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1. Introduction. An algebra A = (L; v, A, *, + , 0, 1) of type (2,2,1,1,0,0) is a
doublep-algebra if (L; v, A, 0, 1) is a (0, l)-lattice in which * and + are unary operations
of pseudocomplementation and dual pseudocomplementation determined by the respec-
tive requirements that x^a* be equivalent t o x A o = 0 , and that x s=a+ if and only if
JC v a = 1.

For any double p-algebra A, the collection <I> of all pairs (a, b)eA2 which satisfy
a* = b* and a+ = b+ is a congruence, called the determination congruence of A. An
algebra is regular if the determination congruence of A is the diagonal of A2; according to
Varlet [12], the class R of all regular distributive double p-algebras is a variety
determined by the identity equivalent to x AX+ ^y v y*. The variety R is congruence
permutable, congruence regular, and all compact congruences of its members are
principal (cf. [12], Katrinak [5], or Adams and Beazer [2]).

For any element a of a double p-algebra A and for any integer n 2=0, define a"(*+)

recursively by aO(*+) = a, and a("
+1>(*+> = «"(*+)*+. Algebras in the variety Bn denned by

the identity x(n+1)(*+) =x"(*+) a r e said to be of range n; since b zA is complemented if
and only if b*+ = b, it follows, for instance that Bo is the variety of Boolean algebras (cf.
[6]). Whenever a variety V is contained in Bn for some n s= 0, we say that V is of bounded
range.

A category C is universal if any full category of algebras is isomorphic to a full
subcategory of C. For every monoid M, any universal category thus contains a proper
class of pairwise non-isomorphic objects X whose endomorphism monoid End(A') is
isomorphic to M (see [4] or Pultr and Trnkova [11]); consequently, any universal category
of algebras must contain arbitrarily large objects representing M in this manner.

We present the following two results.

THEOREM 1.1. The variety R of regular double p-algebras is universal.

THEOREM 1.2. No universal subvariety \ofRis of bounded range.

The question below arises naturally from these two theorems.

PROBLEM. Characterize universal varieties of regular double p-algebras.

It is perhaps interesting to note two related, if contrasting, results of [7]: the first
states that every group occurs as the full automorphism group of a regular double
p-algebra of range two, while the second shows that there exist (non-regular) finitely
generated universal varieties of distributive double p-algebras of range three.

Theorem 1.1 also provides the first natural example of a universal variety which is
both arithmetical and congruence regular, thus contributing towards Ervin Fried's inquiry
about the effect congruence properties of varieties may have on categorical universality.
This example can be reinterpreted in the variety of double Heyting algebras (cf. Adams
and Beazer [1] and Theorem 4.5 below).
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The underlying lattice of any regular double p-algebra is distributive (Katrinak [5]),
and this enables us to use Priestley's duality throughout the paper; this duality is briefly
discussed in the next section. Theorem 1.2 is demonstrated in Section 3, while the proof
of Theorem 1.1 constitutes the concluding section.

2. Priestley spaces. A triple Q = {X, x, =s) is an ordered topological space whenever
(X, ^ ) is a poset and (X, x) is a topological space.

For any Z c X define

(Z] = {xeX:3zeZ x^z} and [Z) = {JC e X : 3z eZ z =£*};

a set Z is decreasing if (Z] = Z, increasing if [Z) = Z, and clopen if it is both T-closed and
r-open.

An ordered topological space Q = (X, x, «s) is totally order disconnected if its clopen
decreasing sets create its order in the sense that, for any x, y eX such that x^y there
exists a clopen decreasing set Y c X such that y e Y and x e.Y\Y. Any compact totally
order disconnected ordered topological space is called a Priestley space. Any such space is
a compact Hausdorff space with a basis formed by all clopen convex sets and their
complements. It is also easily seen that, in a Priestley space Q, the sets (Y] and [Y) are
closed for any closed subset Y of Q.

For any distributive (0, l)-lattice L, let P{L) = (F(L), x, « ) be an ordered topologi-
cal space in which (F(L), =£) is the set F(L) of all prime filters of L ordered by the
inverse inclusion, and such that all sets {x e F{L): A ex}, {x e F(L): A $x} with A e L
form an open subbasis of x. The space P(L) is totally order disconnected and compact,
see Priestley [8].

For any lattice (0, l)-homomorphism f:L^>L', the preimage f~l(x) of any
xeP(L') is a prime filter of L, and the mapping /»(/): P(L')-> P(L) defined by
P(f)(x) =f~l(x) preserves the order and is continuous. This gives rise to a contravariant
functor P : D - * P of the category D of all (0, l)-homomorphisms of distributive
(0, l)-lattices into the category P of all continuous order preserving maps of Priestley
spaces.

