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Abstract

Based on pathwise duality constructions, several new results on truncated queues and
storage systems of the G/M/1 type are derived by transforming the workload (content)
processes into certain ‘dual’ M/G/1-type processes. We consider queueing systems in
which (a) any service requirement that would increase the total workload beyond the
capacity is truncated so as to keep the associated sojourn time below a certain constant,
or (b) new arrivals do not enter the system if they have to wait more than one time unit in
line. For these systems, we derive the steady-state distributions of the workload and the
numbers of customers present in the systems as well as the distributions of the lengths
of busy and idle periods. Moreover, we use the duality approach to study finite capacity
storage systems with general state-dependent outflow rates. Here our duality leads to
a Markovian finite storage system with state-dependent jump sizes whose content level
process can be analyzed using level crossing techniques. We also derive a connection
between the steady-state densities of the non-Markovian continuous-time content level
process of the G/M/1 finite storage system with state-dependent outflow rule and the
corresponding embedded sequence of peak points (local maxima).
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1. Introduction

The purpose of this paper is to present a prototype duality approach to M/G-type and
G/M-type queues and dams. We show how certain pathwise duality techniques can be used to
analyze queueing systems with admission controls and storage systems with state-dependent
outflow rates. Consider, for example, the workload or content process of a G/M/1 system
with some restrictions at its capacity limit, which has renewal arrival times and exponentially
distributed jumps. The duality transforms the sample paths of such a process into those of
an M/G/1-type process. The paths are turned upside down, possibly modified on intervals
of constancy, jumps are replaced by linear segments, and deterministic pieces between two
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A duality approach to queues 613

jumps become jumps of the appropriate size. The resulting process again represents a system
with different restrictions at the capacity limit and other features (such as no idle periods).
However, it is of the M/G/1 type and, therefore, Markovian, so it can be studied by well-
known methods. Due to the special form of the admission restrictions, every application of the
duality requires special modifications. We present the method in two important examples, one
from queueing and one from storage theory, which may serve as prototypes for the application
of the duality to specific models. We believe that the approach introduced here will lay the
groundwork for other stochastic storage models, insurance risk, and reliability systems.

We provide an overview of our queueing and then our storage results below.

1.1. Queueing

Many single-server systems have to deal with excessive service requirements in order to
avoid overloads or to meet capacity constraints. The following two natural possibilities were
suggested in [9], [23], and [25].

• Queueing model 1. Under the truncated service policy, any service requirement that
would increase the total workload beyond some constant capacity threshold is reduced
so that this threshold is reached but not exceeded. Note that, according to this policy,
every arriving customer is admitted to the system.

• Queueing model 2. Under the bounded waiting time policy, new arrivals whose waiting
times in line would exceed some fixed constant are not admitted to the system. According
to this policy, admission is interrupted as long as the workload process stays above the
threshold.

In the GI/G/1 case, queueing model 1 corresponds to the standard finite dam with constant
release rule; various versions have been treated in [2], [3], [6], [10], [11], [12], [21], [24],
and [27]. From the point of view of prospective customers, the two models also represent
GI/G/1 with deterministic customer patience. In queueing model 1 each customer stays at
most for a sojourn time of one time unit. In queueing model 2 the bound 1 is the maximum time
a customer is willing to wait in line; this system is often called GI/G/1 + D, and we consider
M/G/1 + D and G/M/1 + D.

For queueing model 2, the distribution for the workload in steady state and for the busy
period length was derived in [19] and [20] for special cases with phase-type service times. In
[16] a related inventory system was studied. For other variants of this model, see [6], [11],
[13], and [26]. A busy period analysis of both models is given in [23] for the M/M/1 case and
in [25] for the M/G/1 and G/M/1 case. Related questions were dealt with in [4] and [27].

The paper contains new results on the M/G/1 and the G/M/1 versions of both models
with emphasis on the G/M/1 version. In Section 2 we consider queueing model 1 for M/G/1
and in particular derive the steady-state distributions of the sojourn time and the number of
customers in the system. In Section 3 we study the M/G/1 version of queueing model 2,
derive the steady-state distribution of the workload, and connect it to queueing model 1. In
Section 4 we present the duality between the two systems, which allows us for the first time to
study the G/M/1 version of queueing model 1. Through this approach we find the steady-state
distributions of the workload and the number of customers as well as the distributions of the
busy and idle periods and the times between overflows.

Alternative policies not considered in this paper are refusal of any customer whose sojourn
time would be greater than some maximum value or quasirestricted accessibility (reducing
the over-the-threshold parts of the service requirements by certain fractions). Results on the
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steady-state distribution of the workload under these policies can be found in [5], [14], and
[23] for M/G/1. The G/M/1 cases are open. The possible applicability of our method to these
examples is discussed in the conclusion section.

1.2. Storage

In Section 5 we consider the duality for a storage system with finite capacity (a truncation
threshold), renewal interarrival times for the inputs, and a general state-dependent release rate.
For Poisson arrival times, this system was frequently studied; see [1] and the references given
therein. Using the duality for the corresponding content process, we compute its steady-state
distribution in the G/M/1 case. This approach leads to a Markovian finite storage system
with state-dependent jump sizes whose content level process can be analyzed by level crossing
techniques. In the last theorem of this section we consider the steady-state densities of the above
G/M/1 content process and the corresponding sequence of its peak points (local maxima).
Denote these densities by fDG/M/1 and fPP , respectively. It is proved that

r(x)fDG/M/1(x) = fPP (x) (1)

for all positive x smaller than the capacity, where r(x) is the outflow rate function. Equation (1)
provides an interesting connection between the steady-state distribution of a non-Markovian
continuous-time finite storage system (of G/M/1 type) and that of the subsequence of its peak
points.

All steady-state distributions are given in closed form in terms of their densities in the form of
a series of convolutions. In Section 6 we present an example to show how our duality methods
can be applied to get more explicit formulae in special cases: we compute the Laplace–Stieltjes
transform (LST) of the busy period of queueing model 1 in the case of Erlang arrivals. In
the concluding remarks in Section 7 we summarize our approach and point to possible further
applications.

