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ABSTRACT 

Asynchronous coupling schemes between ice sheet and 
atmospheric forcing models are evaluated for use in 
long-term ice-age simulations. In these schemes the ice sheet 
and atmospheric forcing are run together for short 
synchronous periods (Ts)' alternating with longer 
asynchronous periods (TA) during which the ice sheet is run 
with atmospheric information extrapolated from the previous 
synchronous period(s). Two simple ice-sheet models are used 
that predict ice thickness as a function of latitude, and the 
atmosphere is represented by a prescribed pattern of net 
annual accumulation minus ablation. The pattern is shifted 
vertically to represent long-term orbital variations, stochastic 
inter-annual weather variability and ice-sheet albedo 
feedback . 

Several asynchronous schemes are evaluated by 
comparing results with those from fully synchronous runs. 
The best overall results are obtained using a scheme in 
which the forcing during each asynchronous period is 
linearly extrapolated from its means in the previous two 
synchronous periods. Differences from the synchronous 
results are caused primarily by poor sampling of the 
stochastic forcing component, which exaggerates the 
stochastic ice-sheet fluctuations. We examine how these 
errors depend on Ts and TA' and outline implications for 
GCM ice-age simulations. 

INTRODUCTION 

With more powerful computers in the future, it will 
become feasible to perform continuous ice-age climate 
simulations on 1000 to lOO OOO-year time-scales, using global 
atmospheric and oceanic general circulation models (GCMs) 
coupled to three-dimensional ice-sheet models. To date such 
simulations have only been performed with simplified 
energy-balance climate models and one- or two-dimensional 
ice-sheet models (e.g. Neeman and others, 1988, and 
references therein). These models are useful in identifying 
important ice-age mechanisms, but more powerful models 
will eventually be needed to test more detailed ice-age 
scenarios. 

In these simulations the deep oceans change gradually 
on time-scales of hundreds of years, and the major ice 
sheets change gradually on time-scales of thousands of 
years. It is therefore computationally wasteful to run the 
atmospheric model over the entire simulation, since hundreds 
of years would go by with no appreciable change in the 
atmospheric climate. Instead, the complete model can be run 
intermittently for relatively short "synchronous" periods (Ts)' 
each followed by a much longer "asynchronous" period (TA) 
during which the ocean and l or ice sheets are run with 
atmospheric information extrapolated from the previous 
synchronous period(s). This will cause slight differences in 
the results from a fully synchronous run, but the 
differences will be negligible as long as Ts is not too short 
and TA is not too long. 

Several asynchronously coupled atmosphere-ocean GCM 
experiments have been performed since the 1970s, designed 

mainly to simulate the present climate (e.g. Manabe and 
others, 1979; Washington and others, 1980). More recently 
simple energy-balance coupled models have been used to 
evaluate various asynchronous coupling schemes for the 
atmosphere and ocean (Dickinson, 1981; Harvey, 1986; 
Schneider and Harvey, 1986), by assessing the differences in 
results from exact synchronous solutions. 

In a similar vein, the present work evaluates 
asynchronous coupling schemes between ice sheets and the 
atmosphere. In the following two sections ice-sheet 
models, atmospheric forcing and asynchronous coupling 
schemes are described, and resulting variations in ice-sheet 
extent versus time are presented, emphasizing the 
differences from the fully synchronous results . We identify 
the asynchronous scheme that yields the smallest errors for 
given values of Ts and TA' and explore the ranges of Ts 
and TA that keep the errors within acceptable bounds. The 
main conclusions and implications for computer resource 
requirements are outlined in the final section. 

