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In [1] the first author considered the following Engel-like condition for a pair of
elements x, y of a group G.

There exist r = r(x, y) ^ 0 and d = d(x, y) ^ 1 such that\x, ry] = [x, r+</>>]. (*)

He studied the situation where (*) is satisfied by all pairs of elements in a soluble group
and proved that this is precisely equivalent to the group being locally finite-by-nilpotent,
a result analogous to the fact, established by Gruenberg in [3], that a soluble Engel
group is locally nilpotent.

Just as in the case of the stronger Engel condition, (*) gives rise for an arbitrary
group to two sets of elements: A(G), the set of all y in G such that (*) holds for all x in
G, so that A(G) contains the set L{G) of all left Engel elements of G, and B{G), the set of
all x in G such that (*) holds for all y in G, so that B(G) contains the set R(G) of all
right Engel elements of G. Moreover, as in [4], one can show that xeB(G) implies
X-leA{G).

The object of this paper is to study some of the properties of A(G) and B(G) for
soluble groups G. In [3] Gruenberg showed that if G is a soluble group both L{G) and
R(G) are subgroups. However it is not hard to see (Example 1) that A(G) is not in
general a subgroup, not even for metabelian groups G. Not all is lost though; for any
group G, if we define A*(G) to be the set of all z in G such that (*) holds for all powers
y = z' of z and all x in G, then we have, as a direct consequence of the proof of
Proposition 2 below, the fact that:

If G is a locally soluble group then A*(G) is a subgroup, in fact the unique largest
normal locally finite-by-nilpotent subgroup of G.

For B(G) the situation is better. As our first main result we prove:

Theorem A. Let G be a locally soluble group. Then B(G) is a characteristic subgroup
ofGandB{G/B(G))=l.

In [2] the second author proved that in a finitely generated soluble group G the set
of right Engel elements coincides with the hypercentre ZX(G) of G. Using the same basic
method we shall prove:
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Theorem B. Let G be a finitely generated soluble group. Then F(G)£B(G) and
= ZJG/F(G)).

Here F(G) denotes the subgroup generated by all finite normal subgroups of G.

The behaviour of Engel-like elements is well-illustrated by the class of abelian-by-
cyclic groups. Let A be a torsion-free abelian normal subgroup of a group H so that
there is an element x in H with H = (A,x). The following example shows that it is
possible for x to lie in A(G) without x"1 doing so.

Example 1. Let

and let

fi 0
0

As — 1 + x = ( — 1 +x)5 we see that xeA(H). However

and | ( - 1 - I ) / 2 | < 1 . So ( - 1 +*-1)p = ( - l + x~1)r+<' if and only if d=0. Hence
l

On the other hand making the stronger assertion that xeA*(H) is enough to ensure
that x is actually a left Engel element of H and so <x>^L(H). This is immediate from
the following basic result about Engel-like elements.

Lemma 1. ([1, Lemma 1]). Let A be a torsion-free abelian group and let Y be a cyclic
subgroup of Aut(/4). Assume that for each aeA and each yeY there exist positive integers
r<s such that a

{~l+y)r = a(~l+y)'. If Y is finite then 7=1 ; if Y is infinite then for each
aeA there exists a positive integer r = r(a) with a{~l+y)r = I for all yeY.

Lemma 1 can also be used as follows to deduce that if x e B(H) then it is also a left
Engel element.

Lemma 2. Let A be a torsion-free abelian normal subgroup of a group H and let
xeB(H). Then for all aeA there exists a positive integer r=r(a,x) such that a{~l + x)r=l.
Moreover if x' e C^a) for some t ̂  1 then [a, x] = 1.
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Proof. For as A and iel we have [x,Jtx'fl] = [x,a, t_1x'] . Hence there exist positive
integers r = r(i,a)<s=s(i,a) such that

and so

So Lemma 1 implies a1 1 +* ) r=l for some r — r(l,a), and [a,x] = l if x'sC^a) for some

Proofs. Our first objective will be to prove the first part of Theorem A which we
split off as:

Proposition 1. Let G be a locally (soluble-by-finite) group. Then the set B(G) is a
subgroup.