2. Queueing model 1: basic facts for the M/G/1 case

Queueing model 1 is a single-server system of GI/G/1 type with a restriction on the sojourn
time. Every customer is admitted to the system, but his/her service might be truncated to keep
the sojourn time below a certain constant threshold, the maximum workload capacity, which
we set equal to 1. Let ν ∈ (0, 1] be the initial workload at time T0 = 0, let 0 < T1 < T2 < · · ·
be the arrival times of customers, and assume that the interarrival times Tn − Tn−1, n ∈ N, are
independent and identically distributed (i.i.d.) random variables with distribution function H
and mean 1/λ, while the service requests S1, S2, . . . at the times T1, T2, . . . are independent of
the Ti and i.i.d. with distribution functionG and mean 1/µ. Each service request is known upon
arrival. Under the truncated service admission rule, the workload process V 1 = {V 1(t) : t ≥ 0}
is defined step by step as

V 1(t) =

⎧⎪⎨
⎪⎩
ν, t = 0,

max[V 1(Tn−1)− (t − Tn−1), 0], Tn−1 ≤ t < Tn, n ≥ 1,

V 1(Tn−)+ S̄n, t = Tn, n ≥ 1,

where S̄n = min[Sn, 1 − V 1(Tn−)] is the actual service time assigned to the nth customer.
A piece of a typical sample path of V 1 is depicted in Figure 1(a) in Section 4. It starts at
time A0 at full capacity ν = 1 and has customer arrivals (positive jumps) at the time epochs
A1, A2, . . . with truncations at A5 and A6.
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In the M/G/1 case (in which H(t) = 1 − e−λt ) the steady-state distribution function F1 of
V 1 and the LST of the busy period distribution are known. The function F1 has been derived
by different methods [10], [12]; it is given by

F1(x) =
∑∞
n=0

∫ x
0 eλ(x−u)[−λ(x − u)]n dGn(u)/(n!)∑∞

n=0

∫ 1
0 eλ(1−u)[−λ(1 − u)]n dGn(u)/(n!)

, 0 ≤ x ≤ 1, (2)

whereGn, n ≥ 0, denotes the n-fold convolution of the service time distributionG with itself.
The busy period distribution is complicated; its LST was derived in [25].

Let us now determine some other important characteristics in the M/G/1 case, in particular
the steady-state probability that there are n customers present, say pn. We also need the steady-
state distribution of the sojourn time. The following two propositions seem to be new.

Proposition 1. Let Y 1
n and W 1

n be the sojourn time and the waiting time of the nth customer,
respectively. Then limn→∞ P(W 1

n ≤ x) = F1(x) and

lim
n→∞ P(Y 1

n ≤ x) = (G ∗ F1)(x), x < 1,

lim
n→∞ P(Y 1

n = 1) = 1 − (G ∗ F1)(1),

where ‘∗’ denotes the convolution operator.

Proof. By definition, Y 1
n = W 1

n + S̄n. Thus, for x < 1,

lim
n→∞ P(Y 1

n ≤ x) = lim
n→∞ P(W 1

n + S̄n ≤ x) = lim
n→∞ P(W 1

n + Sn ≤ x) = (G ∗ F1)(x),

since Sn is independent of W 1
n and, by the PASTA property, F1 is the steady-state distribution

function of the waiting time. Finally, note that Y 1
n ≤ 1.

Proposition 2. Let K = {K(t) : t ≥ 0} be the queue length process. Then

pn = lim
t→∞ P(K(t) = n) =

∫ 1

0

e−λx(λx)n

n! d(G ∗ F1)(x)+ e−λλn

n! [1 − (G ∗ F1)(1)]. (3)

Proof. The long-run average rate at which K makes a jump from n+ 1 down to n is equal
to the long-run average rate at which it jumps up from n to n + 1. Let πa

n denote the fraction
of arrivals finding n customers in the system, and let πd

n be the fraction of departures leaving
behind n customers in the system. The balance equation for the rates can be expressed as
λπa

n = λπd
n , yielding πa

n = πd
n . By the PASTA property, the latter argument implies that

the number of customers in steady state has the same distribution as the number of customers
arriving during a sojourn time, so that pn = πd

n . Now Proposition 1 immediately leads to (3).

We remark that, for n = 0, (2) yields the formula

p0 = F1(0) =
( ∞∑
n=0

∫ 1

0

eλ(1−u)[−λ(1 − u)]n
n! dGn(u)

)−1

, (4)

whereas, by (3),

p0 =
∫ 1

0
e−λx d(G ∗ F1)(x)+ e−λ[1 − (G ∗ F1)(1)]. (5)
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Equation (5) has a probabilistic interpretation. Its right-hand side gives the probability that
no arrival takes place during a steady-state sojourn time (split into the cases that this sojourn
time is smaller than 1 or equal to 1), which is equal to πd0 and thus to p0. We do not know how
to show the equivalence of (4) and (5) analytically.

3. Queueing model 2

We retain the notation of Section 2 for arrival epochs and service requirements. In queueing
model 2 a customer whose waiting time in line would be greater than or equal to 1 is rejected.
However, any customer whose waiting time would be smaller than 1 is fully served even
though his/her sojourn time can be larger than 1. Accordingly, the associated workload process
V 2 = {V 2(t) : t ≥ 0} can be defined as follows:

V 2(t) =

⎧⎪⎨
⎪⎩
ν, t = 0,

max[V 2(Tn−1)− (t − Tn−1), 0], Tn−1 ≤ t < Tn, n ≥ 1,

V 2(Tn−)+ Sn1{V 2(Tn−)<1}, t = Tn, n ≥ 1.

Thus, the system is blocked for new customers as long as its workload exceeds or is equal to 1.
In the sequel we need a modified version Ṽ 2 = {Ṽ 2(t) : t ≥ 0} of V 2. The paths of Ṽ 2 are
obtained from those of V 2 by deleting all idle periods and gluing together the busy periods.

