RESTRICTION OF CHARACTERS TO SYLOW NORMALIZERS*

GABRIEL NAVARRO

Departament d'Àlgebra, Facultat de Matemàtiques, Universitat de València, 46100 Burjassot, València, Spain e-mail: gabriel@uv.es

(Received 12 November, 1999)

Abstract. Suppose that *G* is a finite *p*-solvable group and let $\chi \in Irr(G)$ be of *p'*-degree. In this note, we investigate when χ remains irreducible when restricted to $N_G(P)$.

1991 Mathematics Subject Classification. 20C15.

1. Introduction. Suppose that *G* is a finite group and let *P* be a Sylow *p*-subgroup of *G*. In this note we are concerned about characters of *G* that remain irreducible when restricted to $N_G(P)$. As an example of this situation, recall that if *q* is a power of *p* and G = PSL(2, q), then every irreducible character of *G* of degree q - 1restricts irreducibly to $N_G(P)$. The situation is quite different, however, in the *p*-solvable case.

THEOREM A. Suppose that G is p-solvable. Let $P \in Syl_p(G)$ and let $\chi \in Irr(G)$ be of p'-degree. If $\chi(1)$ is odd, then $\chi_{N_G(P)}$ is irreducible if and only if $G = ker(\chi)N_G(P)$.

Of course, if $G = \ker(\chi)\mathbf{N}_G(P)$, then it is trivial to see that χ restricts irreducibly to $\mathbf{N}_G(P)$, and our main work here is to show the converse.

The condition that $\chi(1)$ is odd is really necessary since GL(2, 3) has a faithful character of degree 2 that restricts irreducibly to its 3-Sylow normalizers. Finally, if we consider characters χ of degree divisible by p, then we shall construct some easy examples where the conclusion of Theorem A fails.

2. Proofs. We begin with a general lemma on characters and group actions.

LEMMA 2.1. Suppose that A acts on G and let $\chi \in Irr(G)$ be A-invariant. If $\chi_{C_G(A)}$ is irreducible, then $[G, A] \subseteq ker(\chi)$.

Proof. Let $\Gamma = GA$ be the semidirect product and let $C = \mathbf{C}_G(A)$. Note that $CA = C \times A$. Let $\eta = \chi_C \times 1_A \in \operatorname{Irr}(CA)$. By applying Mackey's theorem and Frobenius reciprocity, we obtain

$$[\chi, (\eta^{\Gamma})_G] = [\chi, (\eta_C)^G] = [\chi, (\chi_C)^G] = [\chi_C, \chi_C] = 1.$$

^{*}Research partially supported by DGICYT.

Hence, there exists (a unique) $\psi \in \operatorname{Irr}(\Gamma)$ over η and over χ that necessarily satisfies $\psi_G = \chi$ (by multiplicities). Now, we have that $\psi_C = \chi_C$ is irreducible, and therefore $\psi_{CA} = \eta$. Then $A \subseteq \ker(\psi)$. Hence $A^g \subseteq \ker(\psi)$, for all $g \in G$, and we deduce that $[G, A] \subseteq \ker(\psi)$. Then $[G, A] \subseteq \ker(\psi_G) = \ker(\chi)$, as desired.

The following lemma is nearly trivial.

LEMMA 2.2. Suppose that $H \subseteq G$ and $\chi \in Irr(G)$. If $ker(\chi)H = G$, then χ_H is irreducible.

Proof. If $\mathcal{X} : G \to \operatorname{GL}(n, \mathbb{C})$ affords χ , then we have that $\mathcal{X}(G) = \mathcal{X}(H)$, and the lemma easily follows.

In the proof of Theorem A, we shall need a nontrivial fact on odd fully ramified sections.

THEOREM 2.3. Suppose that K and L are normal subgroups of G with K/L abelian of odd order. Let $\theta \in Irr(K)$ be G-invariant such that $\theta_L = e\varphi$, where $\varphi \in Irr(L)$ and $e^2 = |K:L|$. Then there exists a complement U of K/L in G such that, whenever $\chi \in Irr(G)$ lies over θ , then χ_U is not irreducible.

Proof. See Theorem 1.6 of [2].

We put all the work for proving Theorem A in the following result. In its proof, we shall use the Glauberman correspondence. Recall that if a *p*-group *P* acts on a p'-group *L*, then there is a canonical bijection

$$f: \operatorname{Irr}_P(L) \to \operatorname{Irr}(\mathbf{C}_L(P)),$$

where $\operatorname{Irr}_P(L)$ is the set of irreducible *P*-invariant characters of *L*. In fact, if $\chi \in \operatorname{Irr}_P(L)$, then χ^* is the unique irreducible constituent of $\chi_{C_L(P)}$ with multiplicity not divisible by *p*. (See Theorem 13.1 of [1].) In particular, notice that is *S* is another group acting on *LP* and normalizing *P*, then $\chi \in \operatorname{Irr}_P(L)$ is *S*-invariant if and only if χ^* is *S*-invariant.

