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Abstract

We study the notion of inhomogeneous Poissonian pair correlations, proving several prop-
erties that show similarities and differences to its homogeneous counterpart. In particular, we
show that sequences with inhomogeneous Poissonian pair correlations need not be uniformly
distributed, contrary to what was till recently believed.
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1. Introduction

Let (xn)n∈N ⊆ [0, 1] be a sequence. The pair correlation counting function of (xn)n∈N is
defined by

R2(s, N) = 1

N
#
{

1 � m �= n � N : ‖xm − xn‖� s

N

}
, s>0,

where we write ‖x‖ = min{|x − k| : k ∈Z} for the distance of x ∈R to its nearest integer. The
sequence (xn)n∈N is said to have Poissonian pair correlations (or PPC, for abbreviation) if

lim
N→∞ R2(s, N) = 2s for all s>0.

The notion of PPC is known to have connections with mathematical physics, which go far
beyond the scope of this paper. For instance, we only mention the famous Berry–Tabor
Conjecture [3]. PPC have recently attracted increasing attention from the purely theoretical
point of view. In particular, it has been shown (partially independently) by various authors
that sequences with PPC are necessarily uniformly distributed [1, 4, 6, 11].

The notion of PPC has an “inhomogeneous” variant, which nonetheless is not equally
well studied. Given γ ∈R, we say that a sequence (xn)n∈N has γ - PPC if

lim
N→∞ R2(γ ; s, N) = 2s for all s>0,
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18 M. HAUKE AND A. ZAFEIROPOULOS

where we define

R2(γ ; s, N) = 1

N
#
{

1 � m �= n � N : ‖xm − xn − γ ‖� s

N

}
.

Clearly, for γ = 0 and more generally for any integer value of γ in the above definition,
one recovers the classical property of PPC. Since the property of γ - PPC is invariant under
integer translations of γ , we will only consider values of γ ∈ [0, 1]. When 0<γ<1, we may
refer to the property of γ - PPC as inhomogeneous Poissonian pair correlations with respect
to γ . Also since γ - PPC is equivalent to (1 − γ ) - PPC, it will be sufficient to restrict our
attention to values 0<γ � 1/2.

A first treatment of the notion of γ - PPC can be found in [7]. There, it is explained that
like PPC, the property of γ - PPC with γ �= 0 is a pseudorandomness property, in the sense
that if (Xn)∞n=1 is a sequence of i.i.d. random variables, all following the uniform distribution
in [0, 1], then with probability 1 the sequence (Xn)∞n=1 has γ - PPC. In [7] it is also stated
among other results that just like their homogeneous counterpart, γ - PPC is a property
that is stronger than uniform distribution; in other words, any sequence with γ - PPC is
automatically uniformly distributed.

In the first result of our paper, we prove that this statement is actually false!

THEOREM 1·1. Let 0<γ<1. Then there exists a sequence (xn)n∈N ⊆ [0, 1] that has γ - PPC
but is not uniformly distributed.

In addition to Theorem 1·1, we try to shed some light on the reason why PPC imply
uniform distribution while γ - PPC with γ �= 0 do not. Among the several proofs of the
fact that PPC imply uniform distribution that were mentioned earlier, Aistleitner, Lachmann
and Pausinger in [1] prove a stronger statement that connects the limiting behaviour of the
pair correlation function R2(s, N) with the asymptotic distribution function of the sequence
(xn)n∈N. We say that the function G:[0, 1] →R is the asymptotic distribution function of the
sequence (xn)n∈N if

G(x) = lim
N→∞

1

N
#{n � N : 0 � xn � x} for all 0 � x � 1.

Their result is the following.

THEOREM (ALP). Let (xn)n∈N ⊆ [0, 1] be a sequence with asymptotic distribution function
G:[0, 1] →R. Let F:[0, ∞) → [0, ∞] be defined by

F(s) = lim inf
N→∞

1

N
#
{

1 � m �= n � N : ‖xm − xn‖� s

N

}
, s>0.

Then the following hold:

(i) if G is not absolutely continuous, then F(s) = ∞ for all s>0;
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(ii) if G is absolutely continuous and g is the corresponding density function (that is,
g = G′ almost everywhere), then

lim sup
s→∞

F(s)

2s
�

∫ 1

0
g(x)2 dx. (1·1)

This result
1

indeed implies that PPC is a property stronger than uniform distribution. If
(xn)n∈N is not u.d. mod 1, then the integral on the right-hand side of (1·1) is strictly greater
than 1 and (xn)n∈N cannot have PPC.

