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Abstract. Suppose that G is a finite p-solvable group and let � 2 IrrðGÞ be of
p0-degree. In this note, we investigate when � remains irreducible when restricted to
NGðPÞ.
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1. Introduction. Suppose that G is a finite group and let P be a Sylow p-sub-
group of G. In this note we are concerned about characters of G that remain irre-
ducible when restricted to NGðPÞ. As an example of this situation, recall that if q is a
power of p and G ¼ PSLð2; qÞ, then every irreducible character of G of degree q � 1
restricts irreducibly to NGðPÞ. The situation is quite different, however, in the p-sol-
vable case.

Theorem A. Suppose that G is p-solvable. Let P 2 SylpðGÞ and let � 2 IrrðGÞ be
of p0-degree. If �ð1Þ is odd, then �NGðPÞ is irreducible if and only if G ¼ kerð�ÞNGðPÞ.

Of course, if G ¼ kerð�ÞNGðPÞ, then it is trivial to see that � restricts irreducibly
to NGðPÞ, and our main work here is to show the converse.

The condition that �ð1Þ is odd is really necessary since GLð2; 3Þ has a faithful
character of degree 2 that restricts irreducibly to its 3-Sylow normalizers. Finally, if
we consider characters � of degree divisible by p, then we shall construct some easy
examples where the conclusion of Theorem A fails.

2. Proofs. We begin with a general lemma on characters and group actions.

Lemma 2.1. Suppose that A acts on G and let � 2 IrrðGÞ be A-invariant. If �CGðAÞ

is irreducible, then ½G;A� 	 kerð�Þ.

Proof. Let � ¼ GA be the semidirect product and let C ¼ CGðAÞ. Note that
CA ¼ C 
 A. Let � ¼ �C 
 1A 2 IrrðCAÞ. By applying Mackey’s theorem and Fro-
benius reciprocity, we obtain

½�; ð��ÞG� ¼ ½�; ð�CÞ
G
� ¼ ½�; ð�CÞ

G
� ¼ ½�C; �C� ¼ 1 :
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Hence, there exists (a unique)  2 Irrð�Þ over � and over � that necessarily satisfies
 G ¼ � (by multiplicities). Now, we have that  C ¼ �C is irreducible, and therefore
 CA ¼ �. Then A 	 kerð Þ. Hence Ag 	 kerð Þ, for all g 2 G, and we deduce that
½G;A� 	 kerð Þ. Then ½G;A� 	 kerð GÞ ¼ kerð�Þ, as desired. &

The following lemma is nearly trivial.

Lemma 2.2. Suppose that H 	 G and � 2 IrrðGÞ. If kerð�ÞH ¼ G, then �H is
irreducible.

Proof. If X : G ! GLðn;CÞ affords �, then we have that XðGÞ ¼ XðHÞ, and the
lemma easily follows. &

In the proof of Theorem A, we shall need a nontrivial fact on odd fully ramified
sections.

Theorem 2.3. Suppose that K and L are normal subgroups of G with K=L abelian
of odd order. Let � 2 IrrðKÞ be G-invariant such that �L ¼ e’, where ’ 2 IrrðLÞ and
e2 ¼ jK : Lj. Then there exists a complement U of K=L in G such that, whenever
� 2 IrrðGÞ lies over �, then �U is not irreducible.

Proof. See Theorem 1.6 of [2]. &

We put all the work for proving Theorem A in the following result. In its proof,
we shall use the Glauberman correspondence. Recall that if a p-group P acts on a p0-
group L, then there is a canonical bijection

� : IrrPðLÞ ! IrrðCLðPÞÞ ;

where IrrPðLÞ is the set of irreducible P-invariant characters of L. In fact, if
� 2 IrrPðLÞ, then �� is the unique irreducible constituent of �CLðPÞ with multiplicity
not divisible by p. (See Theorem 13.1 of [1].) In particular, notice that is S is another
group acting on LP and normalizing P, then � 2 IrrPðLÞ is S-invariant if and only if
�� is S-invariant.