THEOREM 2.4. Let G be a finite group, let $P \in Syl_p(G)$ and suppose that K is a normal p'-subgroup of G such that $KP \triangleleft G$. Let $\chi \in Irr(G)$ of p'-degree such that $\chi_{N_G(P)}$ is irreducible. Let $\theta \in Irr(K)$ be any irreducible constituent of χ_K . If $\chi(1)$ is odd, then $\theta_{C_K(P)}$ is irreducible.

Proof. We argue by double induction, first on |G| and second on |K|. Write $N = \mathbf{N}_G(P)$ and $C = \mathbf{C}_K(P) = N \cap K$. By hypotheses, we have that G = KN. Write $\beta = \chi_N \in \operatorname{Irr}(N)$.

Let $\mu \in Irr(KP)$ be over θ and under χ . Since χ has p'-degree, it follows that μ has p'-degree. Now, since

$$\frac{\mu(1)}{\theta(1)}$$
 divides $|KP:K|$

by Corollary 11.29 of [1], we conclude that $\mu_K = \theta$.

 \square

We claim that μ is *G*-invariant. Otherwise, let *T* be the stabilizer of μ in *G* and let $\delta \in Irr(T)$ be the Clifford correspondent of χ over μ (Theorem 6.11 of [1]). Then $\delta^G = \chi$ and, by Problem 5.2 of [1], we have that

$$\chi_N = (\delta^G)_N = (\delta_{\mathbf{N}_T(P)})^N$$

is irreducible. Hence, $\delta_{N_T(P)}$ is irreducible. Since δ has odd p'-degree (because $\delta(1)$ divides $\chi(1)$) and δ lies over θ , by induction we shall have that θ_C is irreducible.

By the previous paragraph, we also conclude that θ is *G*-invariant. Now, let $\hat{\theta} \in \operatorname{Irr}(KP)$ be the canonical extension of θ to *KP*; (see page 220 of [1]). By uniqueness, notice that $\hat{\theta}$ is also *G*-invariant. By Gallagher's theorem (Corollary 6.17 of [1]), we may write $\mu = \hat{\theta}\delta$, where $\delta \in \operatorname{Irr}(KP/K)$ is *G*-invariant (by the uniqueness in Gallagher's theorem) and linear. Hence, we may write

$$\chi_{KP} = u \theta \delta$$

for some integer *u*. Now

$$\chi_{CP} = \beta_{CP} = u\theta_{CP}\delta_{CP}.$$

By Clifford's theorem, we conclude that the character $\hat{\theta}_{CP}\delta_{CP}$ is a multiple of the sum of the different *N*-conjugates of some irreducible constituent of the character $\hat{\theta}_{CP}\delta_{CP}$.

Let $\theta^* \in \operatorname{Irr}(C)$ be the *P*-Glauberman correspondent of θ . Now $\chi_C = \beta_C$ contains θ_C . Hence, β_C contains θ^* . Since θ^* is *N*-invariant (because θ is *N*-invariant and the uniqueness in the Glauberman correspondence), we have that β_C is a multiple of θ^* , by Clifford's theorem. Hence, we deduce that

$$\theta_C = v\theta^*$$
.

Therefore $\hat{\theta}_C$ is a multiple of θ^*

Assume now that p is odd. We have that the restriction of $\hat{\theta}$ to P is rational valued (by Corollary 13.4 of [1]). Now, since $\hat{\theta}(1)$ is odd, it follows that $\hat{\theta}_P$ contains some real valued character α . Since p is odd, $\alpha = 1_P$ and we conclude that $\hat{\theta}_P$ contains 1_P . Therefore, $\hat{\theta}_{CP}\delta_{CP}$ contains the *N*-invariant irreducible character $\xi\delta_{CP}$, where $\xi = \theta^* \times 1_P$. Therefore, $\hat{\theta}_{CP}\delta_{CP}$ is a multiple of $\xi\delta_{CP}$. Since δ is linear, we conclude that $\hat{\theta}_{CP}$ is a multiple of ξ . Then $P \subseteq \ker(\hat{\theta}) \subseteq \ker(\hat{\theta})$ and therefore $P^K \subseteq \ker(\hat{\theta})$. Hence $[K, P] \subseteq \ker(\hat{\theta}) \cap K = \ker(\theta)$. Since [K, P]C = K, we conclude that θ_C is irreducible by Lemma 2.2.

Hence, we may assume that p = 2. Thus K is a group of odd order, and therefore solvable.

Now, we claim that [K, P] = K. Write $M = [K, P] \triangleleft G$. By coprime action, we have that K = MC. Hence, MN = G and $MP \triangleleft G$. Suppose that M < K. Let $v \in Irr(M)$ be under θ . By induction (since |M| < |K|), we have that $v_{C_M(P)}$ is irreducible. Let $\epsilon \in Irr(R)$ be the Clifford correspondent of θ over v, where R is the stabilizer of v in K. Since in this case $v_{C_M(P)}$ is the Glauberman correspondent of v, it follows by the comments preceding the statement of this theorem that $C_R(P)$ is the stabilizer of $\nu_{C_M(P)}$ in *C*. Now, by Corollary 4.2 of [3], we have that $\epsilon_{C_R(P)} \in \operatorname{Irr}(C_R(P))$. This character lies over $\nu_{C_M(P)}$ and, by the Clifford correspondence, we have that

$$(\epsilon_{\mathbf{C}_R(P)})^C \in \operatorname{Irr}(C).$$

Now

$$\theta_C = (\epsilon^K)_C = (\epsilon_{\mathbf{C}_R(P)})^C$$

is irreducible, proving the claim.