For uniformly distributed sequences, the density function is g(x) = 1 and thus the ALP
Theorem implies that for any ε>0, lim infN→∞ R2(s, N) � 2s − ε for arbitrarily large values
of the scale s>0. In other words, among all uniformly distributed sequences, for those who
have PPC, the quantity

lim sup
s→∞

lim inf
N→∞

R2(s, N)

2s

exhibits an extremal behaviour, in the sense that it has the minimal possible asymptotic size,
and this extremal behaviour is not attainable for non-uniformly distributed sequences.

Returning to the inhomogeneous PPC, the proof of Theorem 1·1 makes use of the follow-
ing statement, which establishes a connection between the density function g and the limiting
behaviour of R2(γ ; s, N) in a probabilistic context. We say that a random variable X with sup-
port in [0, 1] is distributed with respect to the function G : [0, 1] →R if P(X<t) = G(t) for
all t ∈ [0, 1].

THEOREM 1·2. Let γ ∈R and G:[0, 1] →R be an absolutely continuous distribution
function with corresponding density function g ∈ L2([0, 1]). Let (Xn)n∈N be a sequence of
independent random variables on some probability space (�, �, P) with support in [0,
1] that are distributed with respect to G. Then, for the γ -pair correlation function of
(xn)n∈N := (Xn(ω))n∈N, ω ∈ �, we have P-almost surely

lim
N→∞ R2(γ ; s, N) = 2s ·

∫ 1

0
g(x)g(x + γ ) dx for all s>0. (1·2)

Remark 1·3. In the rest of the paper, when g:[0, 1] →R is a density function as above and
γ �= 0, we implicitly extend g to the real numbers periodically mod 1 and write

∫ 1
0 g(x)g(x +

γ ) dx instead of
∫ 1

0 g(x)g({x + γ }) dx, which would be more accurate.

We note that for the specific choice γ = 0, Theorem 1·2 is the heuristic observation made
in [1, equation (2)]. Theorem 1·1 follows straightforwardly from Theorem 1·2 once we find
a non-constant density g such that

∫ 1
0 g(x)g(x + γ ) dx = 1 for a fixed γ .

After establishing the connection between R2(γ ; s, N) and the density function g for ran-
dom variables described in (1·2), we suspected that an analogue of the ALP Theorem is

1 In the original result in [1], the definition of F has limit instead of liminf. Furthermore, the ALP Theorem
can be straightforwardly adapted to allow the asymptotic function G not to be unique, but we assume so to
keep the notation simple.
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also true for γ �= 0. That is, if g is the distribution function of the sequence (xn)n∈N and we
define

Fγ (s) = lim inf
N→∞

1

N
#
{

1 � m �= n � N : ‖xm − xn − γ ‖� s

N

}
, s>0, (1·3)

then

lim sup
s→∞

Fγ (s)

2s
�

∫ 1

0
g(x)g(x + γ ) dx. (1·4)

However, it turns out that (1.4) is not true, either.

THEOREM 1·4. For any 0<γ<1, there exists a sequence (xn)n∈N ⊆ [0, 1] with asymptotic
density function g : [0, 1] →R such that for the function Fγ as in (1.3) we have

lim sup
s→∞

Fγ (s)

2s
<

∫ 1

0
g(x)g(x + γ ) dx.

Finally, we examine the relation between the property of γ - PPC for different values of
γ . Observe that in view of Theorem 1·1, γ - PPC for γ �= 0 does not imply PPC; otherwise,
every sequence with γ - PPC would need to be uniformly distributed. As a last result of
the paper, we show that this is not a phenomenon that distinguishes between PPC and inho-
mogeneous pair correlations. In particular, it follows that the classical PPC property is not
stronger than its inhomogeneous counterparts.

THEOREM 1·5. Let γ1, γ2 ∈ [0, 1/2] with γ1 �= γ2. Then there exists a sequence (xn)n∈N ⊆
[0, 1] that has γ1 - PPC but not γ2 - PPC.

