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Abstract. We have put on CDS a catalog containing 561 evolutionary models of binaries:
J/A+A/487/1129 (Van Rensbergen+, 2008). The catalog covers a grid of binaries with a B-
type primary at birth, different values for the initial mass ratio and a wide range of initial
orbital periods. The evolution was calculated with the Brussels code in which we introduced
the spinning up and the creation of a hot spot on the gainer or its accretion disk, caused by
impacting mass coming from the donor. When the kinetic energy of fast rotation added to the
radiative energy of the hot spot exceeds the binding energy, a fraction of the transferred matter
leaves the system: the evolution is liberal during a short lasting era of rapid mass transfer. The
spin-up of the gainer was modulated using both strong and weak tides. The catalog shows the
results for both types. For comparison, we included the evolutionary tracks calculated with the
conservative assumption. Binaries with an initial primary below 6 M� show hardly any mass
loss from the system and thus evolve conservatively. Above this limit differences between liberal
and conservative evolution grow with increasing initial mass of the primary star.
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1. Introduction
Codes calculating conservative evolution of binaries have been developed by e.g.

Paczyński (1967a,b), Kippenhahn, & Weigert (1967), Kippenhahn et al. (1967) and
Nelson & Eggleton (2001). Mass loss during liberal evolution is defined by a quantity
β giving the fraction of mass lost by the donor (subscript d) that is accreted by the
gainer (subscript g):

Ṁg = −β Ṁd with 0 � β � 1 (1.1)

Conservative evolution is thus characterized by β = 1. Liberal evolution further de-
pends on the amount of angular momentum which is taken away by the matter that
leaves the system. This is characterized by Podsiadlowski et al. (1992) as a quantity α,
determined by the location where the mass leaves the system. Our liberal code assumes
that matter is lost from the hot spot on the gainer (or accretion disk around it) so that
the escaping matter removes only the angular momentum of the gainer’s orbit. In that
case one obtains a time dependent value of α:

α =
(

Md

Mg + Md

)2

(1.2)

A typical value of α during the fast and liberal era of Roche lobe overflow during H
core burning of the donor (RLOF A) is then α ≈ 0.25 (q ≈ 1). When this liberal era is
succeeded by a fast and liberal era of RLOF B during H shell burning, the value of α
turns out to be much smaller and can easily be calculated from relation (1.2).
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Figure 1. Geometry of a semi-detached binary, showing the impact parameter d and the impact
point P at the equator of the gainer or at the edge of its accretion disk. The lines of sight at
different orbital phases are indicated by arrows.

Values of β < 1 were proposed by Meurs & Van den Heuvel (1989) in order to theoret-
ically reproduce the observed numbers of persistent strong massive binary X-ray sources
and the number of observed Wolf-Rayet binaries. Binary evolutionary calculations with
constant values of β (e.g. β = 0.5) were then reproduced by various authors, e.g. De
Loore & De Greve (1992).

Although mass loss from binaries is needed in evolutionary theory, it would be as-
tonishing that β does not depend on the mass transfer rate. It is more plausible that
evolution of semi-detached binaries remains conservative (β = 1) during the long lasting
quiet eras of slow RLOF, and that mass can only be lost from the system (β < 1) during
short lasting violent eras of rapid mass transfer.

Calculations yielding time dependent behavior of β for massive binaries have been
published by Wellstein et al. (2001), showing binary evolution which is conservative
most of the time but severely liberal during epochs of fast mass transfer. A scenario for
liberal evolution of binaries with an intermediate mass primary at birth was discussed by
Van Rensbergen et al. (2008, 2010a,b). Spin-up and hot spots created on the gainer by
mass transferred from the donor can drive mass out of a binary. The scenario is discussed
in detail in this contribution.

2. Geometry of the system
Spin-up of the gainer and the creation of a hot spot on the gainer’s equator are caused

by the impact of RLOF-material starting from the first Lagrangian point L1 and im-
pacting at P as is shown in Fig. 1. This figure also illustrates that the hot spot is turned
towards the observer near phase Φ = 0.75 only, as already stated by Peters (2001) for
six Algols with a main sequence B-type gainer. Moreover, when the criterion of Lubow
& Shu (1975) shows that the gainer is surrounded by an accretion disk, the point P is
located at its edge.

3. The spin-up of the gainer
Conservation of angular momentum spins the gainer up due to the impact of RLOF-

material coming from the donor. Mass located near the gainer’s equator gets loosely
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Figure 2. Spin-up of the gainer of a (6+3.6)M� binary with an initial period of 3 days.

bound when the gainer rotates rapidly. The spinning-up of the gainer is characterized by
an enhancement of its rotational angular momentum ∆J+

g which is given in cgs-units by
Packet (1981), corrected with the impact-parameter d shown in Fig. 1:

∆J+
g = 6.05 × 1051 ×

[
Rg

R�

] 1
2

×
[

Mg

M�
+

∆Mg

2 M�

] 1
2

× ∆Mg

M�
× d

Rg
(3.1)