Let K/L be a chief factor of G. Since K is solvable, we have that K/L is abelian. Since K = [K, P], by Fitting's lemma, we have that $C \subseteq L$. Now, let $\theta' \in \operatorname{Irr}(L)$ be the unique P-invariant character of L such that $(\theta')^* = \theta^*$. By the uniqueness of the Glauberman correspondence, we have that θ' is N-invariant. Now, by the going down theorem (Theorem 6.18 of [1]), we have two possibilities: either θ_L is irreducible or θ is fully ramified with respect to K/L.

Suppose first that $\theta_L = \theta'$ is irreducible. Let W = LN < G and notice that $\chi_W = \chi' \in \operatorname{Irr}(W)$. Since $(\chi')_N$ is irreducible and has odd p'-degree, by induction we have that $\theta'_C \in \operatorname{Irr}(C)$. Then $\theta_C = (\theta')_C$ and the theorem is proved in this case. Hence we may assume that $\theta_L = e\theta'$ with $e^2 = |K : L|$. We claim that if U is a complement of K/L in G, then U is G-conjugate to NL. Since we may assume that $P \subseteq U$, then $U/L = \mathbf{N}_{G/L}(LP/L) = N/L$, and the claim easily follows. Now, by Theorem 2.3, we conclude that χ_{LN} is not irreducible. However, χ_N is irreducible and so it is χ_{LN} . This contradiction proves the theorem.

Now we are ready to prove Theorem A, which we restate here.

THEOREM 2.5. Suppose that G is p-solvable. Let $P \in \text{Syl}_p(G)$ and let $\chi \in \text{Irr}(G)$ of p'-degree. If $\chi(1)$ is odd, then $\chi_{N_G(P)}$ is irreducible if and only if $G = \text{ker}(\chi)N_G(P)$.

Proof. If $G = \ker(\chi)\mathbf{N}_G(P)$, then $\chi_{\mathbf{N}_G(P)}$ is irreducible by Lemma 2.2. To prove the converse, we argue by induction on |G|. Let $M = \ker(\chi)$ and $N = \mathbf{N}_G(P)$. Write $\overline{G} = G/M$ and use the bar convention. Then $\overline{N} = \mathbf{N}_{\overline{G}}(\overline{P})$. If M > 1, by induction we shall have $\overline{G} = \overline{N}$. Hence $\mathbf{N}_G(P)M = G$ and we shall be done. Hence we may assume that χ is faithful.

Since $\chi_N \in Irr(N)$ has p'-degree and N has a normal Sylow p-subgroup P, it follows that $P' \subseteq ker(\chi_N) \subseteq ker(\chi) = 1$. Therefore, we have that P is abelian.

Let $K = \mathbf{O}_{p'}(G)$. Since $P/K \subseteq \mathbf{C}_{G/K}(\mathbf{O}_p(G/K)) \subseteq \mathbf{O}_p(G/K)$, we have that $PK \triangleleft G$. Now, let $\theta \in \operatorname{Irr}(K)$ be under χ . Since $\chi(1)$ is not divisible by p and $KP \triangleleft G$, notice that θ is P-invariant. By Theorem 2.4, we shall have that $\theta_{\mathbf{C}_K(P)}$ is irreducible. Hence, $[K, P] \subseteq \ker(\theta)$, by Lemma 2.1. Since $[K, P] \triangleleft G$, we shall have that $[K, P] \subseteq \ker(\theta)^g$, for all $g \in G$. Hence, $[K, P] \subseteq \ker(\chi) = 1$. Then N = G, as required.

The conclusion of Theorem A fails if we allow the character χ to have degree divisible by p. For instance, choose any prime r such that p divides r - 1, and let G be the semidirect product of an extraspecial group E of order p^3 with a cyclic group C of order r, where the action of E on C has kernel D of index p. Now, let $\lambda \in Irr(D)$

such that $\mathbf{Z}(E)$ is not contained in the kernel of λ . Hence $\lambda^E \in \operatorname{Irr}(E)$. Now, let $\mu \in \operatorname{Irr}(C)$ be nontrivial. Let $\theta = \mu \times \lambda \in \operatorname{Irr}(CD)$ and notice that $\chi = \theta^G \in \operatorname{Irr}(G)$. Also, χ is faithful. In this case, $E \in \operatorname{Syl}_p(G)$ is self-normalizing and $\chi_E = \lambda^E$ is irreducible.

REFERENCES

1. I. M. Isaacs, Character theory of finite groups (Academic Press, New York, 1976).

2. I. M. Isaacs, On the character theory of fully ramified sections, *Rocky Mountain J. Math.* **13** (1983) 689-698.

3. I. M. Isaacs, Characters of π -separable groups, J. Algebra 86 (1984), 98-128.