When inclusion-ordered, the set D(P) of all clopen decreasing subsets of any
Priestley space P is a distributive (0, l)-lattice, and the inverse-image mapping g~} of any
P-morphism g : P'-*P restricts to a lattice (0, l)-homomorphism D{g): D(P)-> D(P').
This defines a contravariant functor D : P—»D.

Priestley's duality can now be described as follows.

THEOREM 2.1. (Priestley [8], [9]). The composites P°D and DaP are naturally
equivalent to the identity functors of their respective domains; the category D is thus dually
isomorphic to P. •

The claim below gives a useful separation property of all Priestley spaces.

PROPOSITION 2.2. If P = (X, x, =£) is a Priestley space and Y, Zc.X disjoint closed
sets, then there exists a clopen set Ac X such that ZcA and Y cX\A; if, in addition,
Y D (Z] = 0 then A may be chosen amongst clopen decreasing sets of P. •

For any ordered topological space (X, x, =s), let Min(A') and Max(A') respectively
denote the sets of all minimal or maximal elements of the poset (X, =s). For any YQX
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define Min(y) = (Y] n Min(A'), Max( Y) = [ Y) n Max(A'), and Ext(y) = Min(Y) U Max(y).
We write Min(;t) instead of Min({x}), and note that, in any Priestley space, the sets Min(jt)
and Max(jt) are nonvoid for every x eX.

The following theorem characterizes Priestley spaces forming the category dual to
that of distributive double p-algebras (cf. Priestley [10]).

THEOREM 2.3. / / P : D—* P is the functor assigning Priestley spaces to distributive
(0, l)-lattices and iff : L—* L' is a lattice (0, l)-homomorphism then

(a) L is a distributive double p-algebra if and only if (Y] is clopen for any clopen
increasing subset Y of P(L) and [Z) is clopen for any clopen decreasing subset Z of P(L),
and if this is the case then A* = P(L)\[A) and A+ = {P{L)\A\ for any clopen decreasing set
A^P(L);

(b) / is a homomorphism of distributive double p-algebras if and only if
/>(/)(Min(jc)) = Min(P(/)(*)) and P(/)(Max(.x)) = Max(P(/)(jt)) for every x e P(L');

(c) if L is a distributive double p-algebra then the sets Min(P(L)) and Max(P(L)) are
closed. •

Throughout the paper, any Priestley space satisfying (a) will be called a dp-space,
and any continuous order preserving mapping for which (b) holds will be a dp-map.

Elements x, y of a poset (A', =s) are connected if there exists a sequence x =
xn, Xi, . . . ,xn=y such that x, is comparable to xi+l for all i = 0, . . . , n — 1. Classes of
the equivalence formed by all pairs of connected elements, called components of (X, =s),
are maximal connected subsets of (X, =£). A connected poset (Y, =£) has diameter m
whenever m is the least integer such that any x, y eY can be connected by such a
sequence with n=£m; otherwise the diameter of (Y, =£) is infinite. Whether finite or
infinite, the diameter of any component C coincides with the diameter of Ext(C).

Let P = (A', T, =£) be a dp-space. For any subset 5 of X define D0(S) = S and, for
every fcs=0, recursively set Dk+t(S) = ([Dk(S))]; we write Dk(x) instead of Dk({x}).
Clearly, y e Dk(x) is equivalent to x e Dk(y) for any k 2=0. Observe also that Dk(S) c
Dk+\(S) for all k ^ 0, and that the component C(x) containing x e X is the union of sets
Dk{x) for k 5*0. Furthermore, noting that 2.3(a) implies that A*+ = ({A)] for any clopen
decreasing set AcX, we conclude that Dk{A) = Ak(*+) for all k 3= 0. Therefore the open
set U {Ak{*+): k 5=0} contains exactly those components of P which intersect A. From
X\A+* = [{X\A]), it similarly follows that the closed set f l {Aki+*): k 3=0} is the union
of all those components of P which are entirely contained in A.

PROPOSITION 2.4. The following are equivalent for any variety V of distributive double
p-algebras:

(i) V satisfies the identity ^("+1)(*+) = JC"(*+) for some n 5= 0,
(ii) there is a common finite bound on the diameters of all order components of any

P{L) with LeV,
(iii) all order components of every P(L) with Le\ are closed.

Proof, (i) =£> (ii). Assume that x and y are distinct minimal elements of a component
C of P(L), and let k be the least integer such that x e Dk(y). Then k^l, and x does not
lie in the closed decreasing set Dk_l(y). By 2.2, there exists a clopen decreasing set
B 2 At-i00 such that x e P(L)\B. Hence the set A = P(L)\[B) is disjoint with Dk.i(y),
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and x eA. From y e Dk(x), it immediately follows that y eAH*+\ while the definition of
A implies that y e Am(*+) only when m^k. Thus the diameter of C is at most 2n.

