses—makes it extremely possible that the risk
will vary with small differences in construction and still more with
inhabitants and their manner of living. Assuming a large group
of 10.000 similar houses with the claim frequency i °/00 and an
(unknown) small group of ioo houses of very bad risks with the
frequency ioo °/oO, both will lead to an average number of 10
claims a year. Evidently stochastic variation of number and amount
of claims is strongly influenced by a small number of bad risks.

Probably still more common is the system, where most risk
objects are much better than the mean risk = i to 2 °/00, and this
frequency generated by a fairly small number of second rate risks.

From these examples it is easy to derive a measure of inhomogenity.
With the same notations as above we have for the analysed risk
group of N objects

2 p; = « ~ < 2 p»2 < n2 (O < 9i < i)

and putting 2 p;2 = «2. Q < n2 jL (L = integer) Q represents an

exact and L an approximate measure of inhomogenity. At the same

time 2 pi. p?- = J (n2 — 2 p;2).
t>i

As a quadratic measure Q has some properties in common with
the variance, although the decrease with growing material is less
regular, owing to the influence of very bad risks.

We might also observe that a priori risk values should be regarded
as (unknown) constants, and consequently the maximum and mini-
mum of the variation und.er the condition Q (or L) is well-defined
and possible to calculate—contrary to a2 which only gives limits
for mean values and no information on exact variation for some
few "stochastic experiments".

Individual risk theory—reduction to standard distributions:

An independent system of risk objects can be analysed by for-
mulas similar to generating functions.

The combined risk for number of claims n is expressed by the
following formulas, where the coefficient of X* expresses the pro-
bability of exactly k claims.
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n
(An interesting fact is that these formulas can be derived by

elementary probability theory).
The successive coefficients Bk are symmetric functions of p»

and all pi are positive.
In previous papers (New York 1957) I have analysed the extrema

of symmetric functions of positive variables under the conditions
M N

S # = w'1; 2 q? = n'2 .Q < n'^jL' (L' = integer)
i - 1 i = 1

and proved that maximum is attained for the system with maximum
symmetry

q'i = n'jN (i = 1,2,3,. • -N)

and minimum is obtained for the system with maximum asymmetry

q'i = n'\L for i < L

q'i = O for i > L
By this theorem further analysis is reduced to two homogeneous

binomial systems with the claim frequency

?(i) = w'/iV and q{2) = n'\L

respectively. For a large risk group (N large) the upper limit is
approximately equal to the ordinary exponential or Poisson distribu-
tion.

The approximation error depends on the lower limit which depends
on the measure of homogenity {=L), or on the estimate of the degree
of inhomogenity. For the total system (or total fire branch) utilized in
ruin problems—in particular the question of an addition to pre-
miums for safety—L might be estimated from the risk frequency
for different risk groups with some estimated additions.

The corresponding analysis of the distribution 0(y) for the total
sum of claims starts from the analogeous formula

n ((1 — P i ) + x Pi*) wt (x)

where, however, products of distribution functions, e.g.
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Yt (*)* Yj{x) = }V< (*-') <* ^; W = / %• M) <* %• W
- • 0

should be calculated by convolutions=asterisk products,—or even-
tually *Fj (x) are replaced by the corresponding characteristic
functions.

The extremum theorem is still valid if we substitute

£ Pi Yi (x) = n(x) = n .Y {x) for 2 Pi = n

and 2 p8
2 Yi (x)* Y< (*) = [n (*)• « (*)] . Q (x)

^n{x)*n{x)jL' = n*.W {x)*W {x)/L for S Pi
2 < w2 (? < ^'2/Z-'

leading to the same results. The binomial distributions take the
form

{(i - p ) + X p* Y (x)f w i th p = | ; Y (x) = S p t J ' W

and K = N or K = L.

In the further analysis the upper limit will lead to Bessel functions
and the lower limit to degenerate Bessel functions.

Individual risk theory—approximation of Y (x)

In this section analysis is restricted to homogeneous binomial
distributions—or more restrictively to the limit distributions =
exponential or Poisson distributions.