MODEL DESCRIPTION 

Ice-sheet and atmospheric forcing 
The models used here have found standard usage in 

many ice-age studies; for brevity only a general description 
is given below, with the model components shown 
schematically in Figure I. For most of our results we used 
the perfectly plastic ice-sheet model (e.g. Weertman, 1976), 
in which the ice-sheet profile versus latitude is constrained 
to be parabolic. The bedrock depression below the ice is 
ass umed to be isostatic, and the northern ice-sheet tip is 
fixed at the Arctic Ocean shoreline. The ice sheet varies in 
size according to the surface accumulation minus ablation on 
its southern half, always keeping the parabolic profile. As 
in Weertman (1976), the atmospheric forcing is simply a 
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Fig. 1. Schematic cross section of the ice sheet. ho is the 
elevation of the snowline at the Arctic Ocean shoreline. 
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prescribed pattern of net annual accumulation minus 
ablation, which is shifted vertically to represent long-term 
orbital perturbations, stochastic inter-annual weather 
variability and ice-sheet albedo feedback. The forcing is 
shown in the figures below in terms of ho' the elevation of 
the snowline at the Arctic Ocean shoreline, given by 

(1) 

h rb is a long-term sinusoidal forcing analogous to the 
effects of orbital perturbations on the atmospheric climate, 
and its form for each run can be seen in the figures 
below. The second term halb represents the albedo feedback 
of the ice sheet, and lowers the snowline in proportion to 
the current ice-sheet extent. 

The third term hsto in Equation (I) represents the 
year-to-year variability due to inter-annual weather 
variations, and is important for the present study since it 
introduces the possiblity of sampling errors in asynchronous 
coupling schemes (Harvey, 1986; Hasselmann, 1988). In 
reality and in GeMs, the inter-annual variability of storm 
tracks, temperature and other atmospheric fields causes the 
net mass balance on ice surfaces to fluctuate from year to 
year, with amplitudes on the order of one-tenth of the 
glacial-interglacial changes. If in an asynchronous run the 
synchronous period Ts is set too short, one or two 
abnormal weather years can skew the extrapolated forcing 
used throughout the next asynchronous period. hsto is 
assigned a random value annually during synchronous 
periods, distributed normally with zero mean and standard 
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Fig . 2. (a) Solid curve: ice-sheet extent (distance from 
northern to southern tip) vs time using the diffusive 
ice-sheet model with synchronous coupling . Dotted curve: 
atmospheric forcing ho as defined in Equation (1). (b-d) 
Differences from Figure 2a using: (b) non-extrapolated 
asynchronous coupling; (c) extrapolated asynchronous 
coupling; (d) least-squares asynchronous coupling. 
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deviation of 100 m and with no correlation from year to 
year. The amplitude of 100 m is derived from observed 
summer temperature variability in Oort and Rasmusson 
(1971) and winter snow-cover variability in Wiesnet and 
Matson (1979), but the most appropriate value is uncertain 
as discussed below (cf. Oerlemans, 1979). 

If the southern half of the ice sheet lies either entirely 
below or entirely above the snowline, the assumption of a 
fixed parabolic profile is no longer valid (Weertman, 1976; 
Birchfield, 1977). We encountered this situation in only one 
type of run, in which the ice sheet vanishes periodically; as 
a nascent ice sheet starts to grow it remains entirely above 
the snow line for a few thousand years, and vice versa as a 
shrinking ice sheet vanishes. This caused spurious effects in 
our results, so for that type of run we used a more general 
diffusive ice-sheet model. (For all other types of runs the 
results obtained from the two models agreed well.) The 
diffusive ice-sheet model has been used with variations in 
many ice-age studies (e .g. Birchfield and Grumbine, 1985; 
Hyde and Peltier, 1987). It is based on a vertically 
integrated ice-flow law, and predicts ice thickness as a 
general function of latitude. We take the bedrock depression 
to be isostatic, constrain the northern ice-sheet tip at the 
Arctic Ocean shoreline, and use the same atmospheric 
forcing pattern as Birchfield and Grumbine (1985). 

Types of asynchronous coupling 
Our base-line coupling method is fully synchronous, 

with the "atmospheric state" ho computed from Equation (1) 
at every ice-sheet time step. This method is referred to as 
"synchronous" below, and differences from the synchronous 
results caused by other coupling methods are termed 
"errors". 
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Fig. 3. As for Figure 2, except using 
model and smaller amplitude in the 
forcing horb. 