This fact will be deduced from:

Proposition 2. Let H be a locally (soluble-by-finite) group. Then the subgroup
generated by finitely many elements of B(H) is finite-by-nilpotent.

To facilitate notation, let SF and UF respectively denote the classes of finite-by-
nilpotent and locally (finite-by-nilpotent) groups.

We shall need the following factorisation theorem.

Lemma 3. Let r = <x1;...,xn> be an ^-group. Then r = (y1)---(ym) where
yis{xl,...,xn)for all i.

Proof. As the torsion subgroup of F is finite, it lies in a product of finitely many
subgroups <x,->, so assume that F is torsion-free nilpotent of class c, say. Let A = yc(T).
By induction on c we have r/A = (Ayl}---(Aym) where each yt is some x,-. Setting
^> = <J'i)"<J'm) w e thus have T = AP. Now there exist elements ai = [gi,hi~] where
gj6 7c_i(r). hjST and /4 = <a!>-<as>. For each r e Z we have aj = [gj,/ii]. As gj and h{

are contained in AP, we have a^ePPPP and so A is contained in a product of cyclic
subgroups generated by some x,.

Lemma 3 is a variation on Proposition 1 of Kropholler [5]. Here though, by
restricting to J*-groups, it is possible to be more precise about the generators of the
cyclic subgroups in the factorisation. This is necessary because in Lemma 4 we are given
information only about a particular generating set, and not about all elements, of F.

Lemma 4. Let r = <x1; ...,xB> be a finitely generated 3P-group and let A be a finitely
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generated ZT-module. Suppose that aZ<x,-> is a finitely generated Z-module for every
aeA, I ^ I ^ H . Then A is a finitely generated Z-module.

Proof. By Lemma 3, we have F = <j,>•• • <ym> where each y} is some x(. Let aeA.
Then aZF = aZ<>>1>--<ym> and so a simple induction shows that aZT is a finitely
generated Z-module. The result follows as A is finitely generated as ZF-module.

The next result provides a sufficient criterion for a finitely generated soluble group to
act nilpotently.

Lemma 5. Let A be a free abelian group of finite rank acted upon by a finitely
generated soluble-by-finite group F = <x,,...,xn>. Suppose for each l ^ i ^ n and each aeS
that [a, rx,] = 1 for some r = r(a, i) ^ 1. Then I A, ,F] = 1 for some t^l.

Proof. It is enough to show that if F acts faithfully and rationally irreducibly on A
then r = l . By Mal'cev's Theorem (see [7]), F is abelian-by-finite, so there exists an
abelian normal subgroup Fo of F of finite index m. This implies that F1 = <x™,...,x™>r

is abelian and can be generated by finitely many elements each of which has the form
y = (x?)y for some i and yeT. Moreover for any aeA there is a positive integer r such
that [a,,y] = l.

By Clifford's Theorem, /4®<Q is a direct sum of irreducible QF1-modules. Since F t is
abelian and generated by elements acting unipotently, it acts trivially on such a simple
QFj-module, so Fj = 1. Hence F is finite and Lemma 2 finally implies F = 1.

We can now prove Proposition 2. Note that the following argument also proves the
statement about A*(G) in the introduction, provided that the definition of A*(G) is
appealed to, instead of Lemma 2.

Proof of Proposition 2. Let H be a counterexample and let xl,...,xneB(H) be such
that <x!,...,xn> is not an J*-group. Without loss we may assume H = (x1,...,xn}. As
finitely generated J*-groups are finitely presented, we may assume that every proper
quotient of H is an J^-group. Let A be a nontrivial abelian normal subgroup of H. As
H/A is finitely presented, A is a finitely generated Z(H/A)-module. So Lemma 2 and
Lemma 4 imply that A is a finitely generated abelian group. By the choice of H the
group A is torsion-free and so Lemma 5 implies A^Z,(H) for some t ^ l . If TJA
denotes the torsion subgroup of H/A then TJA is finite and the above implies that 7\ is
an J*-group. In particular the torsion subgroup T2 of T, is finite, so T2 = 1 again by the
choice of H. This implies that H is nilpotent, a final contradiction.