Starting from the well-known formulas
X

xm xn r tm (X — t)n
 xm + n + lm xn r

— * — _
i! n! J

m! n! J m! n! (m -f- n + i ) /
0

f%m \ IX^ \ C tm (x • t}**1 f t*M (x i f \ n
l—e-x\*l— e-x\ = —K——-— e-'-te-t) ^ ^ ^ —L_^—-L dt
\m! j \n! ! J mi n! J m! n!

0 0

it seems well-founded to call these functions "fundamental functions
for the operation of asterisk multiplication or convolution".
In some researches the slightly more complicated function

xm [z—x)n .
—: ;— is also utilized.
ml n!
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In the following researches *F (x) is normalized in the inverse
sense, so that T(oo) = o and Y(o) = i

The above observation makes it extremely probable that calcula-
tions should be simplified if claims distributions W (x) are approxi-
mated {and equalized) by exponential polynomials (including the
degenerated form xm(z-x)n), and in my researches from 1950 I have
made extensive tests of this form, and also as an "extremal case"

of the Pareto distribution. Later I have abandoned Pareto, except
in the study of monetary changes, partly because for a system of
finite claims (x < Z) well approximating parts are separated by
steep drops, and partly because this "step curve" will give about
the same results as an equalized exponential curve, extended to
infinity (all insurance claims are uniformly bounded).

My own researches, extended to accident, sickness, third party,
"traffic" and motor car insurance seem to prove that except for
exceptional branches,

all distributions *F (x) determined from an extensive statistic
material can be approximated and equalized by an exponential

trinomial

jj/f A Q. & P]^* _J AA A ft o ,1*2 1 IM A
— fvii.-t , p-j £< ~| tv/i. o • |^2 ~T~ '^ • '^3

A -I-/4 4 - / 1 — T

with a relative error of some percent.

These words relative error are all-important for applications (for
the infinite branch "relative error" is exchanged to "relative
total error, as compared with claims amount for moderate
intervals in x utilized as subdivisions").
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In some cases the last term should include a factor xk.
Factor Av A2, A3 are of the same order of magnitude and n.Av

n . A2, n . A3 can be considered as partial numbers of claims.

The other principal form of exponential polynomials

(A1x
k + A2 xl + A3 xm) e~x

is less analysed but when applicable will lead to slightly simplified
calculations.

A practical example was given in my New York paper 1957 in
the form (traffic insurance).

7,86. W (x) = 2.83 . 0.046 . e~0MX + 1.46 . 0.35 . e-0-35* +1.73 .

. 1.04 . e~1MX -\- 1.84 . 3.31 . e~3MX (maximumdifference = 1-2%).

We might accentuate that coefficients in the exponents are well
separated (by a factor > 3). Consequently, the system is easily
calculated by successive approximation—the two first terms from
large claims, the last term from small claims while the third term
is very sensitive to correct adaptation.—Also the separate terms
characterize different intervals of x, which even can be identified as
different types of claims (Cf. New York 1957).

INDIVIDUAL RISK THEORY C\J COLLECTIVE RISK THEORY—transfor-

mation formulas for the system [n, ^(x)] —> 6 (x)]

The Poisson distribution is univocly characterized by either of
the following properties:

a) When two Poisson systems for arbitrary material or periods

x>' =

are joined, the two characteristic values n = mean value of
number of claims (= a priori number) and n . W (x) = mean
distribution of claim amount for a single claim multiplied by n,
are obtained by addition, y = n . x is also additive.

b) A Poisson system for an arbitrary period can be calculated by a
time-homogeneous system (based on the mean values n and
T (x) for this fixed period — although both change from
year to year).
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Assuming that one individual risk system has converged to the limit
(or Poisson) system (except for a determined error term), the trans-
formation from mean values a priori n and W (x) cv> ap-
proximate statistical figures—to the distributions of n and
y (=ztotal claim amount=sum of claims) is expressed by the well-
known series:

0(y) = e-« . i Yt F? (*)]** w h e r e F? (*)]** = [^ Ml'*"1'* *Y (*)

nk
where the first factor e~n . — expresses the probability of exactly k

claims and [*F (x)]k* the corresponding distribution of claim
amount (y = x).

Remark: This formula, combined with the following method of

calculation, represents my contribution to the excess problem with

exceptional number of claims or exceptional claims values—only I
find it very difficult to combine very small probabilities with any
reasonable explanation of practical consequences—probably values
should be interpreted as measures, which might be utilized in the
comparison of different re-insurance systems.