- 40 00 E 
c 
0 

-200 0 -0 
> 
ID 

W 
Q) 

c 

~ 

2000 
0 
c 
VI 

160 200 

the plastic ice-sheet 
long-term sinusoidal 

https://doi.org/10.3189/S0260305500008685 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500008685


In our simplest asynchronous coupling scheme, the 
atmospheric state ho throughout each asynchronous period 
TA is taken as its mean value during the previous 
synchronous period Ts' This is referred to below as "non
extrapolated". 

In a slightly more refined scheme, ho during each 
asynchronous period TA is obtained by linearly extrapolating 
in time from its mean values in the previous two 
synchronous periods. Harvey (1986) used a similar scheme 
for atmosphere-ocean coupling (his TSE), except that he 
extrapolated quadratically using the previous three 
synchronous values . Our linear scheme is referred to below 
as "extrapolated". 

In an effort to minimize the sampling errors due to 
the hsto term in Equation (I), we experimented with a 
more complex scheme as follows. The mean values of ho 
during many (about 40) synchronous periods are treated as a 
time series contaIning a smoothly varying signal plus 
additive noise. This time series is least-squares fitted by a 
sum of (about 5) smoothly varying sinusoidal or polynomial 
functions , which is then extrapolated to obtain ho through 
the next asynchronous period TA' This method is referred 
to below as "least-squares". 

RESULTS 

Examples 
Figures 2 and 3 show typical results for sinusoidal 

forcing horb' with Ts = 10 year, TA = 990 year. The 
amplitude of horb in Figure 2 is large enough to make the 
ice sheet vanish periodically, which necessitated the use of 
the diffusive ice-sheet model as explained above. All the 
error curves in Figure 2 show large spikes when the ice 
sheet is decaying rapidly (ice extents <-500 km), because 
distortions in the forcing applied for one 990 year 
asynchronous period can have a relatively large effect when 
the ice is thin. When the ice sheet is large its relaxation 
time is on the order of 7000 year (Birchfield, 1977), and 
the uncorrelated distortions of several consecutive 990 year 
asynchronous periods usually cancel out before the ice sheet 
reacts much . 

However, spikes of about half the size of those in 
Figure 2 occur using synchronous coupling alone, just by 
choosing different realizations of the random number 
sequence used for hsto ' (When the ice sheet is large, the 
differences between synchronous realizations are negligible.) 
Hence only about half of the spike amplitudes in Figure 2 
is attributable to asynchronous error, the rest being due to 
unpredictability inherent in the model. 

The errors due to the non-extrapolated scheme in 
Figures 2b and 3b are systematically positive when the ice 
sheet is shrinking and negative when it is growing. They 
are mainly due to the long-term sinusoidal forcing 
effectively being phase-shifted by an amount TA' simply 
because the "true" value of ho computed during Ts is used 
without change for the next TA years. 

The extrapolated scheme drastically reduces the 
phase-lag errors (to -15 km, not shown), and the remaining 
errors in Figures 2c and 3c are due mainly to sampling 
errors related to the random component hsto in Equation 
(I), as discussed further below. 

In Figures 2d and 3d, the least-squares method 
produces noticeable improvement, at least after the first 
-40000 year when information from the previous 40 
synchronous periods has been accumulated. However, the 
method works well only when the form of the long-term 
forcing function is known and smooth as with the sinusoids 
here; for step-function forcing (not shown), the results are 
considerably worse than those using the other schemes (cf. 
Guest, 1961, p.265). The practicality of this method for 
future GCM runs is also questionable, since it requires the 
fitting of -40 sets of global data. For these reasons we put 
aside the least-squares method for now, and concentrate on 
the more viable extrapolated method. 

