DISTANCE OF A BLOCH FUNCTION TO THE LITTLE BLOCH SPACE

MARIA TJANI

Motivated by a formula of P. Jones that gives the distance of a Bloch function to BMOA, the space of bounded mean oscillations, we obtain several formulas for the distance of a Bloch function to the little Bloch space, \mathcal{B}_0 . Immediate consequences are equivalent expressions for functions in \mathcal{B}_0 . We also give several examples of distances of specific functions to \mathcal{B}_0 . We comment on connections between distance to \mathcal{B}_0 and the essential norm of some composition operators on the Bloch space, \mathcal{B} . Finally we show that the distance formulas in \mathcal{B} have Bloch type spaces analogues.

1. Introduction

Let U denote the open unit disk and ∂U the unit circle in the complex plane. The Bloch space \mathcal{B} of U is the space of holomorphic functions f on U such that

$$||f||_{\mathcal{B}} = \sup_{z \in U} \left(1 - |z|^2\right) \left| f'(z) \right| < \infty.$$

It is easy to see that $||f||_B = |f(0)| + ||f||_B$ defines a norm that makes \mathcal{B} a Banach space that is invariant under Möbius transformations and in fact for all $f \in \mathcal{B}$

$$||f \circ \omega \varphi_a||_{\mathcal{B}} = ||f||_{\mathcal{B}},$$

where $\varphi_a(z) = (a-z)/(1-\overline{a}z)$, $a \in U$ and $\omega \in \partial U$.

The little Bloch space \mathcal{B}_0 of U is the closed subspace of \mathcal{B} consisting of functions f with

$$\lim_{|z|\to 1} (1-|z|^2) |f'(z)| = 0.$$

Examples of functions in \mathcal{B} include all bounded holomorphic functions on U; but \mathcal{B} contains unbounded functions (log(1-z) $\in \mathcal{B}$). Other examples include certain lacunary series.

Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^{\lambda_n},$$

Received 13th March, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

where (λ_n) is a sequence of integers satisfying

$$\frac{\lambda_{n+1}}{\lambda_n} \geqslant \lambda > 1,$$

 λ is a constant and $n \ge 1$. Then $f \in \mathcal{B}$ if and only if a_n is a bounded sequence and $f \in \mathcal{B}_0$ if and only if $a_n \to 0$, as $n \to \infty$. See [1, 7, 12] for more information on \mathcal{B} .

The motivation for this paper is a formula of Jones, (see [1, Theorem 9] and [4, p. 503] for a proof), that gives the distance of a Bloch function to BMOA the space of bounded mean oscillations.

We obtain the following formulas for the distance of a Bloch function to \mathcal{B}_0 :

THEOREM 3.5. For $f \in \mathcal{B}, p \geqslant 2$,

$$\inf A_{\mathfrak{p}}(f) \leqslant \operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0) \leqslant 6 \inf A_{\mathfrak{p}}(f)$$

and

$$\inf A(f) \leq \operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0) \leq 6 \inf A(f)$$
.

See (8), (9) below for the definitions of the sets $A_p(f)$, A(f) respectively.

We obtain as a corollary equivalent expressions for functions in \mathcal{B}_0 :

COROLLARY 3.6. For $f \in \mathcal{B}$, the following are equivalent:

- 1. $f \in \mathcal{B}_0$.
- 2. For all $\varepsilon > 0$, $\Omega_{\varepsilon}(f)$ is a compact subset of U.
- 3. For some $p \ge 2$ and all $\varepsilon > 0$, $\int_{\Omega_{\varepsilon}(f)} 1/(1-|w|^2)^p dA(w) < \infty$.
- 4. For any $p \ge 2$ and $\varepsilon > 0$, there is a constant c so that

$$\int_{\Omega_{\sigma}(I)} |g'(z)|^p dA(z) \leqslant c \|g\|_{\mathcal{B}}^p, \quad \text{ for all } g \in \mathcal{B}.$$

See (1) below for the definition of the set $\Omega_{\varepsilon}(f)$.

We also show that

THEOREM 3.9. For $f \in \mathcal{B}$,

$$\limsup_{|z|\to 1} \left|f'(z)\right| \left(1-|z|^2\right) \leqslant \mathrm{dist}_{\mathcal{B}}(f,\mathcal{B}_0) \leqslant 2 \lim\sup_{|z|\to 1} \left|f'(z)\right| \left(1-|z|^2\right).$$

In Section 4 we give several examples of distances of specific functions to \mathcal{B}_0 for example,

$$\operatorname{dist}_{\mathcal{B}}(\log(1-z),\mathcal{B}_0) = 2 = \|\log(1-z)\|_{\mathcal{B}}$$

and

$$\operatorname{dist}_{\mathcal{B}}(e^{(z+1)/(z-1)},\mathcal{B}_0) = \frac{2}{e} = \|e^{(z+1)/(z-1)}\|_{\mathcal{B}}.$$

Let const. denote a positive and finite constant which may change from one occurrence to the next but will not depend on the functions involved.

In Section 5 we make a connection between distance to \mathcal{B}_0 and the essential norm of some composition operators C_{ϕ} on \mathcal{B} . We show the following:

COROLLARY 5.1. Let ϕ be a univalent self-map of U so that $\phi(U)$ has pointwise order of contact 1 with ∂U at the pont 1. Then,

$$\frac{1}{4} \operatorname{dist}_{\mathcal{B}} \left(\log(1-\phi), \mathcal{B}_0 \right) \leqslant \|C_{\phi}\|_{e} \leqslant \operatorname{const.} \operatorname{dist}_{\mathcal{B}} \left(\log(1-\phi), \mathcal{B}_0 \right).$$

In the last section we define the Bloch type spaces \mathcal{B}_{α} and the little Bloch type spaces $\mathcal{B}_{\alpha,0}$ and we show that the distance formulas in \mathcal{B} have \mathcal{B}_{α} analogues. The main results in the section are Theorem 6.1 and Corollary 6.4. Finally, we obtain as corollaries equivalent expressions for functions in $\mathcal{B}_{\alpha,0}$ (see Corollary 6.3).

2. Preliminaries

For $f \in \mathcal{B}$ [12, Lemma 4.2.8] gives

$$f(z) = f(0) + f'(0)z + \int_{U} \frac{(1 - |w|^{2}) f'(w)}{\overline{w} (1 - \overline{w}z)^{2}} dA(w), \quad z \in U,$$

where dA(w) is the normalised area measure on U. For any $\varepsilon > 0$ let $\Omega_{\varepsilon}(f)$ be

(1)
$$\Omega_{\varepsilon}(f) = \left\{ z \in U : \left(1 - |z|^2 \right) \middle| f'(z) \middle| \geqslant \varepsilon \right\}.$$

Then write

$$f(z) = f(0) + f'(0)z + \int_{\Omega_{\epsilon}(f)} \frac{(1 - |w|^2) f'(w)}{\overline{w} (1 - \overline{w}z)^2} dA(w) + \int_{U \setminus \Omega_{\epsilon}(f)} \frac{(1 - |w|^2) f'(w)}{\overline{w} (1 - \overline{w}z)^2} dA(w)$$

(2)
$$= f(0) + f'(0)z + f_1(z) + f_2(z).$$

The result of Lemma A below is part of the proof of Jones' Theorem that Ghatage and Zheng give in [4, p. 512] but we include it for completeness.