In order to deduce Proposition 1 from Proposition 2, we need another series of
lemmas.

Lemma 6. Let u and v be elements of a group G and let O^r^co. Then
<[II, ki>] 10 ̂  k ̂ r> = (u"* 10^ k £ r>.
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Proof. By induction on k one proves that [u, kv] is a product of elements of the form
u"1 and their inverses where j ^ k and there is exactly one such term with j = k. The result
follows.

Lemma 7. Let G be a group, let a,beB(G) and let xeG. Define

N = <la,kx], [a,**"1], [.b,kxl [b^x

and set l/ = <N,x>. Then N and U are finitely generated and N is a normal subgroup of
U.

Proof. As a,beB(G), only finitely many of the generators of N are distinct.
Moreover, Lemma 6 implies N = (a**, b* \ k e Z> and hence N = NX.

Lemma 8. U/N' is an 3P -group.

Proof. Let U = U/N'. We show that every pair of elements in U satisfies (*). As U/N
is abelian, it suffices to show that for any ceN and every power x' of x there exist
positive integers r<s such that [c,,jc'] = [c,sx

r\. As N is abelian, it will be enough to
prove this for all elements c contained in some system of generators of N. For example,
let c = [a)ltx

e] where e=±l. As aeB{G), there exist r<s such that [a,rx
r] = [a,rx'].

Hence we have

[c, rxT = [a, kx\ ^ = [a, rx', kx^ = [a, ,x', tx ' ] = [c, ,x']

as U is metabelian. The claim now follows from Lemma 7 and the main result of [1].

Proof of Proposition 1. Let a,beB(G) and let xeG. Adopting the notation of
Lemma 7, we know that U/N' is an ^"-group. Moreover, Lemma 7 and Proposition 2
imply JVe#. Finally, a result of Hall type due to Lennox [6] implies U&2F and the
claim follows.

Factoring out the hypercentre of a group always yields a group with trivial
hypercentre. We now prove that there is a corresponding result for the function B.

Proposition3. Let H be a locally (soluble-by-finite) group. If H/B(H)eL& then

Proof. Let K be a counterexample and let L be a finitely generated subgroup of K
that is not an ^"-group. As L n B(K) ^ B(L), we infer from the main result of [1] that
L/BjL) e &. So we may assume K is finitely generated. If R = K/N is a quotient of K
then B(K)^B(K) implies K/B(K)e&. Thus, as in the proof of Proposition 2, we may
assume that every proper quotient of K is an i^-group. Moreover B(X)# 1.
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Now Proposition 1 implies that B(K) is a subgroup, and so we can choose a
nontrivial abelian normal subgroup N of K contained in B(K).

We may choose N to be either torsion or torsion-free, so first assume that N is a
torsion group, let aeN, a # l and let xeK. As aeB(K), the subgroup <[a,*x]|/c^0> of
N is finitely generated and so it is finite. Now Lemma 6 implies that a has only finitely
many conjugates of the form a*k and so some nontrivial power of x centralises a. Hence
[1, Lemma 3] implies that a has only finitely many conjugates in K and so K has a
nontrivial finite normal subgroup F. As K/F is finite-by-nilpotent, the claim follows.

Now allow N to be torsion-free and let T/N be the torsion subgroup of K/N. So T/N
is finite and Lemma 1 implies AT^Z(T). Hence 7" is a finite normal subgroup of K and,
as above, we see that T is torsion-free abelian. Moreover K/T is torsion-free nilpotent.