This spin-up is, however, counteracted by tidal interactions which were first studied
by Darwin (1879). The formalism for tidal downspinning is taken from Zahn (1977), who
gives a suitable approximation for the synchronisation time-scale:

τsync (yr) = q−2 ×
[

a

Rg

]6

(3.2)

This expression uses the semi-major axis a of the binary and a mass-ratio q, in which
the star that has to be synchronized is in the denominator. This is the gainer in our
case, so that q = Md

Mg
. Tidal interactions modulate the angular velocity of the gainer ωg

with the angular velocity ωorb of the system. According to Tassoul (2000) one can write:

1
ωg − ωorb

× dωorb

dt
= − 1

τsync × fsync
= − 1

tsync
(3.3)

Using the moment of inertia Ig of the gainer we find the expression which was used by
Detmers et al. (2008) in their scenario for liberal evolution of massive close binaries:

∆J−
g = Ig × (ωorb − ωg ) ×

[
1 − e

( −∆ t
τ s y n c ×f s y n c

)
]

(3.4)

Tidal interactions spin the gainer down when ωg > ωorb . Tides spin the gainer up
when ωg < ωorb . Weak tidal interactions are represented with fsync = 1 whereas fsync =
0.1 implies strong tides. When the upspinning stops at the end of RLOF, tidal interac-
tions settle the system into a situation with ωg = ωorb . Expression (3.4) then implies
that ∆J−

g = ∆J+
g = 0. Synchronisation is achieved and angular momentum remains

conserved. One sees in Fig. 2 that the gainer is spun up to critical velocity quickly during
the rapid era of mass transfer when core H-burning of the donor is at work. This is the
case for slow tidal interaction as well as for a binary undergoing strong tides. During the
slow phase of mass transfer the rotation of the gainer synchronizes rapidly in the case
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of strong tidal interaction. In the case of weak tidal interaction, synchronization is never
achieved before the onset of RLOF B. The rotation of the gainer spins up again towards
critical velocity when a second era of fast mass transfer occurs during H-shell burning
of the donor. Rapid rotation favors the gainer to lose mass into interstellar space. The
example shown in Fig. 2 turns out to evolve marginally liberal.

4. The gainer’s hot spot
The temperature of the hot spot is conditioned by that part of the accretion luminosity

that can be transformed into radiation. It is customary to define the accretion luminosity
by its value that it would have if L1 is located at infinity: L∞

acc = G×Mg ×Ṁd

Rg
. The position

of L1 in a semi-detached binary is however not located at infinity but determined by the
geometry shown in Fig. 1. Using the values of the potential energy U in the co-rotating
system, the real accretion luminosity for a semi-detached binary is thus given by:

Lacc = U(L1) − U(P ) = D × L∞
acc with 0 < D < 1 (4.1)

The quantity D is zero for a contact system with a gainer which is not spun up and
does not show a hot spot. Values of D are shown in the last column of Table 1 for the 13
semi-detached binaries that were used for the calibration of the hot spot characteristics.

The efficiency of the liberal scenario is further defined by the value of the factor of
radiative efficiency K̃ which defines the radiation pressure caused by Lacc in the small
surface area of the hot spot. van Rensbergen et al. (2010a) showed that in the case of
direct impact on the gainer’s equator, the quantity K̃ can be calculated with:

K̃ =
[ Rg

R�
]
2
× [T 4

spot − T 4
ef f ,g ]

La c c

L�
× (5770)4

(4.2)

There are only 13 systems found in the literature with sufficiently reliable observed
data to evaluate the quantity K̃ from relation 4.2. According to the criterion of Lubow
& Shu (1975) ten systems are direct impact systems, while three others have a transient
accretion disk. In the case of the formation of a hot spot on the edge of an accretion
disk we have to replace in Eq. (4.2) Rg by Rdisk . We further replaced Tef f,g by Tdisk

for β Lyr with an opaque and optically thick accretion disk. Two other systems have
a transparent and optically thin accretion disk so that their hot spot is observed as a
region with a higher temperature as the underlying stellar surface. Table 1 contains the
data for 13 interacting binaries that enable us to find a tentative evaluation of K̃, with a
(rather poor) best fit as a function of the total mass of the system. The values mentioned
in Table 1 are taken from van Rensbergen et al. (2010b) and references therein.

K̃ = 3.9188 ×
[

Md

M�
+

Mg

M�

]1.645

(4.3)

5. The catalog
The tentative calibration of K̃ shown in Eq. (4.3) luckily differs only slightly from the

expression found by van Rensbergen et al. (2010a) with data for 11 interacting binaries.
The latter expression was used to construct the catalog. The catalog covers a grid of
binaries between 3 and 15 M� for the initially most massive component, different values
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Table 1. Data used to determine K̃ for 13 semi-detached binaries. The first ten binaries are
direct impact systems, the last three lines contain disk systems.