LEMMA A. Given $f \in \mathcal{B}$ and $\varepsilon > 0$, then $f_2 \in \mathcal{B}$ and

$$||f_2 - f_2(0) - f_2'(0)z||_{\mathbf{p}} \le 6\varepsilon.$$

PROOF: Since f_2 is holomorphic on U,

$$f_2'(z) - f_2'(0) = z \int_0^1 f_2''(tz) dt$$

for all $z \in U$. Thus,

$$(1 - |z|^{2}) |f'_{2}(z) - f'_{2}(0)| \leq (1 - |z|^{2}) |z| \int_{0}^{1} \frac{1}{(1 - |z|^{2} t^{2})^{2}} dt \sup_{w \in U} (1 - |w|^{2})^{2} |f''_{2}(w)|$$

$$\leq (1 - |z|^{2}) |z| \int_{0}^{1} \frac{1}{(1 - |z|^{2} t)^{2}} dt \sup_{w \in U} (1 - |w|^{2})^{2} |f''_{2}(w)|$$

$$= |z| \sup_{w \in U} (1 - |w|^{2})^{2} |f''_{2}(w)|$$

$$\leq \sup_{w \in U} (1 - |w|^{2})^{2} |f''_{2}(w)|.$$

$$(3)$$

Now for each $w \in U$,

$$(1 - |w|^{2})^{2} |f_{2}''(w)| = (1 - |w|^{2})^{2} \left| \int_{U \setminus \Omega_{\epsilon}(f)} \frac{6\overline{u} (1 - |u|^{2}) f'(u)}{(1 - w\overline{u})^{4}} dA(u) \right|$$

$$\leq 6(1 - |w|^{2})^{2} \int_{U \setminus \Omega_{\epsilon}(f)} \frac{(1 - |u|^{2}) |f'(u)|}{|1 - w\overline{u}|^{4}} dA(u)$$

$$\leq 6\varepsilon (1 - |w|^{2})^{2} \int_{U} \frac{1}{|1 - w\overline{u}|^{4}} dA(u)$$

$$= 6\varepsilon.$$
(4)

Therefore by (3), (4),

$$||f_2 - f_2(0) - f_2'(0)z||_B = \sup_{z \in U} (1 - |z|^2) |f_2'(z) - f_2'(0)| \le 6\varepsilon.$$

NOTE. Given $f, g \in \mathcal{B}$ and $z \in U$

(5)
$$(1-|z|^2)|f'(z)| \leq ||f-g||_{\mathcal{B}} + (1-|z|^2)|g'(z)|.$$

The result of Lemma B below is part of the proof of Theorem 3 in [4, p. 512] but we include it for completeness.

LEMMA B. If $f \in \mathcal{B}_0$ then $\Omega_{\varepsilon}(f)$ is a compact subset of U for all $\varepsilon > 0$.

PROOF: Given $f \in \mathcal{B}_0$ and $\varepsilon > 0$, since \mathcal{B}_0 is the closure in \mathcal{B} of the polynomials ([13, p. 84]), choose a polynomial g so that $||f - g||_B < \varepsilon/2$. Then using (5) we obtain

(6)
$$\Omega_{\epsilon}(f) \subseteq \Omega_{\epsilon/2}(g)$$

We shall show that

(7)
$$\Omega_{\varepsilon/2}(g) \subseteq D_{\varepsilon} = \left\{ z \in U : \operatorname{dist}(z, \partial U) \|g'\|_{\infty} \geqslant \frac{\varepsilon}{4} \right\}.$$

Let $z \in \Omega_{\epsilon/2}(g)$; then

$$(1-|z|^2)||g'||_{\infty} \geqslant (1-|z|^2)|g'(z)|\geqslant \frac{\varepsilon}{2}.$$

So,

$$(1-|z|)\|g'\|_{\infty}\geqslant \frac{\varepsilon}{4}$$

and (7) follows. The set D_{ε} is a compact set. Indeed, if $||g'||_{\infty} = 0$ then g is a constant function and $\Omega_{\varepsilon/2}(g) = D_{\varepsilon} = \emptyset$; and if $||g'||_{\infty} \neq 0$ then

$$D_{\varepsilon} = \Big\{ z \in U : \operatorname{dist}(z, \partial U) \geqslant \varepsilon / \big(4 \, \|g'\|_{\infty} \big) \Big\},\,$$

which is clearly a compact subset of U. Therefore by (6) and (7) $\Omega_{\epsilon}(f)$ is a compact subset of U as well.

3. DISTANCE FORMULAS

In this section given $f \in \mathcal{B}$, f_1 and f_2 refers to the functions in (2). The distance in the Bloch norm of f to a subset of \mathcal{B} , X, is denoted by $\mathrm{dist}_{\mathcal{B}}(f,X)$.

LEMMA 3.1. If $f \in \mathcal{B}$ and there exists a function $g \in \mathcal{B}_0$ so that $||f - g||_B \leq \alpha$ for some $\alpha > 0$, then $\Omega_{\epsilon}(f)$ is a compact set for all $\epsilon > \alpha$.

PROOF: Fix $\alpha > 0$, let $\varepsilon > \alpha$ then using (5) we obtain $\Omega_{\varepsilon}(f) \subseteq \Omega_{\varepsilon-\alpha}(g)$. By Lemma B $\Omega_{\varepsilon-\alpha}(g)$ is a compact subset of U therefore so is $\Omega_{\varepsilon}(f)$.

For $f \in \mathcal{B}$ and p > 0, define $A_p(f)$ by

(8)
$$A_p(f) = \left\{ \varepsilon > 0 : \frac{\chi_{\Omega_{\varepsilon}(f)}(z)}{(1 - |z|^2)^p} dA(z) \text{ is a finite measure} \right\}.$$

And let A(f) be

(9)
$$A(f) = \{ \varepsilon > 0 : \Omega_{\varepsilon}(f) \text{ is a compact subset of } U \}.$$

PROPOSITION 3.2. For $f \in \mathcal{B}$ and any p > 0,

$$\inf A_p(f) \leqslant \inf A(f) \leqslant \operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0).$$

PROOF: Suppose the right inequality is false; then there exist ε_1 and $\varepsilon_2 > 0$ so that

$$\operatorname{dist}_{\mathcal{B}}(f,\mathcal{B}_0) < \varepsilon_1 < \varepsilon_2 < \inf A(f).$$

Therefore there exists a function $g \in \mathcal{B}_0$ so that $||f-g||_B < \varepsilon_1$ and $\Omega_{\varepsilon_2}(f)$ is not a compact set. But by Lemma 3.1 $\Omega_{\varepsilon_2}(f)$ must be a compact set, so we arrive at a contradiction. Thus the right inequality holds.

The left inequality follows since $A(f) \subseteq A_p(f)$, for all p.

PROPOSITION 3.3. Let X be a subspace of \mathcal{B}_0 that contains $\{a+bz: a, b \in \mathbf{C}\}$ and $f \in \mathcal{B}$. If there is some p > 0 such that $f_1 \in X$ for all $\varepsilon \in A_p(f)$, then

$$\inf A_p(f) \leqslant \operatorname{dist}_{\mathcal{B}}(f,X) \leqslant 6 \inf A_p(f)$$
.