Why γ - PPC? Before proceeding to the proofs of the theorems, we think it would be
worth discussing what we view as the motivation behind the definition of γ - PPC. Beyond
pure interest in the notion itself, this motivation arises in an open problem from the met-
ric theory of (homogeneous) Poissonian pair correlations. Given an increasing sequence
A= (an)n∈N ⊆N, a series of results [2, 8–10] shows that under certain assumptions on A,
the sequence (anx)n∈N has PPC for almost all x ∈ [0, 1]. There also exist results [2, 12]
that provide conditions on A under which the sequence (anx)n∈N has PPC for almost no
x ∈ [0, 1]. However, it remains an open question to determine whether for any choice of
A, the sequence (anx)n∈N has PPC either for almost all or for almost no x ∈ [0, 1], thus
establishing a zero-one law in the theory of metric Poissonian pair correlations.

For A fixed, writing XA = {x ∈ [0, 1] : (anx)n∈N has PPC}, the aforementioned problem
is equivalent to determining whether λ(XA) = 0 or 1 for any choice of A. To answer this
question, it would suffice to check whether the set XA is invariant under the ergodic transfor-
mation T(x) = 2x mod 1. Given x ∈ XA, we have 2x ∈ XA if and only if the pair correlation
function of the sequence (2anx)n∈N satisfies limN→∞ R2(2x, 2s, N) = 4s for all s>0. But

R2(2x, 2s, N) = 1

N
#
{

1 � m �= n � N : ‖anx − amx‖� s

N

}
+ 1

N
#
{

1 � m �= n � N : ‖anx − amx − 1
2‖� s

N

}
,
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and therefore 2x ∈ XA if and only if the sequence (anx)n∈N has 1/2-PPC! In particular,
Theorem 1·4 shows that the naïvest approach of immediately implying 2x ∈ XA does not
work and thus, if possible at all, one has to use the additional structure of the sequence.

Notation. Given x ∈R and r>0 we write B(x, r) = {t ∈R : ‖t − x‖� r} for the interval of
points in the unit torus that have distance at most r from x. Also throughout the text
we shall use the standard Vinogradov 
-notation: we write f (x) 
 g(x), x → ∞ when
lim supx→∞ f (x)/g(x)<∞.

2. Proof of Theorems 1·1 and 1·2
As explained in the introduction, we begin with the proof of Theorem 1·2, which is a more

general result of probabilistic nature. The existence of sequences (xn)n∈N with γ –PPC that
are not uniformly distributed will then follow as a simple corollary.

2·1. Proof of Theorem 1·2
When m �= n, the random variable Xm − Xn has probability density function

d(t) =
∫ 1

0
g(x)g(x + t) dx. (2·1)

Writing X := (Xn)n∈N, the γ -pair correlation function

RX2 (γ ; s, N) := 1

N

∑
m �=n�N

1B(0, s
N )(Xm − Xn − γ ) = 1

N

∑
m �=n�N

1B(γ , s
N )(Xm − Xn)

is itself a random variable with expectation

E[RX2 (γ ; s, N)] = 1

N

∑
m �=n�N

∫
1B(γ , s

N )(Xm − Xn) dP

= 1

N

∑
m �=n�N

∫
B(γ , s

N )
d(t) dt

= (N − 1)
∫

B(γ , s
N )

d(t) dt.

Since g ∈ L2([0, 1]), the function d(t) defined in (2·1) is bounded and continuous, hence

lim
N→∞ N

∫
B(γ , s

N )
d(t) dt = lim

N→∞ 2s · 1

2s/N

∫
B(γ , s

N )
d(t) dt = 2s · d(γ ).

This allows us to conclude that

lim
N→∞ E[RX2 (γ ; s, N)] = 2s ·

∫ 1

0
g(x)g(x + γ ) dx.

In the rest of the proof, we will write

DN = {(m, n) ∈N2 : 1 � m �= n � N}
for the set of pairs of indices appearing in the pair correlation functions.
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The second moment of RX2 (γ ; s, N) is equal to

E[RX2 (γ ; s, N)2] = 1

N2

∑
(m,n)∈DN

∫
1B(0, s

N )(Xm − Xn − γ ) dP

+ 1

N2

∑
(m,n)∈DN

∫
1B(0, s

N )(Xm − Xn − γ )1B(0, s
N )(Xn − Xm − γ ) dP

+ 1

N2

∑ ∑
(m,n),(k,�)∈DN

{k,�}�={m,n}

∫
1B(0, s

N )(Xk − X� − γ )1B(0, s
N )(Xm − Xn − γ ) dP.