(ii)4>(iii). If a component C(x) has a finite diameter then C(x) = Dk(x) for some
k 5= 0, and the set Dk{x) is closed.

(iii)z£>(i). Assume that (i) fails; so that, for every n >0 , there exists an algebra
L n eV and some An e Ln for which A£+i)i*+)>An

n
(*+\ The product L = U(Ln :nS*0)

then contains the sequence A = (An : n ^ 0) such that ^<"+1)(*+) > /4«(*+) for an „ ^ i.
Consider A as a clopen decreasing subset of P(L) and define B* =/4(*~1)(*+)* fl

yl*(*+) for every k ^ 1. If Bk = 0 then D =i4(*~I)(*+)* satisfies D f l D + = 0 ; so that
D+^D* by the definition of the pseudocomplement. Thus D* = D+ since D*^D+

always holds. Hence D is a complemented element and /i*(*+)
 = /\(

k+l'>(*+) \s obtained in
contradiction of the choice of A. Therefore Bk¥=0 for every k>\.

Clearly Bk c Dk(A)\Dk^(A); so that Ck = Dk{Bk)C\A is a nonvoid closed set. For
any ceCk, there exists a set {x0, . . . , x2k) ^ P(L) such that *2/

s£*2/+i ^Xn+2 for
1 e {0, ...,k — 1}, xo = c, and x2keBk. Clearly, XytB, whenever /=£& and, conse-
quently, c 6 C,-. Therefore any finite subfamily of {Ck : k 5= 1} has a nonvoid intersection;
since F(L) is compact, there exists some a e f l {Q : A: s= 1}. Consequently, for every
fc^l, the component C(a) intersects Bk. Since {Ak(*+): k^l} is an open covering of
C(a) and flfr+1 n Ak(*+) = 0, the component C{a) cannot be closed. •

Recall that a double p-algebra A is regular if a+ = b+ and a* = b* hold for a, 6 6^4
only when a = b; this is the case if and only if a A a+ =£b v 6* for all 0,6 6/1.

LEMMA 2.5 (Varlet [12]). A dp-space (X, r, =s) is the Priestley dual of a regular
algebra if and only if Ext(X) = X. •

We conclude the preliminaries with a simple observation on dp-maps between duals
of regular algebras.

LEMMA 2.6. / / Xt are nonvoid connected posets satisfying ExtpQ = Xj for i = 0, 1
then any order preserving mapping f :XO-^XX satisfying /(Ext(;t)) = Ext(/(x)) for all
x eX0 is surjective.

Proof. Let x ef(X0) be arbitrary. For any y e Xlt there exists a one-to-one sequence
JC = x0, xu . . . , xn =y such that xt is comparable to xi+1 for / = 0, 1, . . . , « . If JC, ef(X0)
then x, =/(z) for some z e Zo; but then jt,-+1 e Ext(x,) = Ext(/(z)) =/(Ext(z)) ^f(X0). A
simple induction yields y ef(X0). •

3. Regular varieties of bounded range. To show that no regular (quasi-)variety V
of bounded range is universal, we exhibit a finite monoid which is not isomorphic to the
endomorphism monoid of any regular algebra of bounded range.

Let M be the freest monoid generated by {/, g) in which / is a left zero and g is an
invertible element of order three; that is, M = {id, g, g2,f, gf, g2f}, and fm=f for all
meM. We aim to prove that M cannot be isomorphic to the monoid of all dp-maps
h:Q-*Q for any dp-space Q = (X, r, *=) whose order components are all closed and
which satisfies Ext(A') = X. In view of 2.1, 2.3, 2.4 and 2.5, this will show that the dual of
M is not isomorphic to the endomorphism monoid of any regular distributive double
p-algebra of bounded range. More precisely, assuming that M is contained in the monoid
End(g) of all dp-maps of Q into itself, we propose to show that End(Q) contains an
invertible element of order two.
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If M is a submonoid of End(Q) then there exists some a e Q for which g(/(a)) =£
f(a); let C denote the order component of Q containing b =f(a). F rom/ 2 = / , it follows
that f(b) = b and, by 2.6, the image of the restriction / \ C of the dp-map / is the whole
component C; since / is idempotent, f(c) = c for all c eC.

The image g(C) of C is another order component of Q. If g(C) = C then g(fc) e C
and, since/is the identity on C, we obtain g(b) = f(g(b)) = f(b) = b, which contradicts
the choice of b e Q. Therefore g(C) n C = 0 and, because g is an automorphism of order
three, the components C, g(C), g2(C) are pairwise disjoint.