We now consider Ṽ 2 in the M/G/1 case in which the arrival times form a Poisson process
of rate λ and the service requests have the common distribution function G. In this case Ṽ 2

is a Markov process and, by level crossing theory [7], possesses a steady-state distribution F̃2
with a density f̃2, whose balance equation is given by

f̃2(x) = λ

∫ x∧1

0
[1 −G(x − w)]f̃2(w) dw + f̃2(0)[1 −G(x)]

= ρ

∫ x∧1

0
ge(x − w)f̃2(w) dw + bge(x), (6)

where ge(x) = µ[1 − G(x)] is the equilibrium density associated with G, ρ = λ/µ, and
b = f̃2(0)/µ. Iterating (6) yields

f̃2(x) = b

∞∑
n=1

ρn−1g∗n
e (x) = bQ(x), 0 ≤ x ≤ 1, (7)

where g∗n
e is the n-fold convolution of ge with itself and Q(x) = ∑∞

n=1 ρ
n−1g∗n

e (x). To
determine f̃2(x) for x > 1, we substitute (7) into (6) and get

f̃2(x) = bge(x)+ bρ

∫ 1

0
ge(x − w)Q(w) dw, x > 1. (8)

The constant b can be determined from the normalizing condition
∫ ∞

0 f̃2(w) dw = 1. We find
that

b =
[∫ 1

0
Q(x) dx +

∫ ∞

1
ge(x) dx + ρ

∫ ∞

1

∫ 1

0
ge(x − w)Q(w) dw dx

]−1

. (9)

The density f̃2 is now given by (7)–(9).
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The ordinary Laplace transform (LT) of f̃2 can be expressed in terms of F1 and p0, which
are given by (2) and (4). Let Ṽ 1 be the modified workload process of queueing model 1 in the
M/G/1 case for which the idle periods are deleted and the busy periods are glued together. The
steady-state distribution function F̃1(x) of Ṽ 1 is

F̃1(x) = F1(x)− p0

1 − p0
. (10)

Note that the busy cycles of both Ṽ 1 and Ṽ 2 are also their busy periods; assume that the
initial cycles, B̃1 and B̃2, respectively, are started by a customer arriving at an empty system.
A comparison of sample paths yields, for all x ∈ [0, 1],

∫ B̃1

0
1{Ṽ 1(t)≤x} dt =

∫ B̃2

0
1{Ṽ 2(t)≤x} dt. (11)

Take expectations in (11), divide both sides by EB̃1, and take derivatives. For the steady-state
densities f̃1 and f̃2 of Ṽ 1 and Ṽ 2, this yields the relation

f̃2(x) = EB̃1

EB̃2
f̃1(x), 0 ≤ x ≤ 1.

On the other hand, by (10),

f̃1(x) = 1

1 − p0

d

dx
F1(x) = f1(x)

1 − p0
, 0 ≤ x ≤ 1, (12)

where f1 denotes the density of F1. Thus, the balance equation (6) can be written as

f̃2(x) = EB̃1

EB̃2

[
λ

∫ x

0
[1 −G(x − w)]f̃1(w) dw + f̃1(0)[1 −G(x)]

]

for all x ≥ 0; note that f̃1(x) = 0 for x > 1. Taking LTs we obtain

f̃ ∗
2 (α) = EB̃1

EB̃2

[
λ

α
[1 −G∗(α)]f̃ ∗

1 (α)+ f̃1(0)[1 −G∗(α)]
α

]
.

Here and in the following f ∗
i and f̃ ∗

i , i = 1, 2, denote the (ordinary) LTs of fi and f̃i . Since,
by level crossing theory,

EB̃i = 1

f̃i (0)
, i = 1, 2,

we arrive at

f̃ ∗
2 (α) = f̃2(0)

[
1

f̃1(0)

λ

α
[1 −G∗(α)]f̃ ∗

1 (α)+ 1 −G∗(α)
α

]
, (13)

where G∗ is the LST of the distribution G. Now f̃1(0) is known from (12) at x = 0 and

f̃ ∗
1 (α) = 1

1 − p0

∫ 1

0
e−αxf1(x) dx.
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As f̃ ∗
2 (α) is an LT, f̃2(0) can be obtained from the normalizing condition f̃ ∗

2 (0) = 1. We obtain

f̃2(0) = µf̃1(0)

f̃1(0)+ λ
= µf̃1(0)

(1 − p0)f̃1(0)+ λ
.

Summarizing, we have proved the following result.

Theorem 1. The steady-state density f̃2 of Ṽ 2 is given by f̃2(x) = bQ(x) for x ∈ [0, 1] and

f̃2(x) = bge(x)+ bρ

∫ 1

0
ge(x − w)Q(w) dw if x > 1,

where Q(w) and b are defined in (7) and (9), respectively. An alternative formula is

f̃2(x) = 1

(f1(0)+ λ)(1 − p0)

[
λ

∫ x

0
ge(x − w)f1(w) dw + f1(0)[1 −G(x)]

]
,

where f1 = F ′
1, the steady-state density of V 1, is given by (2) and p0 by (4) or (5). The LT f̃ ∗

2
of f̃2 can be obtained in terms of the steady-state characteristics of V 1 from (13).

Finally, let us return to the workload process V 2.

Theorem 2. The steady-state distribution function F2 of V 2 is given by

F2(x) = π0 + (1 − π0)F̃2(x),

where π0 = f̃2(0)/[f̃2(0)+ λ].
Proof. Clearly, π0 is equal to the proportion of time queueing model 2 is idle. Since the

expected values of the lengths of the idle and busy periods are 1/λ and EB̃2 = 1/f̃2(0),
respectively, we have π0 = (1/λ)/[(1/λ)+ (1/f̃2(0))].

4. Duality analysis of queueing model 1 in the G/M/1 case

We now consider queueing model 1 with general interarrival distributionH and exponential
service requests, i.e. G(t) = 1 − e−λt . Clearly, the corresponding workload process V 1 is
regenerative. The duration of the first busy period isB1 = inf{t > 0 : V 1(t) = 0} and that of the
first busy cycle isC1 = inf{t > B : V 1(t) > 0}. The first idle period has length I 1 = C1 −B1.