(2·2)

The first of the terms above is equal to (1/N)E[R2(γ ; s, N)]. For the second term, we note
that for γ = 0 or γ = 1/2, we get another contribution of (1/N)E[R2(γ ; s, N)], while if γ /∈
{0, 1/2}, the second term vanishes for N sufficiently large. Thus, in any case, the contribution
of the second term is bounded from above by (1/N)E[R2(γ ; s, N)], and it remains to examine
the third term of (2·2).

In order to do so, note that the contribution of pairs (k, �), (m, n) ∈DN that share one
common coordinate is

1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(0, s

N )(Xk − X� − γ )1B(0, s
N )(Xk − Xm − γ ) dP

+ 1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(0, s

N )(Xk − X� − γ )1B(0, s
N )(Xm − Xk − γ ) dP,

which is equal to

1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(Xk−γ , s

N )(X�)1B(Xk−γ , s
N )(Xm) dP

+ 1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(Xk−γ , s

N )(X�)1B(Xk+γ , s
N )(Xm) dP.

Since for � �= m the random variables X�, Xm are independent, the above is equal to

1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(Xk−γ , s

N )(X�) dP
∫

1B(Xk−γ , s
N )(Xm) dP

+ 1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(Xk−γ , s

N )(X�) dP
∫

1B(Xk+γ , s
N )(Xm) dP

= 1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(0, s

N )(Xk − X� − γ ) dP
∫

1B(0, s
N )(Xk − Xm − γ ) dP
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+ 1

N2

∑ ∑
k,�,m�N
distinct

∫
1B(0, s

N )(Xk − X� − γ ) dP
∫

1B(0, s
N )(Xm − Xk − γ ) dP.

Back to (2·2), for pairs (k, �), (m, n) ∈DN with no common coordinate, the random variables
Xk − X�, Xm − Xn are independent and the corresponding contribution is

1

N2

∑ ∑
k,�,m,n�N
k,�/∈{m,n}

∫
1B(0, s

N )(Xk − X� − γ )1B(0, s
N )(Xm − Xn − γ ) dP

= 1

N2

∑ ∑
k,�,m,n�N
k,�/∈{m,n}

∫
1B(0, s

N )(Xk − X� − γ ) dP
∫

1B(0, s
N )(Xm − Xn − γ ) dP.

If we apply the same case distinction to the sum in

E[RX2 (γ ; s, N)]2 = 1

N2

( ∑
(m,n)∈DN

∫
1B(0, s

N )(Xm − Xn − γ ) dP
)2

and combine with the equations above, we deduce that∫ ∣∣∣R2(γ ; s, N) −E[RX2 (γ ; s, N)]
∣∣∣2

dP=E[RX2 (γ ; s, N)2] −E[RX2 (γ ; s, N)]2

= 1

N
E[RX2 (γ ; s, N)] − 1

N2

∑
(m,n)∈DN

( ∫
1B(γ , s

N )(Xm − Xn) dP
)2

� 1

N
E[RX2 (γ ; s, N)] 
 1

N
, N → ∞,

where we used again that g ∈ L2([0, 1]). An application of Chebyshev’s inequality in combi-
nation with the first Borel–Cantelli Lemma shows that P-almost surely in ω ∈ � we have

lim
N→∞ RX(ω)

2 (γ ; s, N2) = lim
N→∞ E[RX2 (γ ; s, N2)] = 2s ·

∫ 1

0
g(x)g(x + γ ) dx,

and a standard approximation argument (see e.g. [2, p. 475]) shows that the same is true
along the whole sequence R2(γ ; s, N). This proves (1·2) for fixed s>0.

In order to deduce (1·2) for all s>0 simultaneously, we apply the above procedure for
every s ∈Q�0. Using that Q is countable and dense in R, the monotonicity of R2(γ ; s, N)

as a function in s, and the continuity of s �→ 2s · ∫ 1
0 g(x)g(x + γ ) dx allows us to deduce that

(1·2) holds almost surely for all s>0.

2·2. Proof of Theorem 1·1
In view of Theorem 1·2, in order to prove the existence of a sequence with γ - PPC

that is not uniformly distributed, it simply suffices to define a density function g such that∫ 1
0 g(x)g(x + γ ) dx = 1 and g is not identically equal to 1. Then, any sequence of random

variables (xn)n∈N that has probability density function equal to g will almost surely have
γ -PPC (by (1·2)) but will not be uniformly distributed; otherwise we would have g(x) = 1
for all x ∈ [0, 1].
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Given γ �= 0, we first consider the case when 0<γ<1/2. Choose some δ>0 with δ<γ

and δ<1 − 2γ and define

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/
√

δ if x ∈ [0, δ) ∪ [γ , γ + δ),
1 − 2

√
δ

γ − δ
if x ∈ [δ, γ ),

0 otherwise.