PROOF: By Lemma A

(10)
$$||f - f_1 - f(0) - f'(0)z - f_2(0) - f'_2(0)z||_B \leqslant 6\varepsilon.$$

Since X contains all linear functions, $f_1 \in X$ for all $\varepsilon \in A_p(f)$, (10) gives

$$\operatorname{dist}_{\mathcal{B}}(f,X) \leqslant 6 \inf A_{p}(f)$$
.

The left inequality follows from Proposition 3.2.

REMARK. In the proposition above the right inequality holds for any subspace X of \mathcal{B} that contains $\{a+bz: a,b\in\mathbb{C}\}$.

A function f holomorphic on U belongs to the *minimal Besov space* B_1 if and only if $\int_U |f''(z)| dA(z) < \infty$. B_1 is a subspace of B_0 , in fact B_1 is a subspace of A(U) the Banach space of functions that are continuous on the closed unit disk and holomorphic on the open unit disk with the supremum norm. See [2] and [12] for more information on B_1 .

PROPOSITION 3.4. For $f \in \mathcal{B}$ and $p \geqslant 2$,

$$\inf A_{p}(f) \leqslant \operatorname{dist}_{\mathcal{B}}(f, B_{1}) \leqslant 6 \inf A_{p}(f)$$
.

PROOF: Let $\varepsilon \in A_p(f)$. We shall show that $f_1 \in B_1$. Recall that

$$f_1(z) = \int_{\Omega_1(t)} \frac{(1-|w|^2) f'(w)}{\overline{w} (1-\overline{w}z)^2} dA(w).$$

Then,

$$|f_1''(z)| \le \int_{\Omega_r(t)} \left| \frac{(1-|w|^2) f'(w)}{\overline{w} (1-\overline{w}z)^4} \right| 6\overline{w}^2 dA(w)$$

and

$$\int_{U} |f_{1}''(z)| dA(z) \leq 6 \int_{U} \int_{\Omega_{\epsilon}(f)} \frac{(1 - |w|^{2}) |f'(w)|}{|1 - \overline{w}z|^{4}} dA(w) dA(z)
= 6 \int_{\Omega_{\epsilon}(f)} (1 - |w|^{2}) |f'(w)| \int_{U} \frac{1}{|1 - \overline{w}z|^{4}} dA(z) dA(w)
\leq 6 ||f||_{\mathcal{B}} \int_{\Omega_{\epsilon}(f)} \frac{1}{(1 - |w|^{2})^{2}} dA(w)
\leq 6 ||f||_{\mathcal{B}} \int_{\Omega_{\epsilon}(f)} \frac{1}{(1 - |w|^{2})^{p}} dA(w) < \infty,$$
(11)

for all $p \ge 2$. Therefore (11) and Proposition 3.3 imply the result.

The Besov space B_1 is a subspace of the little Bloch space \mathcal{B}_0 that contains all polynomials. Thus, the closure of B_1 in the Bloch norm is \mathcal{B}_0 , since \mathcal{B}_0 is the closure of all polynomials in the Bloch norm. The next theorem follows from Proposition 3.2 and Proposition 3.4. Recall the definitions of $A_p(f)$ and A(f) in (8), (9) respectively.

THEOREM 3.5. For $f \in \mathcal{B}, p \geqslant 2$,

$$\inf A_p(f) \leqslant \operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0) \leqslant 6 \inf A_p(f)$$

and

$$\inf A(f) \leq \operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0) \leq 6 \inf A(f)$$
.

REMARK. The best bounds for $\operatorname{dist}_{\mathcal{B}}(f,\mathcal{B}_0)$ are $\inf A(f)$ from below, 6 $\inf A_2(f)$ from above, as $A(f) \subseteq A_p(f) \subseteq A_q(f) \subseteq A_2(f)$ for all p, q with $2 \le p \le q$.

The following theorem of Arazy, Fisher and Peetre is from [2, p. 132]. We give a different proof of (2) implies (1).

THEOREM C. Let μ be a positive measure on U and let 0 . Then,

$$(1) \quad \int_{U} \frac{d\mu(z)}{(1-|z|^2)^p} < \infty$$

if and only if there is a constant c with

(2)
$$\int_{U} |f'(z)|^{p} d\mu(z) \leqslant c \|f\|_{\mathcal{B}}^{p}, \text{ for all } f \in \mathcal{B}.$$

PROOF: For any $f \in \mathcal{B}$

$$\int_{U} |f'(z)|^{p} d\mu(z) = \int_{U} \frac{|f'(z)|^{p} (1 - |z|^{2})^{p}}{(1 - |z|^{2})^{p}} d\mu(z)$$

$$\leq ||f||_{B}^{p} \int_{U} \frac{1}{(1 - |z|^{2})^{p}} d\mu(z).$$

This proves the easy implication, (1) implies (2). Ramey and Ullrich proved in [8] that there exists functions $f, g \in \mathcal{B}$ so that

(12)
$$\left| f'(z) \right| + \left| g'(z) \right| \geqslant \frac{\text{const.}}{\left(1 - |z|^2 \right)} .$$

Therefore it is easy to see that

const.
$$(|f'(z)|^p + |g'(z)|^p) \ge \frac{1}{(1-|z|^2)^p}$$
.

Integrating the above with respect to $d\mu(z)$ shows that (2) implies (1).

The following is an immediate consequence of Theorem 3.5 and Theorem C.

COROLLARY 3.6. For $f \in \mathcal{B}$, the following are equivalent:

- 1. $f \in \mathcal{B}_0$.
- 2. For all $\varepsilon > 0$ $\Omega_{\varepsilon}(f)$ is a compact subset of U.
- 3. For some $p \ge 2$ and all $\varepsilon > 0$,

$$\int_{\Omega_{\epsilon}(f)} \frac{1}{(1-|w|^2)^p} \, dA(w) < \infty.$$

4. For any $p \ge 2$ and $\varepsilon > 0$, there is a constant c so that

$$\int_{\Omega_{\varepsilon}(f)} \left| g'(z) \right|^p dA(z) \leqslant c \, \|g\|_{\mathcal{B}}^p, \quad \text{ for all } g \in \mathcal{B}.$$

Let $D(0,\alpha)$ denote the disk centred at 0 of radius α . A nontangential approach region Ω_{α} $(0 < \alpha < 1)$ in U with vertex $\zeta \in \partial U$ is the convex hull of $D(0,\alpha) \cup \{\zeta\}$ minus the point ζ .

For any region G in the complex plane let ∂G denote the boundary of the region. For an open subset G of U with $\zeta \in \partial G \cap \partial U$ we say that it has pointwise order of contact (at most) b (b > 0) with ∂U at ζ if

(13)
$$\frac{1-|z|}{|\zeta-z|^b} \geqslant \text{const.}$$

as z approaches ζ within G. So if ϕ is a holomorphic self-map of U such that $\phi(U) = \Omega_{\alpha}$ $(0 < \alpha < 1)$ with vertex ζ then $\phi(U)$ has pointwise order of contact 1 with ∂U at ζ ; if $\phi(U)$ is a disk inside U whose boundary makes tangential contact with ∂U at the point ζ then $\phi(U)$ has pointwise order of contact 2 with ∂U at the point ζ .