Our aim is to derive the steady-state distributions of V 1, I 1, B1, and of the number of
customers in the system via a duality with a certain Markovian system of the second type. This
is carried out in two steps as follows.

1. We define a transformation that maps every path of V 1 to a path of what will be seen
as the attained waiting time process (AWT process) A = {A(t) : t ≥ 0} of a certain
queueing model of type 2. Define

A(t) =
{

1 − V 1(t) if V 1(t) > 0,

1 + t − inf{s ∈ [0, t] | V 1(u) = 1 for all u ∈ [s, t]} if V 1(t) = 0.

During the busy periods A is simply a reflection of V 1 at the level 1
2 ; during each idle

period A increases linearly with slope 1 starting from level 1.
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2. The workload process corresponding to the AWT process A is constructed as follows.
Replace every negative jump of A by a linearly decreasing piece of trajectory with slope
−1 on an interval whose length is equal to the negative jump size. Then replace the
increasing pieces between the negative jumps of A by positive jumps whose sizes are
equal to the corresponding linear increments. The process constructed in this way is
called Ṽ 2.

A little reflection shows there is an M/G/1 queueing system of type 2 for which A(t) can
be interpreted as the time elapsed since the arrival of the customer who was last served before
or is being served at time t , and Ṽ 2 is the corresponding workload process. This underlying
system has two types of customer, ‘regular’ and ‘nonregular’, and works as follows. Whenever
the system becomes empty a new nonregular customer arrives instantaneously (so that there
are no idle periods). The interarrival times between regular customers are exp(λ)-distributed,
and all service times have distribution H . Customers who would have to wait in line for more
than one time unit leave immediately without being served (so that the model is of type 2).

The negative jumps of A arrive according to a renewal process with interrenewal distribution
H , and the jump sizes are exp(λ)-distributed and truncated at 0 when they would end below 0.
In each period that A spends above 1 there is no jump, and this period is terminated by a
downward jump such that the position after the jump can be written as 1 − min[Eλ, 1], where
Eλ is exponentially distributed and independent of the past evolution of A.

A typical piece of a sample path of A is shown in Figure 1(b). It corresponds to that of V 1

in Figure 1(a), so that it has negative jumps at the times A1, A2, . . . , which are the departure
times of the underlying (modified) queueing model 2. Applying the transformation described
in step 2 above to the sample path of A in Figure 1(b) yields the workload sample path Ṽ 2

depicted in Figure 1(c). The times B1, B2, . . . in Figure 1(b) and (c) are the arrival times of
customers entering the system. Recall that in queueing model 2 customers do not enter if they
have to wait in line more than 1 time unit. The times V1, V2, . . . are the arrival times of those
customers who leave immediately without service due to this restriction. At time A5 a busy
period of queueing model 2 is terminated.

The importance of the AWT process is due the following theorem. It is the prototype of the
kind of results that can be derived by the duality approach.

Theorem 3. The steady-state laws of Ṽ 2 and A are the same.

Proof. The proof follows from the observation that, for Ṽ 2 and A, the hitting times of
level 0 are the same and also the peak points (the local maximum points, which are the sojourn
times) and the trough points (the local minimum points, which are the waiting times) between
any consecutive hittings of 0 have the same values. Therefore, the rates of downcrossings
of every level x coincide for Ṽ 2 and A, so that, by level crossing theory, their steady-state
densities are equal (the steady-state distributions are absolutely continuous because the idle
periods are deleted).

Theorem 3 enables us to compute the law of the G/M/1 version of V 1 with arrival rate λ
and service rate µ from that of the M/G/1 version of Ṽ 2 with arrival rate µ and service rate λ.
If we denote as before the corresponding steady-state densities by f1 and f̃2, respectively,
we have

f1(1 − x) = f̃2(x), x ∈ [0, 1);
f̃2 was computed in Section 3.
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Figure 1: Typical sample paths of the processes V 1, A, and Ṽ 2 connected by duality.

We now use the duality established above to derive several quantities of interest for the
G/M/1 queueing model 1.

4.1. Idle and busy periods

Let IG/M/1 be the length of the idle period in steady state in queueing model 1. By duality,
IG/M/1 can also be viewed as the overflow above level 1 in the modified version Ṽ 2 (in which
the idle periods are deleted) of queueing model 2 in the M/G/1 case. Obviously, overflows
above 1 associated with Ṽ 2 are i.i.d. random variables distributed as IG/M/1. The following
theorem gives the LST of IG/M/1.

Theorem 4. It holds that

E(e−αIG/M/1
) = 1 − αeα

∫ ∞
1 e−αxf̃2(x) dx

f̃2(1)
.

Proof. The function defined by

f̃2(x | x ≥ 1) = f̃2(x)∫ ∞
1 f̃2(w) dw

, x ≥ 1,
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is the conditional equilibrium density of Ṽ 2 given that it stays above level 1. Now we construct
the process Ỹ = {Ỹ (t) : t ≥ 0} from Ṽ 2 by deleting the time periods in which Ṽ 2 ≤ 1 and
gluing together the time periods in which Ṽ 2 > 1. Clearly, f̃2(x | x ≥ 1) is the steady-state
density of Ỹ . Define Y (t) = Ỹ (t)− 1. The process Y = {Y (t) : t ≥ 0} can be interpreted as a
forward recurrence time process with jump sizes distributed as IG/M/1; its equilibrium density
is thus given by

fe(x) = f̃2(x + 1)∫ ∞
1 f̃2(w) dw

, x ≥ 0,

and fe has the LT

f ∗
e (α) =

∫ ∞
0 e−αxf̃2(x + 1) dx∫ ∞

1 f̃2(w) dw
= eα

∫ ∞
1 e−αxf̃2(x) dx∫ ∞
1 f̃2(w) dw

. (14)

The process Ṽ 2 is a regenerative process for which every downcrossing time of level x is a
regeneration point. Choose x = 1. By interpreting the time Ṽ 2 stays above level 1 as an up
time and the time Ṽ 2 stays below level 1 as a down time we obtain an alternating renewal
process. Thus, the key renewal theorem yields

∫ ∞

1
f̃2(w) dw = E(IG/M/1)

E(C)
,

whereC is a cycle length, defined as the time between two successive downcrossings of level 1.
By level crossing theory,

E(C) = 1

f̃2(1)
,

so that

E(IG/M/1) =
∫ ∞

1 f̃2(w) dw

f̃2(1)
. (15)

By standard renewal theory, the LST of the forward recurrence time is given by

f ∗
e (α) = 1 − E(e−αIG/M/1

)

αE(IG/M/1)
. (16)

The theorem now follows from (14), (15), and (16).