In the case when γ = 1/2, we take some 0<δ<1/2 and let

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/
√

2δ if x ∈ [0, δ) ∪ [γ , γ + δ),
1 − √

2δ

γ − δ
if x ∈ [δ, γ ),

0 otherwise.

In both cases, it is straightforward to check by elementary computations that the following
three statements hold:∫ 1

0
g(x) dx = 1,

∫ 1

0
g(x)g(x + γ ) dx = 1 and g �≡ 1.

The case when 1/2<γ<1 is covered by the first case dealt with earlier, because γ -PPC is
equivalent to (1 − γ )-PPC. This concludes the proof of Theorem 1·1.

3. Proof of Theorem 1·3
We first prove the result for γ = 1/2 and then we explain how the proof can be generalised

to values 0<γ<1/2. In both cases, we shall make use of the binary van der Corput sequence
(cn)n∈N that is defined as follows (see also [5]): writing n − 1 = am(n)2m + . . . + a1(n)2 +
a0(n) for the binary expansion of the integer n − 1, the nth term of (cn)n∈N is the number

cn = a0(n)

2
+ a1(n)

22
+ · · · + am(n)

2m+1
·

When γ = 1/2. We shall construct a sequence (xn)n∈N ⊆ [0, 1] that on the one hand is
uniformly distributed, which implies

∫ 1
0 g(x)g(x − 1/2) dx = 1, but on the other hand

F 1
2
(s) = lim inf

N→∞
1

N
#
{

m, n � N : ‖xm − xn − 1

2
‖� s

N

}
= 0 for all s>0.

We will actually show something stronger: the relation above will hold with limit instead of
liminf. We define the auxiliary sequences (yn)n∈N, (zn)n∈N as follows: we set yn = 1/2cn and

zn = 1

2
+ yn + 1

3 · 2N
whenever 2N−1<n � 2N .

By these definitions, it is obvious that (yn)n∈N ⊆ [0, 1/2] and (zn)n∈N ⊆ [1/2, 1].
The sequence (xn)n∈N is constructed recursively, with the Nth step involving the definition

of the terms xn, 2(N − 1)2N−1<n � 2N2N . At step N = 1, we set

x1 = y1, x2 = z1, x3 = y2, x4 = z2.
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Assume that for some N � 1 we have defined all points xn, 1 � n � 2N2N . Set

(x2N2N+1, . . . , x2(N+1)2N ) = (y1, z1, y2, z2, . . . , y2N , z2N ).

The 2(N + 1)2N-tuple (x2(N+1)2N+1, . . . , x2(N+1)2N+1) is then defined by concatenating the
2N+1 tuple

(y2N+1, z2N+1, . . . , y2N+1 , z2N+1)

N + 1-times with itself. In that way, for each N � 1 the terms x1, . . . , x2N2N contain N copies
of the points y1, . . . , y2N and N copies of the points z1, . . . , z2N .

It is straightforward to check that the sequence (xn)n∈N is uniformly distributed, so it
remains to prove that F 1

2
(s) = 0. For any N � 1, set

YN =
{ j

2N+2
: 0 � j<2N+1

}
and

ZN =
{1

2
+ j

2N+2
+ 1

3 · 2k
: 0 � j<2N+1, 0 � k � N + 1

}
∩ [ 1

2 , 1
]
.

We claim that ∥∥∥a − b − 1

2

∥∥∥� 1/12

2N
whenever a, b ∈ YN ∪ ZN . (3·1)

This is obvious for a, b ∈ YN . Since

min ZN = 1

2
+ 1

3 · 2N+1
and max ZN � 1,

the inequality in (3·1) also holds when a, b ∈ ZN . It remains to check the case when a ∈
YN , b ∈ ZN (or vice-versa); then∥∥∥a − b − 1

2

∥∥∥� min
0�k�N+1

min
n∈Z

∥∥∥ n

2N+2
− 1

3 · 2k

∥∥∥� 1

3 · 2N+2
= 1/12

2N
,

since 3 is coprime to 2N . This proves (3·1).
Now given M ∈N, let N = N(M) � 1 be defined by

2N · 2N<M � 2(N + 1)2N+1.