In [3, p. 2191] Bourdon, Cima, and Matheson introduced the notion of mean order of contact. An open subset G of U has mean order of contact (at most) b (b > 0) with ∂U if

(14)
$$\int_0^{2\pi} \chi_G(re^{i\theta}) d\theta = O(1-r)^{1/b}$$

as $r \to 1^-$. The integral on the left side of (14) represents the angular measure of G intersected with the circle $\{z \in U : |z| = r\}$.

Recall the definition of $\Omega_{\epsilon}(f)$ in (1) for any $f \in \mathcal{B}$.

PROPOSITION 3.7. Let $f \in \mathcal{B}$ so that for all $\varepsilon > 0$ the mean order of contact of $\Omega_{\varepsilon}(f)$ with ∂U is $\alpha_{\varepsilon} < 1$. Then $f \in \mathcal{B}_0$.

PROOF: For a fixed $\varepsilon > 0$, (14) gives

$$\int_{\Omega_{\epsilon}(f)} \frac{1}{(1-|w|^2)^2} dA(w) = \frac{1}{\pi} \int_0^1 \int_0^{2\pi} \chi_{\Omega_{\epsilon}(f)}(re^{i\theta}) d\theta \frac{r}{(1-r^2)^2} dr$$

$$\leq \text{const.} \int_0^1 \frac{(1-r)^{1/\alpha_{\epsilon}}}{(1-r)^2} dr < \infty$$

since $(1/\alpha_{\varepsilon}) - 2 > -1$. Thus by Corollary 3.6 $f \in \mathcal{B}_0$.

PROPOSITION 3.8. Let $f \in \mathcal{B}$ be so that for all $\varepsilon > 0$ the mean order of contact of $\Omega_{\varepsilon}(f)$ with ∂U is 1. Then for all $\varepsilon > 0$ and all $\beta > 0$,

0

$$\int_{\Omega_{\epsilon}(f)} \frac{1}{(1-|w|^2)^{2-\beta}} \, dA(w) < \infty.$$

We omit the proof as it is similar to the one of Proposition 3.7.

REMARK. For the function $f(z) = \log(1-z)$ the mean order of contact of $\Omega_{\varepsilon}(f)$ with ∂U is 1 for all $\varepsilon > 0$ (see the remark after example 4.1 for a proof). This shows that the conclusion of the above proposition is valid for the function $\log(1-z)$. Therefore $p \ge 2$ in Theorem 3.5 is best possible since inf $A_p(f) = 0$ for all p < 2. Similarly in Corollary 3.6 $p \ge 2$ is best possible. If $g \in \mathcal{B}_0$ then by condition (2) of Corollary 3.6

$$\int_{\Omega_{\epsilon}(g)} \frac{1}{\left(1-|w|^2\right)^p} \, dA(w) < \infty$$

for all p. But the converse is valid only for $p \ge 2$.

It is well known that the Bloch space \mathcal{B} can be thought of as the area version of the space of bounded mean oscillations BMOA. Thus, motivated by a formula for the distance of a BMOA function to VMOA, the space of vanishing mean oscillations, given by Stegenga and Stephenson in [10] we prove the following theorem. In the proof we use a modified version of an argument of Montes-Rodriguez, given in [6, p. 346].

THEOREM 3.9. For $f \in \mathcal{B}$,

$$\limsup_{|z|\to 1} |f'(z)| \left(1-|z|^2\right) \leqslant \mathrm{dist}_{\mathcal{B}}(f,\mathcal{B}_0) \leqslant 2 \lim\sup_{|z|\to 1} \left|f'(z)\right| \left(1-|z|^2\right).$$

PROOF: For a given $f \in \mathcal{B}$ and $g \in \mathcal{B}_0$ (5) gives

$$\limsup_{|z|\to 1} (1-|z|^2) |f'(z)| \leq ||f-g||_{\mathcal{B}},$$

from which the left inequality follows.

For the right inequality fix $f \in \mathcal{B}$, M > 0, $0 < \rho < 1$ so that for all $z \in U$ with $|z| \ge 1 - \rho$, $|f'(z)| (1 - |z|^2) \le M$. We shall show that $\operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0) \le 2M$. Also fix for the moment r with $1 > r > 1 - \rho$, let $f_r(z) = f(rz)$ for $z \in U$. Then,

$$||f - f_r||_B = \sup_{z \in U} \left| (f - f_r)'(z) \right| \left(1 - |z|^2 \right)$$

$$\leq \sup_{|z| \leq (1 - \rho)/r} \left| (f - f_r)'(z) \right| \left(1 - |z|^2 \right) + \sup_{|z| > (1 - \rho)/r} \left| (f - f_r)'(z) \right| \left(1 - |z|^2 \right)$$

$$= I + II.$$

Then

(16)
$$II \leqslant \sup_{|z| > (1-\rho)/r} |f'(z)| (1-|z|^2) + \sup_{|z| > (1-\rho)/r} |f'_r(z)| (1-|z|^2) \leqslant \sup_{|z| > 1-\rho} |f'(z)| (1-|z|^2) + \sup_{|z| > 1-\rho} |f'(z)| (1-|z|^2) \leqslant 2M.$$

Also

$$I = \sup_{|z| \le (1-\rho)/r} |(f - f_r)'(z)| (1 - |z|^2)$$

$$\leq \sup_{|z| \le (1-\rho)/r} |f'(z) - f'(rz)| (1 - |z|^2) + (1 - r) \sup_{|z| \le (1-\rho)/r} |f'(rz)| (1 - |z|^2)$$

$$(17) \qquad \leq A + (1 - r) ||f||_{B}.$$

By taking the line integral of f'' from rz to z we get

(18)
$$A = \sup_{|z| \le (1-\rho)/r} |f'(z) - f'(rz)| (1-|z|^2)$$

$$\le (1-r) \sup_{|z| \le (1-\rho)/r} |f''(\xi(z))| |z| (1-|z|^2),$$

where $\xi(z)$ is a point in the closed disk of radius $(1-\rho)/r$. Using the Maximum Modulus Theorem and Cauchy's Estimates for f' on the circle centred at $\xi(z)$ with radius $R = (1 - (1 - \rho)/r)/2$ in (18), we obtain

(19)
$$A \leqslant \frac{1-r}{R} \max_{|z|=R+(1-\rho)/r} |f'(z)| \sup_{|z|\leqslant (1-\rho)/r} |z| (1-|z|^2)$$

$$\leqslant \frac{(1-r)}{R} ||f||_B \frac{(1-\rho)/r}{1-((1-\rho)/r+R)^2},$$

since

$$\max_{|z|=(1-\rho)/r+R} |f'(z)| \leqslant ||f||_B \frac{1}{1-((1-\rho)/(r)+R)^2}.$$

Therefore by (15), (16), (17),

(20)
$$\operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_0) \leq \|f - f_r\|_{\mathcal{B}} \leq A + (1 - r)\|f\|_{\mathcal{B}} + 2M.$$

Notice that

(21)
$$\lim_{r \to 1} \frac{1}{R} \frac{(1-\rho)/r}{1 - ((1-\rho)/(r) + R)^2} = \frac{8(1-\rho)}{\rho^2(4-\rho)}$$

thus letting $r \to 1$ in (19) and in (20), we obtain

$$\operatorname{dist}_{\mathcal{B}}(f,\mathcal{B}_0) \leqslant 2M$$
,

0

which proves the right inequality.