The duality also allows us to deal with busy periods and interoverflow times of the G/M/1
models.

(i) By the construction above, we see that the length of a busy period in queueing model 1
of the G/M/1 type is stochastically equal to the time between two overflows in the modified
queueing model 2 of the M/G/1 type in which the idle periods are deleted (see Figure 2). To
determine this distribution, we need the solution of a two-sided first-exit problem for a standard
M/G/1 workload process starting at level 1. When this process leaves (0, 1) for the first time
by a jump above 1, this first exit time is equal to the first overflow time. When it exits at 0, we
have to consider the next time instant it leaves (0, 1), and so on. We obtain a geometric series
of i.i.d. exit times. An example of such a calculation is given in Section 6.

(ii) The time between two overflows in queueing model 1 of G/M/1 type is stochastically
equal to the length of a busy period in queueing model 2 of M/G/1 type.
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V 2( )t˜

t

t

t

V 1( )t (a)

(b)

(c)

V 1( )t1−
Busy period

Time between overflows

1

0

1

0

1

0

Figure 2: Duality between busy periods and interoverflow times. (a) A sample path of queueing model 1
(G/M/1 type). (b) A sample path generated by taking 1 −V 1(t). (c) A sample path generated by duality.
The sample path in (c) describes queueing model 2 of M/G/1 type in which the idle periods are deleted.

4.2. The number of customers

The arrival times form a renewal process with interarrival distribution H . Thus, in steady
state the probability that a departing customer leaves behind n customers is given by

pn =
∫ 1

0
[Hn(x)−Hn+1(x)] dFsoj(x), (17)

where Hn is the n-fold convolution of H with itself and Fsoj(x) is the steady-state distribution
function of the sojourn time.

The sojourn times are characterized by the heights of the peak points of the AWT process
(the points just before negative jumps in Figure 1(b)). These peak points retain their values if the
idle periods in the AWT process are deleted. Hence, Fsoj is also the limiting distribution of the
sojourn time in the modified process in which the idle periods are deleted and the busy periods
are glued together. The fact that the arrival times of the negative jumps in the latter modified
process form a Poisson process with rate µ enables us to apply the PASTA property to compute
Fsoj as follows. First we construct the process Ă = {Ă(t) : t ≥ 0} by deleting the idle periods
of A and gluing together the busy periods. We then define the process V̆ = {V̆ (t) : t ≥ 0}

https://doi.org/10.1239/jap/1378401226 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401226


A duality approach to queues 623

by V̆ (t) = 1 − Ă(t). If V̆e is a random variable having the steady-state distribution of V̆ , the
limiting law of the sojourn time is the same as that of 1 − V̆e. The density f̆ of V̆e satisfies the
balance equation

f̆ (x) = µ

∫ x

0
[1 −H(x − w)]f̆ (w) dw + f̆ (0)[1 −H(x)], 0 ≤ x ≤ 1. (18)

Solving for f̆ (x) in (18) we obtain

f̆ (x) = che ∗ K̆(x),
where he(x) = (1 −H(x))/

∫ ∞
0 y dH(y) is the equilibrium density corresponding to H ,

K̆(x) =
∞∑
n=0

ρ−nh∗n
e (x),

and the constant c is computable from the normalizing condition
∫ 1

0 f̆ (x) dx = 1, i.e.

c =
[∫ 1

0

∞∑
n=0

ρ−nh∗n
e (x) dx

]−1

.

It should be noted that the steady state density f̆ is not just the derivative of the distribution
Fsoj, but Fsoj can be expressed in terms of f̆ . To see this, recall first that the distribution Fsoj has
an atom at 1, since the sojourn time of some customers is truncated at level 1 if the waiting time
plus their service requirement is greater than 1. This means that the negative jumps associated
with Ă, or, alternatively, the positive jumps associated with V̆ , are not Poisson jumps. In fact,
the jumps of V̆ are generated by the composition of the Poisson arrivals (with rate µ), and the
downcrossings of level 0 by V̆ (or level 1 by Ă). By the PASTA property, the Poisson jumps
see the steady-state law of V̆ , but the other jumps occur immediately after the sojourn times
of the departing customers equal 1. By level crossing theory, the long-run average number of
downcrossings of level 0 by V̆ is equal to f̆ (0), so that the long-run average proportion of the
Poisson jumps is µ/(f̆ (0) + µ). From (17) and the discussion above we get the steady-state
probability pn that there are exactly n customers in the system:

pn = µ

µ+ f̆ (0)

∫ 1

0
[Hn(1 − x)−Hn+1(1 − x)]f̆ (x) dx + f̆ (0)

µ+ f̆ (0)
[Hn(1)−Hn+1(1)],

where f̆ has been computed above.

5. M/G/1-type and G/M/1-type storage systems with a general outflow rule

We consider the content process DG/G/1 = {DG/G/1(t) : t ≥ 0} of a storage system with
capacity 1, i.i.d. inputs whose arrival times form a renewal process, and a general outflow rule
with rate function r(·). This storage system has been frequently studied in the case of Poisson
arrivals; see [1], [8], [15], [16], [17], and [24]. The corresponding steady-state density fDM/G/1

of DM/G/1 can be obtained from the Pollaczek–Khintchine balance equation

r(x)fDM/G/1(x) = λ

∫ x

0
[1 −G(x − w)]fDM/G/1(w) dw + λπ(1 −G(x)), 0 < x ≤ 1,

where π = limt→∞ P(DM/G/1(t) = 0) is the atom of the steady-state distribution at 0 (see
also [2, Section XIV.3]). Note that π = 0 if the release rate function is such that the storage
system cannot be empty.
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Our aim in this section is to derive the steady-state law of the content level for the analogous
G/M/1-type storage system by generalizing the duality presented in Section 4. In the case of a
general interarrival time distribution for the inputs there seems to be no direct way to compute
this distribution.