The transformation problem is easily resolved for the fundamental
functions, for example [n, (3 e'^x] is resolved by

= 6 (n, p, x) = p n . e'n~!ix . /„ (2 ]/^nx)

where Io (2 j/(3»#) = imaginary Bessel function of zero order.
Different forms of 8(y) are easily derived from this expression, also
the important distribution of claim mean value (= x).

In order to extend the transformation to exponential trinomials
we should observe that the Poisson system

[n, W (x) = A1 n . px e~^x+ A2n . p2 e~^x + A3 n . S3 e'^x]

is generated by joining three fundamental systems

Q (A1n;$1; x) 6 (A2n; 32; x) G (A3n; p3; x)
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proving that the joint distribution is expressed by

0 (A1 n; px; *) * 9 (A2 n; p8; *) * 6 (A3 n; p3; x)

This asterisk product is easily calculated for a series of values n by
Hollerith multiplier or by electronic calculators, and the program has a
form that will express the joint distribution 0 (x) as a function of x.
The complete table also contains a series of values of n. (This table
applied to Collective Risk Theory gives a solution for moderate
and large time intervals).

By this system / hope to have presented a (first) complete nu-
merical solution of the transformation problem

[n, W (x)] -+ 0 (y)

applicable uniformly for small and large values of n, for
approximate or exact Poisson distributions. (First communicated
NTA=to some Scandinavian actuaries, in 1956).

(I have always been interested in this problem because for me
it has seemed evident that the ordinary asymptotic formulas by
Esscher and others will always give a good approximation for a
very large system in the neighbourhood of the mean value, say for
m i a or even m ± 2a — and also, say, outside m ±: 6<r (=0).
Most applications, however, apply to small probabilities (0,01 to
0,0001) and in this space homogenizing is less advanced, and a small
absolute error is not sufficient to prove a small relative error.—
The question is easily tested by above exact methods).

SOME HINTS FOR NUMERICAL ANALYSIS

(1) As a first approximation of W (x)* we might use two exponential
monomials or fundamental functions, representing an upper limit
T + (x) and a lower limit T " (x). The final 6 (y) must lie between
8+ (y) and 0" (y). The resulting probabilities for differences in y
from the mean value y exceeding a fixed value, are often obtained
with quite acceptable precision.

(2) In most researches the statistic figures will give an approximation
ofY (x), which is more or less exact for small and medium sized x,
but uncertain for large x. In this case, we should introduce either a
variable factor (1 ̂  s) in the first term of the trinomial or else an
extra error term

A .e"01*'2 (=square root error).

25
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Representing the estimated upper and lower limits of the empirical
distribution curve by Y+(x) and T" (x), a corresponding error term
is obtained for 6 (y) and for any calculated "probability that the
error will not exceed a given limit".

(3) In particular if the first form of error term is utilized, the above-
mentioned error can also be expressed by a modified value of y
equivalent to an error

» (I ± 8l) X (I ± § ) \ + S2 OO £ (X)

The somewhat surprising result is, that errors in the empirical
values n, x and T (x) will enter in the final expressions in much the
same way—very comforting for the poor actuarial conscience

AIDS FOR STRUCTURE ANALYSIS, IN PARTICULAR FACTOR METHODS

American tariffs are often constructed in the factor form (e.g.
motor car and fire):

Starting from a short series of basic tariffs—calculated from the
total statistics for these tariff classes,—modifications in per cent

are introduced for quite a number of secondary "risk factors" or
parameters, and these in their turn are calculated from the joint
material of insurances, including the specified parameter. The
actual tariff premium equals this product for all actual parameters.

Probably, this "factor system" starts from the concept of mutually
independent risk factors. It is not evident, however, that this system
constitutes an equitable tariff system, although American risk material
should be sufficiently large to furnish equalized results for tariff
companies.

My analyses, however, for traffic and motor car in 1950, seemed
to indicate some factor dependence, and were developed to a method
for structure analysis in factor form, including numerical calculation.