Recall the Koebe Distortion Theorem (see for example [9, p. 156]) which asserts that if ψ is a univalent function on U then for any $z \in U$,

(22)
$$\frac{1}{4} \left| \psi'(z) \right| \left(1 - |z|^2 \right) \leqslant \operatorname{dist} \left(\psi(z), \partial \psi(U) \right) \leqslant \left| \psi'(z) \right| \left(1 - |z|^2 \right),$$

where $\operatorname{dist}(\psi(z), \partial \psi(U))$ is the Euclidean distance from $\psi(z)$ to $\partial \psi(U)$. By (22), an immediate corollary of Theorem 3.9 is as follows.

COROLLARY 3.10. For any univalent function $f \in \mathcal{B}$,

$$\limsup_{|z|\to 1} \operatorname{dist} \big(f(z),\partial f(U)\big) \leqslant \operatorname{dist}_{\mathcal{B}}(f,\mathcal{B}_0) \leqslant 8 \limsup_{|z|\to 1} \operatorname{dist} \big(f(z),\partial f(U)\big) \ .$$

4. Examples

It is easy to see that for any constant c and any $f \in \mathcal{B}$

$$\operatorname{dist}_{\mathcal{B}}(f+c,\mathcal{B}_0) = \operatorname{dist}_{\mathcal{B}}(f,\mathcal{B}_0) = \inf_{g \in \mathcal{B}_0} \|f-g\|_{\mathcal{B}}$$

Also because of the Möbius invariance of B

(23)
$$\operatorname{dist}_{\mathcal{B}}(f \circ \omega \varphi_{a}, \mathcal{B}_{0}) = \operatorname{dist}_{\mathcal{B}}(f, \mathcal{B}_{0}),$$

for all $a \in U$, $\omega \in \partial U$.

EXAMPLE 4.1. The function $f(z) = \log(1-z)$ belongs to the Bloch space but not to the little Bloch space. We shall show that

(24)
$$\operatorname{dist}(\log(1-z), \mathcal{B}_0) = 2 = \|\log(1-z)\|_{\mathcal{B}}.$$

First

$$\frac{1-|z|^2}{|1-z|} \leqslant \frac{1-|z|^2}{1-|z|} \leqslant 2$$

for all $z \in U$, therefore $\|\log(1-z)\|_{\mathcal{B}} \leq 2$; on the other hand

$$\|\log(1-z)\|_{\mathcal{B}} \geqslant \frac{1-(1-(1/n))^2}{|1-(1-(1/n))|}$$

or $\|\log(1-z)\|_{\mathcal{B}} \ge 2 - (1/n)$ for all nonnegative integers n and so $\|\log(1-z)\|_{\mathcal{B}} = 2$. By (1) the set

(25)
$$\Omega_{\varepsilon}(f) = \left\{ z \in U : \frac{1 - |z|^2}{|1 - z|} \geqslant \varepsilon \right\}$$

behaves like a nontangential approach region in U that touches the unit circle only at the point 1; so $\Omega_{\varepsilon}(f)$ is never a compact subset of U unless it is the empty set, thus trivially compact. If $\Omega_{\varepsilon}(f) \neq \emptyset$ then $\varepsilon < 2$ since for any $z_0 \in \Omega_{\varepsilon}(f)$,

$$\varepsilon \leqslant \frac{1 - |z_0|^2}{|1 - z_0|} \leqslant 1 + |z_0| < 2;$$

on the other hand if $\varepsilon < 2$ then $\Omega_{\varepsilon}(f) \neq \emptyset$, since it is easy to see that $z_n = 1 - (1/n)$ $\in \Omega_{\varepsilon}(f)$ for all n large enough. Therefore $\Omega_{\varepsilon}(f) = \emptyset$ if and only if $\varepsilon \geqslant 2$ if and only if $\Omega_{\varepsilon}(f)$ is a compact subset of U. Thus

(26)
$$\inf A(\log(1-z)) = 2 = \|\log(1-z)\|_{\mathcal{B}}.$$

Since

$$\operatorname{dist}_{\mathcal{B}}(\log(1-z),\mathcal{B}_0) \leqslant \|\log(1-z)\|_{\mathcal{B}}$$

and by Theorem 3.5

$$\inf A(\log(1-z)) \leq \operatorname{dist}_{\mathcal{B}}(\log(1-z), \mathcal{B}_0)$$
,

using (26) we obtain (24) and by (23) for all $a \in U$, $\omega \in \partial U$

$$\operatorname{dist}_{\mathcal{B}}\left(\log\left(1-\omega\frac{a-z}{1-\overline{a}z}\right),\mathcal{B}_{0}\right)=2.$$

Similarly to the proof of (24) one can show that

$$\operatorname{dist}_{\mathcal{B}}(\log(k'), \mathcal{B}_0) = 6 = \|\log(k')\|_{\mathcal{B}},$$

where k is the Koebe function $k(z) = z/((1-z)^2)$ and that

$$\operatorname{dist}_{\mathcal{B}}\left(\log\left(\frac{z}{1-z^2}\right)',\mathcal{B}_0\right) = 4 = \left\|\log\left(\frac{z}{1-z^2}'\right)\right\|_{\mathcal{B}}.$$

REMARK. By (25) for the function $f(z) = \log(1-z)$ and each $\varepsilon > 0$, $\Omega_{\varepsilon}(f)$ has pointwise order of contact 1 with ∂U at the point 1. In [3, p. 2192] is shown that for domains whose boundary touches the unit circle at exactly one point ζ , if G has pointwise order of contact 1 with ∂U at ζ then it has mean order of contact 1 with ∂U . Therefore for all $\varepsilon > 0$ $\Omega_{\varepsilon}(f)$ has mean order of contact 1 with ∂U .

For the rest of this section let ϕ be a univalent self-map of the unit disk; then $\phi \in \mathcal{B}_0$ as for example $\phi(U)$ has a finite area and all such functions lie in \mathcal{B}_0 . Below we shall describe the distance of $\log(1-\phi)$ to \mathcal{B}_0 for several ϕ . First notice that if $\phi(U) \subseteq U \setminus D(1,r)$, where D(1,r) is the disk centred at 1 of radius r, then $\log(1-\phi) \in \mathcal{B}_0$.

EXAMPLE 4.2. Let ϕ be such that $\phi(U) = \Omega_{\alpha}$ a nontangential approach region in U with vertex 1, for some $0 < \alpha < 1$. We shall show that

(27)
$$\frac{1}{4} \|\log(1-\phi)\|_{\mathcal{B}} \leqslant \operatorname{dist}_{\mathcal{B}} (\log(1-\phi), \mathcal{B}_0) \leqslant \|\log(1-\phi)\|_{\mathcal{B}}.$$

Using the Schwarz-Pick Lemma it is easy to see that $\log(1-\phi) \in \mathcal{B}$. Then by (1) and (22) for all $\varepsilon > 0$ the set

$$\Omega_{\varepsilon}(\log(1-\phi)) = \left\{ z \in U : \frac{|\phi'(z)| (1-|z|^2)}{|1-\phi(z)|} \geqslant \varepsilon \right\}$$

contains the set

$$G = \left\{ z \in U : \frac{\operatorname{dist}(\phi(z), \partial \phi(U))}{|1 - \phi(z)|} \geqslant \varepsilon \right\}.$$

Then $\phi(G)$ behaves like a nontangential approach region contained in $\phi(U)$. Therefore, unless $G = \emptyset$, it is not a compact subset of U. If $\Omega_{\varepsilon}(\log(1-\phi))$ is a compact subset of U then so is G and therefore $G = \emptyset$ and for all $z \in U$ we have

$$\frac{\operatorname{dist}(\phi(z),\partial\phi(U))}{|1-\phi(z)|}<\varepsilon.$$

By (22) $\|\log(1-\phi)\|_{\mathcal{B}}/4 < \varepsilon$ so we obtain

$$\frac{1}{4} \left\| \log(1-\phi) \right\|_{\mathcal{B}} \leqslant \inf A \left(\log(1-\phi) \right).$$

Thus Theorem 3.5 gives (27).