Since these three components are closed in Q, from 2.2, we obtain a clopen
decreasing set A such that CcA and g(C)l)g2(C)cX\A. If the range of the double
p-algebra dual to Q is n then the clopen set B =An(+*)cA is a union of order
components of Q which includes the component C. Thus the set D = B\(g(B) \Jg2(B))
is a clopen union of order components of Q, and the sets D, g(D), g\D) are pairwise
disjoint; if i, j e {0, 1, 2} then g'(C) c g'{D) just when i =j.

Define a mapping h :Q-+Qby h \ D =g \ D, h \g(D) = g2 \ g(D) and h(x) = x for
x e X\(D U g(D)). Since the three sets D, g(D) and I\(Z)Ug(D)) are unions of
components of Q and form a clopen decomposition of Q, and because g is a dp-map, the
mapping h is continuous and satisfies /j(Ext(jc)) = Ext(/i(jc)) for all xeX. Clearly,
h2(x) = x for all JC e X. Altogether, h is an involutory dp-map of Q onto Q.

This completes the proof of Theorem 1.2.

4. The variety of regular algebras. For every n 2* 3, define an ordered space An on
the set 2n = {0, 1 , . . . , 2n - 1} by

^2, ^ «2i©i =* a2,©2 for all i e n,

where © denotes addition modulo 2/i. Thus /!„ is an n-crown with Min(/ln) = {a^ : i en}
and Max(v4n) = {a2i©i: i en}. Equipped with the discrete topology, An is a dp-space of a
regular algebra.

Let Z be the set of all integers and let B = {bj : / eZ} be ordered so that

bv^bv+i ^b2l+2 for all j 'eZ, and

The connected poset (B, =£) is the disjoint union of Max(B) = {621+1:»e Z} with
Min(fl) = {&2,: i e Z}.

LEMMA 4.1. Let f be an order preserving mapping such thatf(Ext(x)) = Ext(/(x)) for
every x in the domain off. Then:

(a) iff :Am—>An then n divides m,
(b) iff :B->B then / = idfl.

Proo/. Let / : /4m-»•>!„ be such a mapping; since it is onto by 2.6, we have
Having renumbered elements of An as needed, we may assume that f(a0) = a0 and
f{ax) = ai. Since Mm{ax) = {ao,a2} in both posets, we have/(ao) = ao and/(a2) = a2-
However, Max(a2) = {au a3} in either poset again, and/(a3) = a3 follows. Continuing
inductively, we find that f{ak) = ar(k) for all k e 2m, where r(k) is the remainder of
k (mod 2n). Therefore 2/n = 0 (mod 2/i), that is, n divides m and (a) is proved.
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To demonstrate (b), assume/ : B-»B. Then / i s onto by 2.6. Since Min(6) has more
than two elements only when b = b3, it follows that/(Max(B)\{63})cMax(B)\{b3} and
hence f(b3) = b3; dually, f(Min(B)\{b0}) c Min(B)\{60} and f(b0) = b0.

From bo^b15ib2^b3, we thus obtain bo^f(bi)^f(b2)^b3. These requirements
are satisfied only when f(b1) = bl and f(b2) = b2. Therefore {b0, b2lf(b4)} =
f(Min(b3)) = Min(b3) = {bo,b2,b4}, and f(b4) = bA follows. Hence {&3,/(fc5)} =
Max(fe4) = {ft3, fe5} yields f(b5) = 65. Continuing inductively for k ^ 6 , we conclude that
/(6y) = fty for all j 3= 0. An analogous argument shows that f(bj) = bj also for j =s — 1. •

The posets described above will be used to construct a full embedding of the category
L(2) of topologized (0, l)-lattices with two unary operations [3] into the category of
Priestley spaces dual to algebras from R.

Following [3], (X, T, V, A, a, p, 0, 1) is an object of the category L(2) if and only if
(X, T) is a compact totally disconnected space,
{X, v, A, 0, 1) is a (0, l)-lattice,
a, P : X—* X are continuous mappings,
v, A : X2—* X are continuous with respect to the product topology of X2.

The class of morphisms of L(2) is formed by all lattice (0, l)-homomorphisms that are
continuous with respect to the given Stone topology and preserve the unary operations a
and/3.

The fourth section of [3] demonstrates the universality of the category L(2)opp dually
isomorphic to the category L(2). To use this fact in proving the universality of the variety
R of regular distributive double p-algebras, we need to construct a full embedding <I> of
the category L(2) into the category of all dp-maps between dp-spaces dual to members
ofR.