System Md + Mg Rd + Rg Te f f , d Te f f , g dM/dt TS p o t K̃ D

VW Cep 0.90 + 0.25 0.93 + 0.50 5000 5200 8.769E-08 7076 6.528 0.0445
AR Boo 0.35 + 0.90 0.65 + 1.00 5398 5100 1.484E-07 5539 1.064 0.0535
CN And 1.30 + 0.51 1.43 + 0.92 6500 5911 1.215E-07 6485 8.251 0.0261
KZ Pav 0.80 + 1.20 1.66 + 1.50 5000 6500 2.629E-08 7357 12.544 0.280

V361 Lyr 1.26 + 0.87 1.02 + 0.72 6200 4500 2.178E-07 11021 5.185 0.156
RT Scl 1.63 + 0.72 1.67 + 1.02 7000 4800 9.500E-08 9300 36.363 0.0923
CL Aur 1.35 + 2.24 2.51 + 2.58 6323 9420 1.302E-07 10598 45.080 0.178
U Cep 1.86 + 3.57 4.40 + 2.41 4975 11215 5.092E-07 30000 305.631 0.577
U Sge 1.99 + 5.45 5.64 + 4.11 5500 12250 2.036E-06 20000 49.185 0.510

SV Cen 8.56 + 6.05 5.90 + 5.00 14000 23000 1.626E-04 37580 211.238 0.0297

System Md + Mg Rd + Rd i s k Te f f , d +Te f f , g Td i s k + Te d g e , d i s k dM/dt TS p o t K̃ D

SW Cyg 0.50 + 2.50 4.30 + 3.44 4891 + 9000 6308 + 4968 2.130E-07 13060 106.032 0.587
V356 Sgr 3.00 + 11.00 13.20 + 9.07 8600 + 16500 6174 + 4299 4.442E-07 17050 659.326 0.561

β Lyr 4.25 + 14.1 16.70 + 15.88 13000 + 28000 18279 + 8919 3.440E-05 22590 135.355 0.446

for the initial mass ratio and a wide range of initial orbital periods so that cases A and
B are well represented. The evolution of every binary was calculated so as to allow mass
to leave the system when the added energy of rapid rotation and radiation from a hot
spot exceeds the binding energy of matter located in the hot spot. This situation can
only occur during epochs of rapid RLOF, when the mass transfer rate exceeds a well
defined critical value. The quantity β, defined in Eq. (1.1), is thus time dependent. It
equals unity most of the time, but can become small during eras of fast mass transfer.

The updated catalog contains 561 conservative and liberal evolutionary tracks and is
available at the Centre de Données Stellaires (CDS). Binaries with an initial primary mass
∈ [3-5] M� are calculated in one mode only since they evolve conservatively. Binaries
with an initial primary mass ∈ [6-15] M� are calculated in the liberal mode. Results
for evolution with weak and strong tidal interaction are given separately. Conservative
tracks are always added so that the reader is able to compare results of liberal (in two
different tidal modes) and conservative evolution.
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Discussion

Koeningsberger: Are both the mass-donor and mass-gainer rotating synchronously?
If not, how did you deal with rotation?

Van Rensbergen: The binary is born with well defined values of masses, radii and
orbital periods. Before RLOF starts, there is time to synchronize the system. But after
the onset of RLOF, the rotation of the gainer is modulated by spin-up through mass
impacting from the donor and spin-down due to tidal interaction. We did not (although
we should) take the enhanced rotational velocity of the gainer into account to calculate
modifications of its internal structure. Neither did we follow up the rotation of the donor.

Myron Smith: I would like to raise your attention to the small group of γ Cas stars.
This is an important group of Be stars known for their hard X-ray emissions. γ Cas
itself is a widely spaced (P = 504 days, e ≈ 0) binary, and two others are arguably blue
stragglers. It would be of great interest to know what the products are in terms of the
secondary stars. Are these degenerate products white dwarfs, neutron stars or something
else? A grid of evolutionary models of binary systems would provide important checks
as to how these strange systems have come to be.

Van Rensbergen: Binaries with short initial orbital periods are followed up until over-
contact when both stars are still on the main sequence. The evolution of systems with
longer initial periods is only calculated until exhaustion of He in the core of the donor.
From that moment on further evolution can be predicted. Implementing the data of our
catalog into the population code used by Mennekens et al. (2010), we find that binaries
with an initial mass of the primary below 7M� eventually yield many WD+WD systems.
Binaries with one or two neutron stars can be expected from the evolution of the most
massive systems in our catalog.

Mathis: You speak about two tidal interactions (the weak and the strong tidal interac-
tions). Could you give more details about this?

Van Rensbergen: For the spin-up of the gainer we used the formalism of Packet (1981),
including the fact that the effect diminishes strongly when the orbit of the semi-detached
binary is narrow. The spin-down is settled by tidal interaction as formulated in principle
by Darwin (1879), treated rigorously in his book on stellar rotation by Tassoul (2000)
and modulated by Zahn (1977) who makes a difference between strong and weak tidal
interaction. We calculated the evolution of binaries using both types of tides. Although
we found some significant individual differences when the mass loss from the system is
large, we also found that the global result (e.g. distribution of mass ratios and orbital
periods of Algols) remains very much the same.
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