Next we give an example where equality holds in the right inequality of (27) for a function ϕ with $\phi(U)$ inside a nontangential approach region.

Example 4.3. For $0 < \alpha < 1$ define

$$\phi_{\alpha}(z) = \frac{\sigma(z)^{\alpha} - 1}{\sigma(z)^{\alpha} + 1}$$

where

$$\sigma(z) = \frac{1+z}{1-z}, \quad z \in U.$$

The map ϕ_{α} is a holomorphic self-map of U whose image is a lens-shaped region thus it is called a "lens map" ([9, p. 27]). We shall show that

(28)
$$\inf A(\log(1-\phi_{\alpha})) = \operatorname{dist}(\log(1-\phi_{\alpha}), \mathcal{B}_{0}) = \|\log(1-\phi_{\alpha})\|_{\mathcal{B}} = 2\alpha.$$

By (1) for each $\varepsilon > 0$

(29)
$$\Omega_{\varepsilon}\left(\log(1-\phi_{\alpha})\right) = \left\{z \in U: \frac{|\phi_{\alpha}'(z)| (1-|z|^{2})}{|1-\phi_{\alpha}(z)|} \geqslant \varepsilon\right\} \\
= \left\{z \in U: \frac{2\alpha (1-|z|^{2})}{|1-z^{2}| |1+((1-z)/(1+z))^{\alpha}|} \geqslant \varepsilon\right\}.$$

Fix $\varepsilon < 2$, let $z_n = 1 - 1/n$; then by (29) we can easily see that $z_n \in \Omega_{\varepsilon}(\log(1 - \phi_{\alpha}))$ if and only if

$$\frac{2\alpha}{1+(1/(2n-1))^{\alpha}} \geqslant \varepsilon,$$

which is true for all n large enough thus $\Omega_{\varepsilon}(\log(1-\phi_{\alpha}))$ is not a compact subset of U. This shows that

(30)
$$2 \alpha \leqslant \inf A(\log(1 - \phi_{\alpha})).$$

For each $0 < \alpha < 1$

$$\|\log(1-\phi_{\alpha})\|_{\mathcal{B}} = \sup_{z \in U} \frac{2 \alpha (1-|z|^{2})}{|1-z^{2}| |1+((1-z)/(1+z))^{\alpha}|}$$

$$\leq 2 \alpha \sup_{z \in U} \left| \frac{1}{1+((1-z)/(1+z))^{\alpha}} \right|$$

$$\leq 2 \alpha$$
(31)

since

$$1+\big((1-z)/(1+z)\big)^{\alpha}$$

maps U onto the sector

$$\left\{w: \left|\arg(w-1)\right| < (\alpha\pi)/2\right\}.$$

Thus Theorem 3.5, (30) and (31) give (28).

REMARK. A formula like in (27) is not true for all functions of the form $\log(1-\phi)$ where $\phi(U)$ has mean order of contact b (0 < $b \le 1$) with ∂U , as there are such ϕ with $\log(1-\phi) \in \mathcal{B}_0$. Below we give examples of this.

(i) For each nonnegative integer n let

$$\Delta_n = \left\{ z \in U : \left| \arg(1-z) \right| < \theta_n, \quad \rho_n < |z| \leqslant \rho_{n+1} \right\},\,$$

where $\rho_n = 1 - (1/2^n)$, $0 < \theta_n < \pi/7$ such that $\sum_{n=1}^{\infty} \theta_n < \infty$. Let $\Delta = \bigcup_{n=1}^{\infty} \Delta_n$. It follows that Δ , as it clearly has pointwise order of contact 1 with ∂U at the point 1, has mean order of contact 1 (see the remark after example 4.1). We would like to give a direct proof of this for our domain Δ using the definition of mean order of contact; since

(32)
$$\int_0^{2\pi} \chi_{\Delta}(re^{i\theta}) d\theta \leqslant \sum_{n=1}^{\infty} \int_0^{2\pi} \chi_{\Delta_n}(re^{i\theta}) d\theta \leqslant \sum_{n=1}^{\infty} 2\psi r,$$

where $\psi = \arg(z)$, z is a point, on the first quadrant, on the boundary of the arc $\Delta \cap \{z \in U : |z| = r\}$. By the Law of Cosines and the Law of Sines

$$\tan \psi = \frac{1-r}{r} \tan \theta_n$$

therefore (32) gives

$$\int_{0}^{2\pi} \chi_{\Delta}(re^{i\theta}) d\theta \leqslant \sum_{n=1}^{\infty} 2r \tan^{-1} \left(\frac{1-r}{r} \tan \theta_{n}\right)$$

$$\leqslant \text{const. } \sum_{n=1}^{\infty} \theta_{n} (1-r) \leqslant \text{const. } (1-r).$$

Thus (14) shows that Δ has mean order of contact with ∂U 1. Let ϕ be the Riemann map from U onto Δ . It is easy to see, using (22), that $\log(1-\phi) \in \mathcal{B}_0$, thus (27) is not valid for such a ϕ .

(ii) If ϕ is such that $\phi(U)$ has mean order of contact b (0 < b < 1) with ∂U and $\phi(U)$ lies inside a polygon inscribed in the unit circle then $\log(1 - \phi) \in \mathcal{B}_0$; this follows from Corollary 5.2 in [3] and Theorem 5.3 in [5]. Thus (27) is not valid for such a ϕ .

EXAMPLE 4.4. If $\phi(U)$ is a polygon inscribed in the unit circle and one of the vertices of the polygon is the point 1 then it is easy to see that (27) is valid, as in the proof of the formula in the case where $\phi(U) = \Omega_{\alpha}$ (0 < α < 1).