For any object L = (X, x, v, A, a, P, 0, 1) of L(2), the underlying poset F(L) of
<I>(L) will be the disjoint union of suitably assigned copies of posets An and B.

For notational convenience, for each / e {1, . . . , 8}, let Pj: X2—*X denote the map
defined for all (x, y) e X2 as follows.

Pl(x,y)=x, P2(x,y) = y,

P3(x,y)=xs/y, P4(x,y) = x Ay,

P5(x,y) = a(x), P6(x,y) = p(y), and

P7(x, y) = 0, P8(x, y) = 1.

The continuity of all operations of L(2) implies that, for every 7 e { 1 , . . . , 8}, the set
Pj\X') is open (resp. closed) in X2 whenever X' c X is open (resp. closed).

Next we define the ordered space 3>(L) corresponding to an arbitrary object
LeL(2).

For each ie 10 = {0,1,... ,9}, let A(i) be the p(/)-crown Ap(i) selected so that p(i)
are pairwise different odd primes. In what follows, the union X2 U X is assumed to be
disjoint.

Let F(L) = FA(L) U FB(L), where

FA(L) = U{XX {i} x ,4(0 : i = 0, 1 , . . . , 8} U X2 x {9} x ,4(9),

FB(L) = (X2UX)x {1, . .. ,8} x B.
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The partial order « of F(L) is that directly inherited from the posets A(i) and B; that is,
p =£ q in F(L) if and only if p — (z, i, c), q = (z, i, d) and c =£ d in B, or c « d in one of the
crowns /l(i") with / e {0, 1, . . . , 9}. Hence every order component of F(L) is order
isomorphic to the countable poset B or to one of the selected prime crowns A(i).

The space FA(L) is thus the disjoint union of nine copies of the compact space X and
a single copy of the space X2 compact in the product topology; therefore FA(L) is
compact. Our intention is to conserve this compact topology p of FA(L), and extend it to
F(L) in a manner which reflects the action of the operations of L. Note that the subspace
FB(L), a disjoint union of countably many copies of the compact space X2 U X, is locally
compact.

For any i e 10 and each a = ake A(i), define

B(i, a) = {bqeB:q = k (mod 2p(/))}

and, for every neZ, set

Btfn) ={bq:q^ n), B(\n, i, a) = B(]n) f~l B(i, a),

B([n) = {bq:q^ n), B{[n, i, a) = B([n) n B(i, a).

Clearly,

n) = \J{B(\n,i,a):aeA(i)} and B(in) = \J{B(in,i,a):aeA(i)}-

For any given i e 10, the sets B(i, a ) c B are unbounded and form a decomposition of
B. In fact, the mapping y, : B—*A(i) defined by

y~l{a} = B(i, a) for all aeA(i)

is easily seen to satisfy y,(Ext(b)) = Ext(y,(6)) for all b e B\{b0, b3}; the comparability
bo^b3 constitutes the only reason why y, fails to satisfy y,(Ext(6)) = Ext(y,(fe)) for all
beB.

Further, for any subset C of F(L), each i e {0, . . . , 8}, and any a e A(i), define

X(C, i,a) = {xeX:(x,i, a)eC);

analogously, for any a eA(9), set

X\C, 9, a) = {(x, y)eX2: ((*, y), 9, a) e C).

Finally, for b e B and / e { 1 , . . . , 8}, define

X(C, j , b) = {xeX: (x, j , b) e C), and

X\C, j , b) = {(*, y)eX2: ((x, y), j , b) e C).

The topology a of F(L) is defined by the requirement that its open basis consist of all
C c F(L) satisfying the conditions (a)-(f) listed below.

(a) X(C, i, a) is open in X for all a e A(i) with i e {0, 1, . . . , 8}, and X2(C, 9, a) is
open in X2 for all a e A(9),

(b) X(C, j , b) is open in X and X\C, j , b) is open in X2 for every j e { 1 , . . . , 8} and
every beB,
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(c) for every y"e{l, . . . , 8 } and each a 6-4(0), there is some n e Z such that
X(C, 0, a) x {/} x B( |n , 0, a) c C,

(d) for every y e { l , . . . , 8 } and each aeA(j), there is some m e Z such that
I (C, / , f l )x{/}xB( |m,/ ,a)cC,

(e) for every ye{l, . . . , 8} and each aeA(j), there is some meZ such that
PJ\X{C, j , a)) x {/} x B([m, j , a) c C,

(f) for every ye{l, . . . , 8} and each a 6/4(9), there is some neZ such that
X\C, 9, a) x {/} x B(\n, 9, a) c C.

Since all properties (a)-(f) are satisfied by C D C whenever C and C" satisfy them,
the topology a on F(L) is well-defined. Also, FB(L) is a-open, while FA(L) is a compact
subspace of F(L) because it is a (disjoint) union of finitely many compact spaces.