Effect of Ts and TA on stochastic forcing 
In other runs not shown here, we have found that the 

main points deduced above hold generally for various 
long-term sinusoidal, step-function and real orbital forcing 
functions . In the remainder of this paper we examine how 
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Fig. 4. Errors in ice-sheet extent versus (Ts + TA) I T s using 
extrapolated asynchronous coupling. Each point represents 
a run of 200000 year with various types of long-term 
forcing hOrb and different values of T s' all with 
T s + TA = 1000 year. The upper and lower shaded 
regions show maximum (absolute) errors and 
root-mean-square errors respectively. Points using the same 
long-term forcing are connected by straight lines, with 
labels A, B, C, and D indicating the forcings used in 
Figure 2, Figure 3, Figure 3 with doubled frequency, and 
Figure 5, respectively. The sporadic small ice-sheet spikes 
such as in Figure 2c have been excluded from the "A" 
lines (see text). 

the errors in the extrapolated method depend on the choices 
of T s and TA' These errors are basically caused by 
inadequate sampling of the inter-annual variability hsto in 
Equation (1) during each synchronous period. In synchronous 
runs this term is felt by the ice sheet as white noise, and 
causes red-noise fluctuations in our model ice sheet of 
about 3 km (cf. Oerlemans, 1979; Oerlemans and Van der 
Veen, 1984; it also causes a reduction in mean size of 
-7 km due to the ice-sheet curvature, as seen in Figure Sa). 
With asynchronous coupling, the forcing during TA is based 
on averages taken over the previous two synchronous 
periods Ts' These averages depart ran~omlY from the true 
mean climate by an amount (l i T s) x the inter-annual 
variability, since the standard deviation of the mean of N 
random samples is (l I N)t x the individual standard 
deviation. Furthermore, they are applied not just over one 
year as in synchronous coupling, but over the entire period 
Ts + TA' 

For large ice 
departures from 
continuous random 

sheets, this can be mode led as linearized 
equilibrium due to a step-wise dis
forcing; 

dl 
T- + I 
dl 

(2) 

where 1(1) are small perturbations in ice-sheet extent, T is 
the ice-sheet time-scale (-7000 year), and aleq/ah is the 
dependence of equilibrium ice-sheet size on snowline 
elevation (-4000). The forcing h' (I) is composed of linear 
segments over time intervals Ic' with random start and end 
values that depend on hsto and the coupling method. By 
defining a discrete sequence In = [(lIlc) and solving 
Equation (2) over one interval Ic' the sequence In is seen to 
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be a first-order Markov process, and for Ic« T, its 
variance is (Priestley, 1981; cf. Saltzman and others, 1984): 

(3) 

For synchronous coupling, rh' 2] = [h~to] = 104 m2 and le; = 
Isto == I year to rIpresent observed Inter-annual variability, 
which yields ([12]) '" 3.4 km. (The variance of l(t) can be 
shown to be almost the same as that of In' for le « T.) 
For extrapolated asynchronous coupling, the forcing variance 
is reduced by a factor Isto / T s and le becomes Ts + TA' so 
Equation (3) becomes 

[/~] [

B/eq ] 2 Isto(Ts + TA) 
-B-h- [h~to]--2-T-T-

s 
(4) 

For example, with {s = 10 year and TA = 990 year, 
Equation (4) yields ([/2]) '" 34 km. 

Our model results are generally consistent with this 
analysis, as shown for varying (Ts + T A)/ Ts in Figure 4 
and for fixed (Ts + TA) / Ts in Figure 5. In the lower 
envelope of Figure 4, the rms errors for a variety of 
long-term forcing functions are about the predicted size and 
have a roughly square-root dependence on (Ts + T A)/ Ts. 
For a fixed value of (Ts + T A)/ Ts, Figure 5 shows that the 
magnitude of the errors is fairly independent of the 
individual T s and TA values. However, the value of TA 
does affect the speclrum of the ice-sheet response by 
eliminating periods shorter than -TA' as evident in 
Figure 5b--d. 

Uncertainties 
We have varied most model parameter values over 

plausible ranges and used other atmospheric forcing patterns, 
and found only slight (-20%) changes in the asynchronous 
errors reported here. However, there are other sources of 
uncertainty as outlined below. 