EXAMPLE 4.5. If $\phi(U)$ is a disk tangent to the unit circle at the point 1 then it is easy to see that ϕ has the form $\psi \circ M$ where $\psi(z) = \lambda z + (1 - \lambda)$ $(0 < \lambda < 1)$ and M is a

Möbius transformation. Using the Möbius invariance of the Bloch seminorm and (24) we obtain

$$\begin{aligned} \operatorname{dist}_{\mathcal{B}}(\log(1-\phi), \mathcal{B}_0) &= \operatorname{dist}_{\mathcal{B}}(\log(1-\psi), \mathcal{B}_0) \\ &= \operatorname{dist}_{\mathcal{B}}(\log \lambda(1-z), \mathcal{B}_0) \\ &= \operatorname{dist}_{\mathcal{B}}(\log(1-z), \mathcal{B}_0) = 2 \ . \end{aligned}$$

Example 4.6. The function $S(z) = e^{(z+1)/(z-1)}$ belongs to the Bloch space but not to the little Bloch space; actually $S \in H^{\infty} \setminus \mathcal{B}_0$. We shall show that

(33)
$$\operatorname{dist}_{\mathcal{B}}(S, \mathcal{B}_0) = \frac{2}{e} = ||S||_{\mathcal{B}}.$$

For $\alpha > 0$, the function S maps the circle

$$C_\alpha = \left\{z \in U : \frac{1-|z|^2}{|1-z|^2} = \alpha\right\}$$

(centre $\alpha/(1+\alpha)$, radius $1/(1+\alpha)$ internally tangent to the unit circle at the point 1) to the circle $\{\varsigma \in U : |\varsigma| = e^{-\alpha}\}$. By (1)

(34)
$$\Omega_{\varepsilon}(S) = \left\{ z \in U : \left(1 - |z|^2 \right) \left| S'(z) \right| \geqslant \varepsilon \right\}$$

$$= \left\{ z \in U : \frac{2|S(z)| \left(1 - |z|^2 \right)}{|1 - z|^2} \geqslant \varepsilon \right\}.$$

On C_{α} the left hand side of the inequality in (34) equals $2\alpha e^{-\alpha}$. Thus,

$$\Omega_{\varepsilon}(S) = \left\{ z \in U : 2\alpha e^{-\alpha} \geqslant \varepsilon, \quad \alpha = \frac{1 - |z|^2}{|1 - z|^2} \right\}.$$

Also,

(35)
$$||S||_{\mathcal{B}} = \sup_{\alpha>0} 2e^{-\alpha}\alpha = \frac{2}{e}.$$

The set $\Omega_{\varepsilon}(S)$ is either the empty set, when $\varepsilon > 2/e$ or a circle internally tangent to the unit circle at z=1 when $\varepsilon=2/e$, or it is the area between two circles both internally tangent to the unit circle at z=1 when $\varepsilon<2/e$. Therefore $\Omega_{\varepsilon}(f)$ is never a compact subset of U unless it is the empty set thus trivially compact. Thus, Theorem 3.5 and (35) show that

(36)
$$\inf A(S) = ||S||_{\mathcal{B}} = \frac{2}{e} \leq \operatorname{dist}_{\mathcal{B}}(S, \mathcal{B}_{0})$$
$$= \operatorname{dist}_{\mathcal{B}}(S - S(0), \mathcal{B}_{0})$$
$$\leq ||S - S(0)||_{\mathcal{B}} = ||S||_{\mathcal{B}} = \frac{2}{e}.$$

Therefore (33) follows.

5. DISTANCE TO \mathcal{B}_0 AND THE ESSENTIAL NORM OF A COMPOSITION OPERATOR

If ϕ is a holomorphic self-map of U, then the composition operator C_{ϕ}

$$C_{\phi}f = f \circ \phi$$

maps holomorphic functions f to holomorphic functions. It is a bounded operator on \mathcal{B} , and if $\phi \in \mathcal{B}_0$ it is bounded on \mathcal{B}_0 as well ([2, Theorem 12]). The essential norm of C_{ϕ} , $\|C_{\phi}\|_{e}$, is the distance in the operator norm from C_{ϕ} to the compact operators. In [6, Theorem 2.1, Proposition 2.2] Montes-Rodriguez showed that for ϕ a univalent self-map of U

(37)
$$||C_{\phi}||_{e} = \limsup_{|z| \to 1} \frac{|\phi'(z)| (1 - |z|^{2})}{1 - |\phi(z)|^{2}}.$$

COROLLARY 5.1. Let ϕ be a univalent self-map of U so that $\phi(U)$ has pointwise order of contact 1 with ∂U at the point 1. Then,

$$\frac{1}{4} \operatorname{dist}_{\mathcal{B}}(\log(1-\phi), \mathcal{B}_0) \leqslant \|C_{\phi}\|_{e} \leqslant \operatorname{const. dist}_{\mathcal{B}}(\log(1-\phi), \mathcal{B}_0).$$

PROOF: By (13), (37) and Theorem 3.9

$$\begin{aligned} \operatorname{dist}_{\mathcal{B}} \left(\log(1 - \phi), \mathcal{B}_{0} \right) &\leqslant 2 \lim \sup_{|z| \to 1} \frac{|\phi'(z)| \left(1 - |z|^{2} \right)}{|1 - \phi(z)|} \\ &\leqslant 4 \lim \sup_{|z| \to 1} \frac{|\phi'(z)| \left(1 - |z|^{2} \right)}{1 - |\phi(z)|^{2}} = 4 \|C_{\phi}\|_{e} \\ &\leqslant \operatorname{const.} \lim \sup_{|z| \to 1} \frac{|\phi'(z)| \left(1 - |z|^{2} \right)}{|1 - \phi(z)|} \\ &\leqslant \operatorname{const.} \operatorname{dist}_{\mathcal{B}} (\log(1 - \phi), \mathcal{B}_{0}) \,. \end{aligned}$$

Therefore the result follows.

6. DISTANCE IN BLOCH TYPE SPACES

П

In [13] Zhu defined the *Bloch type spaces* of holomorphic functions on U, which are generalisations of the Bloch space \mathcal{B} . For each $\alpha > 0$, \mathcal{B}_{α} denotes the space of holomorphic functions f on U for which

$$||f||_{\mathcal{B}_{\alpha}} = \sup_{z \in U} |f'(z)| (1-|z|^2)^{\alpha} < \infty.$$

The little Bloch type spaces are generalisations of the little Bloch space \mathcal{B}_0 . For each $\alpha > 0$ let $\mathcal{B}_{\alpha,0}$ denote the space of all functions in \mathcal{B}_{α} so that

$$\lim_{|z|\to 1} |f'(z)| (1-|z|^2)^{\alpha} = 0.$$

Both \mathcal{B}_{α} and $\mathcal{B}_{\alpha,0}$ are Banach spaces with norm

$$||f||_{B_{\alpha}} = |f(0)| + ||f||_{B_{\alpha}}$$

for all $f \in \mathcal{B}_{\alpha}$. As Zhu notes these spaces are not new. When $0 < \alpha < 1$ then \mathcal{B}_{α} can be identified with the holomorphic Lipschitz space $\operatorname{Lip}_{1-\alpha}$, the space of all holomorphic functions on U with $|f(z) - f(w)| \le c |z - w|^{1-\alpha}$, for some constant c > 0 (depending on f) and all $z, w \in U$. And when $\alpha > 1$, \mathcal{B}_{α} can be identified with the space of holomorphic functions f with

$$\sup_{z\in U} \left(1-|z|^2\right)^{\alpha-1} \left|f(z)\right| < \infty.$$

Below we shall describe how the distance formulas in $\mathcal B$ have Bloch type spaces analogues.

One can define analogues of $\Omega_{\varepsilon}(f)$, $A_p(f)$ and A(f) for Bloch type spaces, just by replacing, on the definition of these sets, (see (1), (8), (9)), the term $1-|z|^2$ with $(1-|z|^2)^{\alpha}$. Call these new sets $\Omega_{\varepsilon,\alpha}(f)$, $A_{p,\alpha}(f)$ and $A_{\alpha}(f)$ respectively. Then by Corollary 4 in [13] the analogue of (2) holds in \mathcal{B}_{α} (change powers 2 to $1+\alpha$). Thus Lemma A (with 6 replaced with a constant, const., that depends on α) holds. Lemma B follows from Proposition 2 in [13], which says that $\mathcal{B}_{\alpha,0}$ is the closure of all polynomials in the \mathcal{B}_{α} norm. Lemma 3.1, Proposition 3.2, Proposition 3.3 (with 6 replaced with a constant, const., that depends on α) hold. We omit the details as the proofs are similar to the corresponding results in \mathcal{B} .