We thus assume that the counting process N = {N(t) : t ≥ 0} of the input arrivals is a
renewal process whose interrenewal time distribution function G has finite mean µ−1 > 0.
The inputs (jump sizes) Y1, Y2, . . . are independent and exponentially distributed with mean
λ−1. The storage system has finite capacity 1 so that the overflows above level 1 (which are
also exp(λ)-distributed) are lost. The output is governed by a general release rate function
r : [0, 1] → [0,∞), which is a positive, continuous function on (0, 1] satisfying r(0) = 0. It
follows from these conditions that r(·) is bounded away from 0 on compact intervals in (0, 1];
in particular,

0 < H(a, b) =
∫ b

a

du

r(u)
< ∞ (19)

for 0 < a < b ≤ 1. The integral in (19) represents the time required to move from state b down
to state a provided the input process is shut off (i.e. no jumps occur). We denote the content
level process of this storage system by DG/M/1 = {DG/M/1(t) : t ≥ 0}. We do not rule out the
possibility that

H(0, x) =
∫ x

0

du

r(u)
= ∞ (20)

for all x > 0. If (20) holds, state 0 is never reached from any initial state x ∈ (0, 1]. For
example, the shot noise process has this property.

We now present a sample path construction of an M/G/1-type storage (content level) process
which is ‘dual’ to the one above. Three stages are required.

(a) The modified process D̄G/M/1. The first auxiliary process (still of G/M/1 type) is
D̄G/M/1 = {D̄G/M/1(t) : t ≥ 0}, which differs from DG/M/1 only during the dry periods.
Let T0 = 0, T1 = inf{t > 0 : DG/M/1(t) = 0}, and, for n ≥ 1, recursively, Tn+1 =
inf{t > Tn : DG/M/1(t) = 0 and DG/M/1(s) > 0 for some s ∈ (Tn, t)}. The last wet
period completed before time t ends atL(t) = TM(t), whereM(t) = max{n ∈ Z+ : Tn <
t}. The modified process D̃G/M/1 is defined by

D̄G/M/1(t) =
{
DG/M/1(t) if 0 < DG/M/1(t) ≤ 1,

−(t − L(t)) if DG/M/1(t) = 0.

Thus, during the empty periods of the underlying storage system the process D̄G/M/1 is
negative and decreases linearly with slope −1.

(b) The risk process R. The risk process R = {R(t) : t ≥ 0} is simply defined by R(t) =
1 − D̄G/M/1(t). Obviously, between its jumps R is governed by the input rate function

r̄(u) =
{
r(1 − u), 0 < u < 1,

1, u ≥ 1.

(c) The Markovian storage process D̃M/G/1. Replace every negative jump of R by a linearly
decreasing piece of trajectory with slope −1 on an interval whose length is equal to the
negative jump size. Then, replace the increasing pieces between negative jumps of R
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by positive jumps whose sizes are equal to the differences between the corresponding
peak points and trough points of R. The resulting process is denoted by D̃M/G/1 =
{D̃M/G/1(t) : t ≥ 0}. Note that, by this construction, corresponding peak points and
trough points in R and D̃M/G/1 have the same values.

The duality described here generalizes that introduced for V 1 in Section 4. Note that while the
jump sizes of Ṽ 2 are i.i.d. random variables, those of the Markovian storage system D̃M/G/1
are in general state dependent and are thus neither independent nor identically distributed.
However, regardless of the laws of the jump sizes, it is clear that the long-run average rates of
downcrossings of R and D̃M/G/1 are equal.

The duality of DG/M/1 and D̃M/G/1 is expressed in the following relation of their steady-state
laws. We have

r(1 − x)fDG/M/1(1 − x) = fD̃M/G/1
(x) for all x ∈ (0, 1)

and

lim
t→∞ P(DG/M/1(t) = 0) =

∫ ∞

1
fD̃M/G/1

(x) dx,

where fDG/M/1 and fD̃M/G/1
denote the steady-state densities of DG/M/1 and D̃M/G/1, respec-

tively. Based on this relation we can now derive the steady-state law of fDG/M/1 and of DG/M/1
using the Pollaczek–Khintchine-type equation for D̃M/G/1 and the PASTA property.

Theorem 5. It holds that

fD̃M/G/1
(x) =

⎧⎪⎪⎨
⎪⎪⎩
fD̃M/G/1

(0)

λ
K(x), 0 < x ≤ 1,

fD̃M/G/1
(0)

λ

∫ 1

0
Q(x,w)K(w) dw +

fD̃M/G/1
(0)

λ
Q(x, 0), x > 1,

where
Q1(x,w) = Q(x,w) = 1 −G(H(w, x)),

Qn+1(x, u) =
∫ x

u

Qn(x,w)Q(w, u) dw, n ≥ 1,

K(x) =
∞∑
n=1

Qn(x, 0),

and

fD̃M/G/1
(0) = λ

(∫ 1

0
K(x) dx +

∫ ∞

1

∫ 1

0
Q(x,w)K(w) dw dx +

∫ ∞

1
Q(x, 0) dx

)−1

.

Proof. The balance equation of Pollaczek–Khintchine type for fD̃M/G/1
is given by

fD̃M/G/1
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

∫ x

0
[1 −G(H(w, x))]fD̃M/G/1

(w) dw

+fD̃M/G/1
(0)[1 −G(H(0, x))], 0 < x ≤ 1,

λ

∫ 1

0
[1 −G(H(w, x))]fD̃M/G/1

(w) dw

+fD̃M/G/1
(0)[1 −G(H(0, x))], x > 1.
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The density on the left-hand side is equal to the long-run average number of downcrossings
of level x per unit time. Let us show that the right-hand side is equal to the corresponding
long-run average number of upcrossings of x. Here λ is the arrival rate, and the integral is the
probability that the state just before the jump is less than x and just after the jump is greater
than x. Here we condition on D̃M/G/1 being equal to w just before the jump; then we need the
probability that a jump starting at w is of size greater than x −w. The time it takes for the risk
process R to reach level x from level w is H(w, x). For the jump to cross x, the interarrival
time (with distribution functionG) has to exceedH(w, x) so that the probability in question is
given by 1 −G(H(w, x)). The other term on the right-hand side covers the case that a jump
from level 0 upcrosses x.