Let ko<0 and kx >3 be integers. It is routine to verify that, for any clopen X' c X
and any clopen Y c l 2 , the following subsets of F(L) with p^k0, m,n^ku and
y e {1, . . . , 8}, are a-clopen and form an open basis S(k0, kx) of a:

X'x{j}x{b} and Yx{j}x{b} for any beB,

X' x {j} X ({a} U B(]m, j , a)) U P~\X') x {/} x fl(R y, a) for a e,4(y),

A" x {0} X {a} U X' X {1, . . . , 8} x B(in, 0, a) for a e ,4(0),

yx{9}x{f l}uyx{ l , . . . , 8}xB( |n ,9 ,a ) for aeA(9).

LEMMA 4.2. Let c\{W) denote the o-closure of W c F(L), and to <5(W) = cl(W)\W.
Then the following clauses list 6{W) for any n e Z, j e {1, . . . , 8}, x e X, and (x, y) e X2.

(A) (5(W) = {(*, 0, a)} w/ien W = {x} X {/} X B(|n, 0, a) and a e .4(0),
(B) 8(W) = {(JC, y, a)} wnen W = {x} x {/} x fl(|n, y, a) fl«d a € A(j),
(C) 6(W) = {(Pj(x, y), j , a)} when W = {(x, y)} x {j} x B{]n, j , a) and a eA(J),
(D) 6(W) = {((*, y), 9, a)} when W = {(*, y)} x {/} x B{[n, 9, a) and a e A(9).

Proof. Straightforward from (a)-(f).

LEMMA 4.3. The ordered space 3>(L) = (F(L), o, =£) is compact and totally order
disconnected.

Proof. To demonstrate compactness, assume F to be a covering of 3>(L) by basic
open sets. Since FA(L) is compact in o, it follows that FA(L) c [J F = D for some finite
{Cp:peP}=T'^T.

In particular, X x {0} xA{Q)c,D. Since every Cp satisfies (c), for each ye
{1,. . . , 8} and aeA(0), there exist p e P and n = n(j, a, p) such that X(Cp, 0, a) x
U) x B(ln> 0> a) £ Cp. Thus if «(0) is the least of (the finitely many) such integers
n(y, a, p) then X x {1, . . . , 8} x fi(|n(0)) c D.

Analogously, X x {/} x A{j) c D for each j e {1, . . . , 8}. Using (d) instead of (c)
yields integers m(j) for which X x {/} x #(fm(y)) c D. Since the complement Fj of any
fl(jn(0))Ufl(fm(y)) in fi is finite, (X x {j} x B)\D is contained in the compact set
X x {j} x Ff for every j e { 1 , . . . , 8}.

Observing that Pj\X) = X2, from X x {j} x A{j) c D, and using (e) this time, we
similarly produce integers m(j) for which X2x {j} x B(]m(j))cD. Since X2 x {9} x
,4(9) cZ), the condition (f) provides integers n(y) for which X2 x {j} x fi(|,n(y'))c£>.
Just as before, the set (X2 x { 1 , . . . , 8} x B)\D is contained in a compact subset of F(L).
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Thus, in each case, the set F(L)\D is contained in a compact subset of F(L), and the
compactness of 3>(L) follows.

To show that <I>(L) is totally order disconnected, for any p ̂  q in F(L), we must find
a clopen increasing set P c. F(L) such that p e P and q e F(L)\P.

If p e FB(L) then p = (z, /, b) for some z e X2 U X, j e {1, . . . , 8} and b e B. Since
[ft) is finite, for any clopen Z c A2 U X containing z, the set P(Z) = Z x {/} x [b) is clopen
and increasing, and it separates p from all q e FA(L). Any other q e F(L) has the form
q = (z',j',b')e(X2\JX)x{l, ...,8}xfl, and it lies in P(Z) only when z'eZ, j'=j
and b' 3: b. But then z' =£ z follows from p^q. Since X2 U A" is totally disconnected, there
is a clopen Z' c A2 U A containing z but not z', so that P(Z') separates p from g again.

A dual argument shows the separation property also when q e FB(L); hence we may
assume that p, q e F(L)\FB(L) = FA(L). To complete the proof, for every p e FA(L), we
must exhibit a clopen increasing set P such that q $ P fl FA(L).