We then have the inclusion

{xn : 1 � n � M} ⊆ {yn : 1 � n � 2N+1} ∪ {zn : 1 � n � 2N+1} ⊆ YN ∪ ZN .

Thus for a fixed value of s>0, whenever #
{
a, b ∈ YN ∪ ZN : ‖a − b − 1/2‖� s/2N · 2N

} =
0, then also # {n, m � M : ‖xn − xm − 1/2‖� s/M} = 0. Hence for all N � 6s, (3·1) implies
that # {n, m � M : ‖xn − xm − 1/2‖� s/M} = 0 and we obtain F1/2(s) = 0.

When 0<γ<1/2. We set ε = 2−i where i � 1 is large enough such that 0<ε<min{(1/2 −
γ )/2, γ }. We then define (yn)n∈N and (zn)n∈N by setting

yn = εcn and zn = γ + yn + 1

3 · 2N
whenever 2N−1<n � 2N .

The sequence (xn)n∈N is then defined precisely as in the case γ = 1/2.
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One can use the same arguments as before to show that for any s>0 we have Fγ (s) = 0.
On the other hand, the asymptotic density function of (xn)n∈N is

g(x) =
{

1/(2ε), if x ∈ [0, ε] ∪ [γ , γ + ε]

0, otherwise

and thus
∫ 1

0 g(x)g(x + γ )dx = 1/(4ε)>0, which concludes the proof.

Remark 3·1. Note that the sequence defined above for γ �= 1/2 is not uniformly distributed.
However, one could adapt the construction by “diluting” the sequence with i.i.d. samples on
[ε, γ ] ∪ [γ + ε, 1] in order to get a sequence that almost surely is uniformly distributed mod
1 and satisfies

lim sup
s→∞

Fγ (s)

2s
<

∫ 1

0
g(x)g(x + γ ) dx = 1.

We leave the details to the interested reader.

4. γ1 - PPC does not imply γ2 - PPC

We finish with the proof of Theorem 1·4. Let (xn)n∈N be a sequence of independent
random variables, following the uniform distribution in [0, 1]. Define (yn)n∈N by

y2n−1 = xn and y2n = xn + γ2 (n � 1).

In what follows, we will write RX2 and RY2 for the pair correlation functions of (xn)n∈N and
(yn)n∈N respectively. Then by definition of (yn)n∈N,

RY2 (γ2; s, 2N) = 1

2N
#
{

n �= m � 2N : ‖yn − ym − γ2‖� s

2N

}
� 1

2N
N = 1

2
·

Taking s<1/4, the above shows that (yn)n∈N does not have γ2 - PPC. We claim that (yn)n∈N
has still almost surely γ1 - PPC: we have

RY2 (γ1; s, 2N) = 1

2N
#
{

n �= m � 2N : ‖yn − ym − γ1‖� s

2N

}
= 1

2N
#
{

n �= m � N : ‖xn − xm − γ1‖� s/2

N

}
+ 1

2N
#
{

n �= m � N : ‖xn + γ2 − (xm + γ2) − γ1‖� s/2

N

}
+ 1

2N
#
{

n, m � N : ‖xn + γ2 − xm − γ1‖� s/2

N

}
+ 1

2N
#
{

n, m � N : ‖xn − (xm + γ2) − γ1‖� s/2

N

}
= RX2 (γ1;

s

2
, N) + 1

2
RX2 (γ1 − γ2;

s

2
, N) + 1

2
RX2 (γ1 + γ2;

s

2
, N)

+ 1

2N
#
{

n � N : ‖xn + γ2 − xn − γ1‖� s/2

N

}
+ 1

2N
#
{

n � N : ‖xn − (xn + γ2) − γ1‖� s/2

N

}
.
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Since γ1 − γ2, γ1 + γ2 /∈Z, the last two terms in the above equation vanish if N is sufficiently
large. By Theorem 1·2, the sequence (xn)n∈N has γ1 - PPC and (γ1 − γ2) - PPC and (γ1 + γ2)
- PPC almost surely, therefore with probability 1 we have

lim
N→∞ RY2 (γ1; s, 2N) = 2s for all s>0.

A standard approximation argument now gives that limN→∞ RY2 (γ1; s, N) = 2s for all scales
s>0, which means that (yn)n∈N has γ1 - PPC almost surely.
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