Let A and B be two quantities that depend on a holomorphic function f on U. We say that A is equivalent to B, we write $A \sim B$, if

const.
$$A \leq B \leq \text{const. } A$$
.

We shall show that the analogue of Theorem 3.5 holds for p > 2.

THEOREM 6.1. For $f \in \mathcal{B}_{\alpha}$ $(\alpha > 0), p > 2$,

$$\operatorname{dist}_{\mathcal{B}_{\alpha}}(f,\mathcal{B}_{\alpha,0}) \sim \inf A_{p,\alpha}(f) \sim \inf A_{\alpha}(f)$$
.

PROOF: By the \mathcal{B}_{α} versions of Propositions 3.2 and 3.3 it suffices to show that for all $\varepsilon \in A_{p,\alpha}(f)$, $f_1 \in \mathcal{B}_{\alpha,0}$. The function f_1 in the \mathcal{B}_{α} setting is

$$f_1(z) = \int_{\Omega_r(f)} \frac{(1-|w|^2)^{\alpha} f'(w)}{\overline{w} (1-\overline{w}z)^{1+\alpha}} dA(w).$$

Thus for all $\delta > 0$

$$(1-|z|^{2})^{\alpha} |f'_{1}(z)| \leq (1-|z|^{2})^{\alpha} ||f||_{\mathcal{B}_{\alpha}} \int_{\Omega_{\epsilon}(f)} \frac{1}{(1-|w||z|)^{\alpha+2}} dA(w)$$

$$\leq \text{const.} (1-|z|)^{\delta} \int_{\Omega_{\epsilon}(f)} \frac{1}{(1-|w|^{2})^{2+\delta}} dA(w).$$

It follows that $f_1 \in \mathcal{B}_{\alpha,0}$ for all $\varepsilon \in A_{p,\alpha}(f)$, $p = 2 + \delta$ ($\delta > 0$). Therefore the result follows.

The analogue of Theorem C holds. In [11, Theorem 2.1.1] is the \mathcal{B}_{α} analogue of (12) (replace the term $1 - |z|^2$ in (12) with $(1 - |z|^2)^{\alpha}$). Thus a corollary of the proof of Theorem C is as follows.

THEOREM 6.2. Let μ be a positive measure on U, let $0 and <math>\alpha > 0$. Then,

$$\int_{U} \frac{d\mu(z)}{(1-|z|^2)^{\alpha p}} < \infty$$

if and only if there is a constant c with

$$\int_{U} |f'(z)|^{p} d\mu(z) \leqslant c \|f\|_{\mathcal{B}_{\alpha}}^{p}, \quad \text{ for all } f \in \mathcal{B}_{\alpha}.$$

Therefore we obtain the analogue of Corollary 3.6 for p > 2:

COROLLARY 6.3. For $f \in \mathcal{B}_{\alpha}$ ($\alpha > 0$), the following are equivalent:

- 1. $f \in \mathcal{B}_{\alpha,0}$.
- 2. For all $\varepsilon > 0$ $\Omega_{\varepsilon,\alpha}(f)$ is a compact subset of U.
- 3. For some p > 2 and all $\varepsilon > 0$,

$$\int_{\Omega_{\epsilon,\alpha}(f)} 1/\left(\left(1-|w|^2\right)^p\right) dA(w) < \infty.$$

4. For any p > 2 and $\varepsilon > 0$, there is a constant c so that

$$\int_{\Omega_{c,\alpha}(f)} \left| g'(z) \right|^p dA(z) \leqslant c \, \|g\|_{\mathcal{B}_{\alpha}}^p, \quad \text{ for all } g \in \mathcal{B}_{\alpha}.$$

The analogue of Theorem 3.9 for all spaces \mathcal{B}_{α} holds. The left inequality holds as the analogue of (5) is easily seen to be true in \mathcal{B}_{α} . For the right inequality everything works through with the appropriate change of each $1-|z|^2$ term to $(1-|z|^2)^{\alpha}$ and \mathcal{B} , \mathcal{B}_0 replaced with \mathcal{B}_{α} , $\mathcal{B}_{\alpha,0}$ respectively. In (19) $1/\left(1-\left(R+(1-\rho)/r\right)^2\right)$ needs to be replaced by its α power then the corresponding limit in (21) equals $(2^{2\alpha+1}(1-\rho))/(\rho^{\alpha+1}(4-\rho)^{\alpha})$. Therefore we obtain the following corollary.

COROLLARY 6.4. For $f \in \mathcal{B}_{\alpha}$ $(\alpha > 0)$,

$$\limsup_{|z|\to 1} \left|f'(z)\right| \left(1-|z|^2\right)^{\alpha} \leqslant \mathrm{dist}_{\mathcal{B}_{\alpha}}(f,\mathcal{B}_{\alpha,0}) \leqslant 2 \lim\sup_{|z|\to 1} \left|f'(z)\right| \left(1-|z|^2\right)^{\alpha}.$$

REFERENCES

- J.M. Anderson, 'Bloch functions: the basic theory', in *Operators and Function Theory*, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci 153 (Reidel, Dordrecht, 1985), pp. 1-17.
- [2] J. Arazy, S.D. Fisher and J. Peetre, 'Möbius invariant function spaces', J. Reine Angew. Math. 363 (1985), 110-145.
- [3] P.S. Bourdon, J.A. Cima and A.L. Matheson, 'Compact composition operators on BMOA', Trans. Amer. Math. Soc. 351 (1999), 2183-2196.
- [4] P.G. Ghatage and D. Zheng, 'Analytic functions of bounded mean oscillation and the Bloch space', *Integral Equations Operator Theory* 17 (1993), 501-515.
- [5] S. Makhmutov and M. Tjani, 'Composition operators on some Möbius invariant Banach spaces', Bull. Austral. Math. Soc. 62 (2000), 1-19.
- [6] A. Montes-Rodriguez, 'The essential norm of a composition operator on Bloch spaces', Pacific J. Math. 188 (1999), 339-351.
- [7] C. Pommerenke, Boundary behaviour of conformal maps (Springer-Verlag, Berlin, Heidelberg, 1992).
- [8] W. Ramey and D. Ullrich, 'Bounded mean oscillations of Bloch pull-backs', Math. Ann. 291 (1991), 590-606.
- [9] J.H. Shapiro, Composition operators and classical fraction theory (Springer-Verlag, New York, 1993).
- [10] D.A. Stegenga and K. Stephenson, 'Sharp geometric estimates of the distance to VMOA', Contemp. Math. 137 (1992), 421-432.
- [11] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics 1767 (Springer-Verlag, Berlin, 2001).
- [12] K. Zhu, Operator theory on function spaces (Marcel Dekker, New York, 1990).
- [13] K. Zhu, 'Bloch type spaces of analytic functions', Rocky Mountain J. Math. 23 (1993), 1143-1177.

Department of Mathematical Sciences University of Arkansas Fayetteville, AR 72701 United States of America e-mail: mtjani@uark.edu