Let p = (z, 0, a) e A x {0} x ,4(0), and let Y c X be clopen in A and such that z eY.
For any a' ^a and n « - 1 , the set

P(Y, a') = Yx {0} x {a1} U Y x {1, . . . , 8} x B{[n, 0, a')

is clopen. Then P(Y) = [J{P(Y, a'):a'e[a)} is clopen since [a) is finite, and it is
increasing because n ^ — 1 ; clearly p e P(Y). If ^eP(Y) then q = (z',0, a') for some
a'e[a) ; hence z'^z by the hypothesis. Since X is totally disconnected, there exists a
clopen set Y' c A containing z but not z'. The clopen increasing set P(Y') then separates
p from q as was to be shown. With X replaced by X2, this argument disposes of the case
of any p = (z, 9, a)eX2x {9} x A(9).

Finally, let p = (x, j , a) e X x {/} x /i(y) for some j e {1, . . . , 8}. Choose any m 3= 1;
for each a' s*a and X' c A" clopen in A", set

P(A", a') = X' x {/} x {a'} U (A" U P-X*')) x {/} x B{\m, j , a').

Each P(A', a') is clopen, and P(A') = U {P(X', a'): a' e [a)} is a clopen increasing
set containing p. If q e P(A') then ^ = (JC', /, a') for some x e A'; from p*j=q, it follows
that x =£ A:' in A. Hence A: e X" and A:' e W\X" for some A"' clopen in X, and the set P(X")
separates p from g as required. •

LEMMA 4.4. The Priestley space O(L) represents a regular double p-algebra.

Proof. In view of 2.5 and 4.3, it suffices to prove that (C] and [C) are a-clopen for
any a-clopen C s F(L); all arguments may be restricted to members of the basis S(kn, k})
with ko<-\ and &,>4.

If C = X' X {/'} x {6} for some clopen A' c A, ; e {1, . . . , 8}, and some b e fl then
either 6 is minimal and (C] = C, or b = 62*+i is maximal and (C]\C is the union of clopen
sets A' X {/} x {b2k} and A' x {/} x {b2k+2} from S(k0, &,).

If C = A' x {/} x ({a} U B(\m, j , a)) U Pj\X') x {;"} x B(\n, j , a) for some clopen
A' c A, y e {1, . . . , 8}, a e A(j), and m, n ̂  4 then (C] = C whenever a is minimal.

Otherwise (C]\C is the union of two clopen sets of the form

A' x {/} x ({a'} U fl(K, y, fl')) U P,-'(A') x {/} x B ( K ; , a'),

where a ' < a in /4(y), and m', n' e B(j, a') are the least even integers respectively
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satisfying m'^m — 1 and n'^n — 1. Since these sets are members of the basis
S(k0, kx - 1), the set (C] is clopen.

Analogous arguments apply to members of the basis S(k0, ki) of the remaining two
types. Dualizing these arguments we easily show that [C) is clopen for any Ce

o,*i). •
For any morphism f : L—> L' of the category L(2), we now define a mapping

, i, a) = (f(x), i, a) for all x e X, all i e {0, 1, . . . , 8}, and all iie-4(i),
<*>(/)(*, j , b) = (/(*), j , b) for all x e X, all / e { 1 , . . . , 8}, and all b e B,
*(/)((*. y)> h b) = ((/(*), / (*)) , /, 6) for all (JC, y) e X2, all j e {1,. . . , 8}, and all
beB,
*(/)((*> jO» 9, a) = {{f{x), f{y)), 9, a) for all {x, y) e X2 and all a e .4(9).

Since the effect of <£(/) is confined only to the first component of each (z, i, c) e
F{L), and because the order of F(L) is that inherited from the third component of its
elements, the mapping <&(/) is order preserving and satisfies Ext(<I>(/)(f)) = <&(/)(Ext(f))
for every t e F{L).

The continuity of the L(2)-morphism / on X implies that / xf is continuous on X2.
Since the topology of the open subspace FB{L) of 3>(L) and of its complement FA{L) is
that of the product of X2 U X with a discrete space, the respective restrictions of <&(/) to
these two subspaces are continuous. To verify the continuity of <&(/), it thus suffices to
demonstrate that <&(/)(cl(£/)) is contained in cl(3>(/)({/)) for any UcFB{L). This,
however, is accomplished through a routine use of 4.2 and of the fact that
Pj(f{x), f(y)) =f(Pj{x, y)) holds for all (x, y) e X2 and for each / e {1, . . . , 8}.

Finally, to show that 4> is a full embedding, suppose that h : <P(L)—»O(L') is a
continuous mapping such that Ext(h{t)) = h{Ext{t)) for all t e F{L).

Recall that each order component C of F{L) has the form C = {z} x {/} x _4(i) s
Ap{i) for some / g 10, or C = {z} x {/} x fisfi for some / e { 1 , . . . . 8} and z e ^ U J f .
According to 2.6, /i(C) must be an order component of F{L').