The most appropriate amplitude of the inter-annual 
forcing hsto in Equation (I) is not well constrained by the 
present data. We have used 100 m, but values as high as 
200 m are plausible (cf. Oerlemans, 1979). From Equation 
(4) and from other runs not shown, the size of the 
asynchronous errors with extrapolated coupling is 
proportional to the amplitude of hsto ' so this source of 
uncertainty translates to a factor of about 2 in our 
quantitative results . 

The errors are also proportional to B1eq/ Bh in Equation 
(4). This value is relatively small for stable ice sheets as in 
this study, but it is conceivable that the equilibrium size of 
real Pleistocene ice sheets is extremely sensitive to snowline 
changes, so the stabilizing feedback in Equation (2) becomes 
very weak allowing the stochastic forcing to be an 
important "random-walk" factor in ice-age evolution (e.g. 
Nicolis, 1982). We have not tuned the model to investigate 
this regime. 

We have implicitly assumed that stochastic ice-sheet 
forcing is not important for the real ice ages, but is a 
nuisance to be filtered out during synchronous periods Ts. 
As Hasselmann (1988) points out, if it really is important 
its statistics should be measured during each synchronous 
period so that a synthetic stochastic component can be 
superimposed during the asynchronous periods. In future 
GCM runs, that (and the spin-up of the upper oceans) 
would probably require longer synchronous periods than 10 
years. 

CONCLUDING REMARKS 

Errors in asynchronous coupling of simple ice-sheet and 
atmospheric forcing models are due to (i) the phase-lagging 
of the long-term "orbital" forcing by -TA' and (ii) the 
amplification and distortion of the stochastic forcing 
component. 

The phase-Iag errors can be reduced to negligible levels 
by using the extrapolated scheme with TA on the order of 
1000 year or less. The remaining errors are then due to the 
spuriously altered stochastic forcing, which amplifies the 
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Fig. 5. (a) Solid curve: ice-sheet extent using the plastic 
model and synchronous coupling, with stochastic forcing 
alone (constant horb). Dashed curve: without stochastic 
forcing. (b--d) Differences from the solid curve in 
Figure 5a using extrapolated asynchronous coupling with 
(b) Ts = I year, Ts + TA = 100 year; (c) Ts = 10 year, 
Ts + TA = 1000 year; (d) Ts = 30 year, Ts + TA = 
3000 year. 

resulting ice-sheet fluctuations by a factor of about 
«T s + T A)/ Ts)t compared to synchronous coupling, and 
concentrates them at periods of TA and above. 

Figure 4 shows the general dependence of error size on 
(Ts + T A)/ Ts' using the extrapolated scheme. The large 
error spikes such as in Figure 2c have been excluded from 
Figure 4 on the grounds that they are sporadic, occur only 
for decaying ice sheets less than -500 km in extent, and are 
partly due to inherent model unpredictability. We consider 
that non-sporadic errors of -150 km or less will be 
acceptable for future GCM ice-age simulations, since that is 
an order of magnitude smaller than the full glacial
interglacial range and is a fraction of the typical horizontal 
resolution in atmospheric GCMs. To keep asynchronous 
errors below about 150 km, Figure 4 shows that 
(Ts + TA) / Ts must be -100 or less. 

The ratio (Ts + T A)/ Ts is also the approximate 
increase in efficiency afforded by asynchronous coupling in 
long-term GCM ice-age simulations, since most of the 
computer costs will be incurred by the atmospheric and 
upper oceanic components running only during synchronous 
periods. Hence the future choice of (Ts + TA) / Ts will 
involve a trade-off between efficiency and accuracy. 
Coupled atmospheric and oceanic GCMs currently use about 
10 supercomputer (CRA Y X-MP/48) CPU hours per 
simulated year, which means that a fully synchronous 
simulation of the last 150 000 years would require 170 years 
of CPU time. If asynchronous coupling were used with 
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(Tg + T A)/ Tg = 100, "only" 1.7 years of CPU time would be 
needed . That is still prohibitive, but should become feasible 
in the 1990s when available computer power increases by 
one more order of magnitude. 
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