For x ∈ (0, 1], we have

fD̃M/G/1
(x) =

∫ x

0
Q(x,w)

[∫ w

0
Q(w, u)fD̃M/G/1

(u) du+
fD̃M/G/1

(0)

λ
Q(w, 0)

]
dw

+
fD̃M/G/1

(0)

λ
Q(x, 0)

=
∫ x

0
Q2(x, u)fD̃M/G/1

(u) du+
fD̃M/G/1

(0)

λ
Q2(x, 0)+

fD̃M/G/1
(0)

λ
Q(x, 0)

= · · ·

=
fD̃M/G/1

(0)

λ
K(x).

It is not difficult to show that

0 ≤ Qn(x,w) ≤ λn(x − w)n−1

(n− 1)! ,

so that the series for K(x) is convergent and
∫ x

0 Qn(x, u)fD̃M/G/1
(u) du → 0 as n → ∞. For

x > 1, we obtain

fD̃M/G/1
(x) =

fD̃M/G/1
(0)

λ

∫ 1

0
Q(x,w)K(w) dw +

fD̃M/G/1
(0)

λ
Q(x, 0).

We can now compute fD̃M/G/1
(0) from the normalizing condition

∫ ∞
0 fD̃M/G/1

(x) dx = 1. The
proof is complete.

We conclude this section by stating an important relation for the peak points, i.e. local
maxima, of the content process of the G/M/1-type storage system. Denote the successive
heights of these peak points by P1, P2, . . . and their steady-state density by fPP (x).

Theorem 6. The steady-state densities of P1, P2, . . . and of DG/M/1 are related as follows:

fPP (x) = r(x)fDG/M/1(x), x ∈ (0, 1). (21)

Proof. The right-hand side of (21) is equal to the long-run average rate of downcrossings
of level x by DG/M/1. This rate is the same as the long-run average rate of upcrossings of
level 1 − x by the risk process R defined above, which in turn is equal to the long-run average
rate of downcrossings of level 1 − x by D̃M/G/1. This latter downcrossing rate is given by
fD̃M/G/1

(1−x). By the PASTA property, fD̃M/G/1
is also the steady-state density of the sequence

of trough points (local minima) of our special M/G/1-type storage system. But this is just the
sequence 1 − P1, 1 − P2, . . . . Therefore, r(x)fDG/M/1(x) = fD̃M/G/1

(1 − x) = fPP (x).
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Figure 3: Typical sample paths of the processes D̄G/M/1, R, and D̃M/G/1 connected by the duality.

An illustration of the proof is given in Figure 3(a)–(c). The heights of the peak points
P1, P2, P3, . . . and of the trough points B1, B2, B3, . . . in Figure 3(a) correspond to those in
Figure 3(b) through the relations P̄i = 1 − Bi and B̄i = 1 − Pi , and the same P̄is and B̄is
appear in Figure 3(c).

Equation (21) relates the steady-state density of a continuous-time non-Markovian content
process (of G/M/1 type) to that of a subsequence taken at discrete time instants (the peak
points).

6. An example

The results for the G/M-type systems derived by the duality approach are explicit; however,
the stationary densities are given in terms of infinite series of convolutions. In special cases
more convenient formulae can be determined. We finally present an explicit computation: we
determine the LST of the busy period of queueing model 1 in the E2/M/1 case. The same
derivation also works for Erl(k, λ), leading to k linear equations.

Consider queueing model 1 with Erl(2, 2λ) interarrival times (so that each exponential
phase has rate 2λ and the arrival rate is λ) and exp(µ)-distributed service times. We know from
Section 4 that the distribution of the busy period is the same as that of the time B between
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two overflows in the corresponding Ṽ 2 process of the modified queueing model 2 with Poisson
arrivals of rate µ, service distribution function G having the density g(x) = e−2λx(2λ)2x, and
deleted idle periods.

We define the stopping time τ = inf{t > 0 : Ṽ 2(t) ∈ {0, 1}} and use the following notation:

ϒ(β) = Ee−βB,
ψx(β) = E(e−βB | Ṽ 2(0) = x) = Ex(e

−βB),
φ∗(x;β) = Ex(e

−βτ1{Ṽ 2(τ )=0}),

φ∗(x;β) = Ex(e
−βτ1{Ṽ 2(τ )=1}),

�(β) =
∫ 1

0
ψx(β) dG(x) =

∫ 1

0
Ex(e

−βB)e−λxλ2x dx,

�∗(β) =
∫ 1

0
Ex(e

−βτ1{Ṽ 2(τ )=0})e
−λxλ2x dx,

�∗(β) =
∫ 1

0
Ex(e

−βτ1{Ṽ 2(τ )>1})e
−λxλ2x dx.

The above functions are connected by the renewal-type equation

ψx(β) = φ∗(x;β)+ φ∗(x;β)[e−2λ + 2λe−2λ] + φ∗(x;β)�(β), 0 < x ≤ 1. (22)

The first term on the right-hand side of (22) is the improper LST of B restricted to the set
{Ṽ 2(τ ) = 1}. The second term is the improper LST of B restricted to the set {Ṽ 2(τ ) = 0, the
jump size at time τ is at least 1}; note that 1 −G(1) = e−2λ + 2λe−2λ. The third term is the
contribution of the case in which Ṽ 2(τ ) = 0 and the instantaneous jump at time τ goes to some
y < 1.