We now show that K satisfies an Engel condition. Let x,yeK. Then b = [x, t_y] e T for
some k^l. As T/N is finite, we have b"eN for some n ^ l . Now Lemma 1 implies
U>",ly] = \ as b"eB(K). As T is abelian, this yields [fe,,y]n = l and we get [x,t+,y]" = l.
But T is torsion-free and so [x,k+jy] = l. This shows that K is nilpotent, a final
contradiction.

Proposition 4. Let G be a locally (soluble-by-finite) group. Then B(G/B(G)) = 1.

Proof. Let R/B(G) = B(G/B(G)) and let aei*. For xeG we consider l/ = <a,x> and
U = UB(G)/B(G). As deB(U), we infer that £7/B(£7) = <xB(£7)> is cyclic. Hence Proposi-
tion 3 shows UeUF and another application of Proposition 3 proves UsUF'. Hence
there exist r<s such that [a,,_x] = [a,sx] and so aeB(G) as required.

This proves Theorem A. For Theorem B we need some more preparation.

Lemma 9. Let G be a finitely generated group and let P(G) be the join of all normal
poly cyclic subgroups of G. Then G/P(G) contains no nontrivial poly cyclic normal
subgroups.

Proof. Let P=P(G) and let xeG\P such that (xG}P/P is polycyclic. Let
G = <gr

1,...,gn> and <xG>P = <x1,...,xm>/> with Xj = x. Consider the subgroup U =
<X!,...,xm, [Xj .g /^ l lg igm, l^j^n). So U is finitely generated and U/UnP is
polycyclic. Thus U n P is finitely generated as a [/-group.

Let V=(U r\P)G, so V is finitely generated as a G-group and because V^P, it is
polycyclic. We claim that W= F<x 1;...,xm> is a normal subgroup of G. In fact, it is
enough to establish that W9?' ^ W for each j . Since V is normal in G, we only need to
prove xft'eW. We have xf/'^x.Cx,-,^1]. Now [xj,gjtl]eC/g<x1,...,xra>i) by defini-
tion of U. Hence we get \_xi,gfl~\ = hlh2 for some /i1e<x1,...,xm> and h2eP. Now
/j2 = /ir1[x1.,£jtl]e£/ implies J j 2 e l / n P ^ Fand so x f 6x,/ i 1Ks<xl v . . ,xB)K= W

We now prove that W is polycyclic. Indeed, we have
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by Dedekind's law, and so H^nPis polycyclic. Moreover, by definition of W we have
W/WnP^(xu...,xmyP/P, so W/WnP is polycyclic and hence Wis polycyclic.

As xe W and W is normal in G, we have ( x c ) | H ( So <xG> is a polycyclic normal
subgroup of G and thus xeP.

Proof of Theorem B. Let C/F{G) = ZX(G/F(G)) and suppose C^B(G). Let D/C be a
nontrivial abelian normal subgroup of G/C with D ^ B(G). We are going to construct a
certain ZG-module M of the form M = (xG}C/C for some xeD\C. Indeed, if D/C
contains an element xC of prime order, then we choose this x. Otherwise we choose any
element xeD\C. For aeM, yeG we have [a,ry] = [a,,y] for some r<s and Lemma 1
implies that a is annihilated by f(y) where / is some nontrivial integral polynomial.
Hence M is a finitely generated constrained ZG-module in the sense of [2] and hence M
is a finitely generated abelian group. In particular, M is a polycyclic normal subgroup of
G/C. Now a threefold application of Lemma 9 shows that F(G), C and finally <xc> C lie
in P. In particular <xG> is finitely generated and xeB(G) implies that <xG> is
finite-by-nilpotent. Let T be its torsion subgroup. By Lemma 5, applied to the upper
central factors of <xc>/T (which are torsion-free), we have [<xG>,,G] g T for some t ^ 1.
But T<LF(G) and so <xGyF(G)/F(G)g:C/F(G). Thus xeC, a contradiction.
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