If C = {z} x {/} x A{i) then /(C) is a finite order component of O(L'), that is, a
component isomorphic to some A{k). By 4.1(a) and the choice of the primes p(i), this is
possible only when k = i. Therefore h{{z} x {i} x A{i)) = {z1} x {/} x A(i) for all i e 10
and, in particular, z' eX' if and only if z e X.

From 4.2 it easily follows that for all j e (1, . . . , 8}, x e X and (x, y) e X2,

6{{x} x {;} x B) = {x} x {0} x .4(0) U {JC} X {/} x A(j), and

8{{{x, y)) x {/} x B) = {Pj{x, y)} x {/} x A(j) U {(*, y)} x {9} x ^(9).

Since h is continuous, the closure of the order component h{{x) x {/'} x B) must contain
h{{x}x{0}xA{0)) = A{0) and h({x} x {j} x A{j)) = A{j). This is impossible when
h{{x} x {j} x fl) is finite and, therefore, closed. Hence h{{x} x {j} xB) = B. By 4.1(b)
and by the definition of $(L'), for some z' e {X'f U A", k e { 1 , . . . , 8} and all b e B we
must have h{x, j , b) = (z', k, b). Using the continuity of h, from 4.2(A) and 4.2(B), we
now obtain k=j, and the existence of a mapping f:X—>X' for which h{x,j,b) =
(f(x), j , b) for all x e X, / e { 1 , . . . . 8}, beB, and also fc(*,», «) = (/(•«), i, a) for all
xeX, ie {0, 1 , . . . , 8}, and all a e A{i).
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An analogous argument applied to the infinite component h({(x, y)} x {j} x B)
implies the existence of a mapping g : A"2—* (A")2 such that h((x, y), j , b) = (g(x, y), j , b)
for all / e {1, . . . . 8} and beB, and also that h((x, y), 9, a) = (g(x, y), 9, a) for all
0 6/1(9).

Consequently, for all (x, y) e X2, all j e { 1 , . . . , 8}, and any a eA(j), the continuity
of h implies that h(Pj(x, y), j , a) = (f(Pj(x, y)), j , a) is contained in the closure of
{g(x, y)} x {j} x B. This, however, is possible only when Pj(g{x, y)) =f(Pj(x, y)).

From P\(x, y) = x and P2(x, y) =y it now follows that g(x, y) = (f(x),f(y)) for all
(x,y)eX2. When y = 3 or 7 = 4, we obtain f(x v y) =f(P3(x, y)) = P3(f(x), f(y)) =
/(•*) V / O 0 and/(* A y) =f(x) A / ( v), respectively. Furthermore, /(<*(•*)) =f(Ps(x, y)) =
Ps(f(x), f(y)) = a(f(x)), and f(fi(y)) =f(P6(x, y)) = P6(f{x), f(y)) = /8(/(>)). Finally,
f(0) =f{P7(x, y)) = P7(/(*), f(y)) = 0 and, similarly, / ( I ) = 1.

Altogether, / : L-*L' is a continuous lattice (0, l)-homomorphism which preserves
the two unary operations, and h = <£(/) and was to be shown. Thus O is a full functor,
and the proof of Theorem 1.1 is complete.

In conclusion, we sincerely thank Rodney Beazer for his comments on an earlier
version of .this paper and, particularly, for his useful suggestions concerning the variety of
double Heyting algebras. In conjunction with the main result of [1], Theorem 4.5 below
provides another natural example of an arithmetical, congruence uniform, yet categori-
cally universal variety. A brief direct proof is included for the sake of completeness.

THEOREM 4.5 (R. Beazer). The variety of double Heyting algebras is categorically
universal.

Proof. According to Priestley [10], the dual of the category of all double Heyting
algebras is formed by all Priestley spaces in which (C] and [C) are clopen for any clopen
convex subset C, and by all their dh-maps, that is, all continuous order-preserving maps
satisfying/(z] = (f(z)] and/[z) = [/(z)) for every element z in the domain space of/.

Since every dp-space Z = G>(L) constructed in this section is a disjoint union of
clopen sets Min(Z) and Max(Z), for any clopen subset C of Z, the sets
(C] = (C n Max(Z)] U (C n Min(Z)) and [C) = [Cn Min(Z)) U (C U Max(Z)) are clopen;
thus every *(L) is the Priestley space of a double Heyting algebra as well.

The set of all dp-maps between such spaces coincides with that of all dh-maps. This
becomes clear once it is noted that any dh-map preserves maximality and minimality, and
that (z] = {z} and [z) = {z} U Max(z) for any z e Min(Z), while (z] = {z} U Min(z) and
[z) = {z} for every z eMax(Z). •
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