Multiplying both sides of (22) by e−2λx(2λ)2x and integrating over [0, 1), we obtain

�(β) = �∗(β)+ [e−2λ + 2λe−2λ]�∗(β)+�∗(β)�(β). (23)

Solving for �(β) in (23) yields

�(β) = �∗(β)+ [e−2λ + 2λe−2λ]�∗(β)
1 −�∗(β)

. (24)

By (24) and (22),

ψx(β) = φ∗(x;β)+ φ∗(x;β)[e−2λ + 2λe−2λ]

+ φ∗(x;β)�
∗(β)+ [e−2λ + 2λe−2λ]�∗(β)

1 −�∗(β)
. (25)

In particular, note that the LST of B is given by

ϒ(β) = ψ1(β)

= φ∗(1;β)+ φ∗(1;β)[e−2λ + 2λe−2λ]

+ φ∗(1;β)�
∗(β)+ [e−2λ + 2λe−2λ]�∗(β)

1 −�∗(β)
. (26)
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The functionals �∗(β) and �∗(β) are simple integrals containing φ∗(x;β) and φ∗(x;β), so
we only need to compute the latter functionals. To determine φ∗(x;β) and φ∗(x;β), we use a
suitable Kella–Whitt martingale [18]. Take Z(t) = Ṽ 2(t)+ (β/α)t for fixed β > 0. Then

M̃(t) = (ϕ̃(α)− β)

∫ t

0
e−αZ(u) du+ e−αZ(0) − e−αZ(t) (27)

is a martingale for t ≤ τ , where the exponent for the case of Erl(2, 2λ) jumps is given by

ϕ̃(α) = α − µ

[
1 −

(
2λ

2λ+ α

)2]
.

Applying the optional sampling theorem to the stopping time τ we obtain the equation[
α−µ

(
1 −

(
2λ

2λ+ α

)2)
−β

]
E

(∫ τ

0
e−αṼ 2(u)−βu du

)
= −e−αa + E(e−αṼ 2(τ )−βτ ). (28)

For fixed β > 0, the function ϕ̃(α)− β has three real roots αi(β), i = 1, 2, 3, which satisfy

α1(β) > 0 > α2(β) > −2λ > α3(β). (29)

The αi(β) are the match points of the function (2λ/(2λ + α))2 and the linear function 1 +
β/µ− α/µ; it is easily seen that there are exactly three such points and that they satisfy (29).
Next, from the memoryless property, either Ṽ 2(τ )− 1 � Erl(2, 2λ) if level 1 is upcrossed by
the first phase of the jump, or Ṽ 2(τ )− 1 � exp(λ) if level 1 is upcrossed by the second phase
of the jump. Let F1 (F2) be the event that level 1 is upcrossed by the first (second) phase of the
jump. Then, for 0 < x ≤ 1,

Ex(e
−αV1(τ )−βτ ) = θ0(x;β)+ e−α

(
2λ

2λ+ α

)2

θ1(x;β)+ e−α 2λ

2λ+ α
θ2(x;β),

where
θ1(x;β) = Ex(e

−βτ1F1), θ2(x;β) = Ex(e
−βτ1F2).

Thus, the left-hand side of (28) yields the three linear equations

e−αi(β)x = φ∗(x;β)+ e−α
(

2λ

2λ+ αi(β)

)2

θ1(x;β)

+ e−α 2λ

2λ+ αi(β)
θ2(x;β), i = 1, 2, 3, (30)

for the three unknowns θ1(x;β), θ2(x;β), and φ∗(x;β). The solution of this set of equations
is available via computer algebra. However, the explicit formulae are lengthy and not very
illuminating. Finally, by definition,

φ∗(x;β) = θ1(x;β)+ θ2(x;β).
Thus, in view of (25) and (26), we have all the components of ϒ(β).

Remark. In the above computation we have inserted the roots αi(β) in (28). However, (28)
is derived from (27) and, thus, at first glance, only valid for Re α > 0. This difficulty can,
however, be overcome by analytic continuation. The function α 	→ ϕ̃(α) − β is analytic on
C \ {−2λ}. The function α 	→ E(

∫ τ
0 e−αV4(u)−βu du) is easily seen to be analytic for all α ∈ C.

Thus, after multiplication by 2λ+α, (30) becomes an identity between analytic functions which
holds for Re α > −2λ and, thus, by analytic continuation, for all α ∈ C \ {−2λ}. In particular,
we may insert α = αi(β) into (28) so that (30) is valid.
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7. Concluding remarks

In this study we have presented a duality that allows us to derive the characteristics of
G/M/1-type models with restrictions on the accessibility from those of their ‘dual’M/G/1-type
counterparts with different restrictions, for which their Markovian structure can be exploited.
We have considered the two most prominent such systems (truncated service time policy and
bounded waiting time policy) and derived for the G/M/1 version of the first system the steady-
state distributions of the workload, the number of customers present in the system, of busy
and idle periods, and of the times between overflows via its duality with a restricted M/G/1
version of the second type of system. Other types of access restrictions require modifications
in the duality constructions which may make the computations for the dual Markovian systems
difficult (or even impossible). For example, in the case of quasirestricted accessibility the part
of an incoming service requirement above the threshold is not totally refused but only a certain
(random or deterministic) fraction is added to the workload. The G/M/1 version of this system
has a dual modified M/G/1 system of our type 2 in which at the end of every busy period a new
one is initiated immediately by a new customer whose service time distribution is that of the
corresponding fraction of an exponential random variable. This dual system seems amenable
to an analysis similar to the one given in this paper. Another (more challenging) problem is the
generalization of the duality approach to random thresholds. As mentioned in the introduction,
queueing model 2 can also be viewed as the customer impatience systems M/G/1 + D or
G/M/1 + D, and it would be interesting to treat the case of random impatience via duality.

Queueing model 2 also appears in perishable inventory systems, where the process Ṽ 2 (in
which the idle periods are deleted) can be interpreted as the so-called virtual outdating process
of the stored perishable items (see the inventory model in [22]). In the latter case, if the value
of an item is not constant over time but depends on its age via a certain function, the constant
release rule of queueing model 2 has to be replaced by a general release rule [22]. The duality
methods seem to be applicable to this model.
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