Assuming, that risk statistics are produced by Hollerith cards in
the form (for notations vide previous section):

Na&ys Kfrs y*a3Y8 absolute and additive

<Pa3Y8 *«pYs Y*PY8 relative, non-additive

where eventually a = tariff, (3 = geographical district, y = car value,

https://doi.org/10.1017/S0515036100001896 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100001896


RISK THEORY AND STATISTICS IN FIRE INSURANCE 377

8=year, and that all parameters involve from 3 to 10 alternatives,
we will indicate sums according to one or more parameters by ex-
cluding the corresponding indices.

We will now introduce the factor hypothesis in the form

<?U-t& °° <P«3Y8 = 9 • A* • B& • cv • Ds 9 = n*lN

and eventually

Y^s ~ Y«BY. = T • K. B; . c;. D-S y = y*/iv
Calculations are now performed by successive approximations,

or as I prefer to say "par la me'thode de balayage de M. Poincare."
Loss frequency and mean value (or risk premium) are here considered
as a field of crossing forces in the field (a, (3, yy S), emanating from
the four margins in a (3 y S respectively.

As first approximation we might take the American margin
system, identifying Ax B& Cy Ds etc with their margin values. The
obtained approximation, however, is not very good for the simple
reason that the basic distribution of Na^s is asymmetric and
non-stochastic. (Values might be improved by the following method)

The basis for successive approximation is the previous observation
that «*3Y8 and y*gyS are the only additive values. Consequently,
all calculations are performed not on relative but with absolute
values=any intermediate factor table (i) is utilized to calculate the
resulting approximations in n and y.

»«OC3YS = ^ B Y S • <P • iA* • iB$ • iCy • iD& c o m p a r e d w i t h W* 3 T S

iVa^s = <3YS • x • iK • *Sp . iC'y . iD's compared with V*PT8

The resulting approximation, say in a, is tested by

i»a c\2 w* (a = 1,2,3,....)

iVx^y! (« = 1.2,3,....)

These sums furnish improved factors in a

i + 1 ^ a ledaing to i+1na&yS = Na?yS . 9 . i+1Ax . iB^ . jCY . iDs

i+1A'a leading t o ; + 1ya3YS = < 3 Y 8 . x . i+1Ax . tB& . {Cy . »Z)8
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With these improved values of t + 1»apYg and » + iyapYS the same
adjustment is made in (3, then in y, then in 8. After a cycle of four
steps = 1 + 4, the approximation is much improved.

Starting from "all factors = i", calculations made by Hollerith
cards will generally be complete in two or three cycles, as further
adjustments are irrelevant.

This definite factor system is utilized for further struc-

ture analysis:

(1) The fitting is tested by the method of least squares applied to all
minor groups in (a (3 y S) and also to some major groups.

Previously, I have proved that the relative error in numbers n*
is expressed by (i ± I/Vw) and relative error in amounts y* by (i
i v/j/w), where for branches with small uniform risk sums ycv^j
and for branches where a large proportion of claim amount derive
from very large claims v co 6. Utilizing the corresponding ap-
proximate variances the %2 measure can be calculated.

(2) By the system of calculation the following equations are satisfied:

The goodness of fitting is further tested by making the same
comparison on the two-parameter margins a(3 ay <x& (3y |3S y8.

This test is most important, because it gives a reliable answer to
the question if risk structure is multiplicative and if a factor tariff is
equitable. (If not, some few parts of the risk system are often
approximately multiplicative. Analysis is often improved if ordinary
claims and excess (=large) claims are analysed separately).

(3) The factor system calculated for several years (8) should
furnish a very good representation of the a priori risk. Starting
from this system we have an opportunity to reintroduce stochastic
tests, which were previously meaningless owing to the non-
stationary character of the risk system.
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ELEMENTARY FACTOR ANALYSIS

Sometimes the tariff system is recently revised by statistics.
In that case risk factors from the tariff hypothesis might be intro-
duced as "risk a priory" or better expected claim frequency and
risk premium.

Comparing these "expected values" for all risk groups (a^yS),
with claims occurred we have an additive system, and although
risk for minor groups is uncertain, the risk for different major groups
within (a p y S) will lead to acceptable tests.

This method, however, is somewhat double-edged as non-occurred
large claims might have a large influence on the comparison.
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