Theorem 2.4. Let G be a finite group, let P 2 SylpðGÞ and suppose that K is a
normal p0-subgroup of G such that KP / G. Let � 2 IrrðGÞ of p0-degree such that �NGðPÞ

is irreducible. Let � 2 IrrðKÞ be any irreducible constituent of �K. If �ð1Þ is odd, then
�CKðPÞ is irreducible.

Proof. We argue by double induction, first on jGj and second on jKj. Write
N ¼ NGðPÞ and C ¼ CKðPÞ ¼ N \ K. By hypotheses, we have that G ¼ KN. Write

 ¼ �N 2 IrrðNÞ.

Let � 2 IrrðKPÞ be over � and under �. Since � has p0-degree, it follows that �
has p0-degree. Now, since

�ð1Þ

�ð1Þ
divides jKP : Kj

by Corollary 11.29 of [1], we conclude that �K ¼ �.
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We claim that � is G-invariant. Otherwise, let T be the stabilizer of � in G and
let � 2 IrrðTÞ be the Clifford correspondent of � over � (Theorem 6.11 of [1]). Then
�G ¼ � and, by Problem 5.2 of [1], we have that

�N ¼ ð�GÞN ¼ ð�NTðPÞÞ
N

is irreducible. Hence, �NTðPÞ is irreducible. Since � has odd p0-degree (because �ð1Þ
divides �ð1Þ) and � lies over �, by induction we shall have that �C is irreducible.

By the previous paragraph, we also conclude that � is G-invariant. Now, let
�̂� 2 IrrðKPÞ be the canonical extension of � to KP; (see page 220 of [1]). By unique-
ness, notice that �̂� is also G-invariant. By Gallagher’s theorem (Corollary 6.17 of
[1]), we may write � ¼ �̂��, where � 2 IrrðKP=KÞ is G-invariant (by the uniqueness in
Gallagher’s theorem) and linear. Hence, we may write

�KP ¼ u�̂��;

for some integer u. Now

�CP ¼ 
CP ¼ u�̂�CP�CP :

By Clifford’s theorem, we conclude that the character �̂�CP�CP is a multiple of the
sum of the different N-conjugates of some irreducible constituent of the character
�̂�CP�CP.

Let �� 2 IrrðCÞ be the P-Glauberman correspondent of �. Now �C ¼ 
C con-
tains �C. Hence, 
C contains ��. Since �� is N-invariant (because � is N-invariant and
the uniqueness in the Glauberman correspondence), we have that 
C is a multiple of
��, by Clifford’s theorem. Hence, we deduce that

�C ¼ v�� :

Therefore �̂�C is a multiple of ��

Assume now that p is odd. We have that the restriction of �̂� to P is rational
valued (by Corollary 13.4 of [1]). Now, since �̂�ð1Þ is odd, it follows that �̂�P contains
some real valued character 
. Since p is odd, 
 ¼ 1P and we conclude that �̂�P con-
tains 1P. Therefore, �̂�CP�CP contains the N-invariant irreducible character ��CP,
where � ¼ �� 
 1P. Therefore, �̂�CP�CP is a multiple of ��CP. Since � is linear, we
conclude that �̂�CP is a multiple of �. Then P 	 kerð�Þ 	 kerð�̂�Þ and therefore
PK 	 kerð�̂�Þ. Hence ½K;P� 	 kerð�̂�Þ \ K ¼ kerð�Þ. Since ½K;P�C ¼ K, we conclude
that �C is irreducible by Lemma 2.2.

Hence, we may assume that p ¼ 2. Thus K is a group of odd order, and there-
fore solvable.

Now, we claim that ½K;P� ¼ K. Write M ¼ ½K;P� / G. By coprime action, we have
that K ¼ MC. Hence, MN ¼ G and MP / G. Suppose that M < K. Let � 2 IrrðM Þ be
under �. By induction (since jMj < jKj), we have that �CMðPÞ is irreducible. Let
� 2 IrrðRÞ be the Clifford correspondent of � over �, where R is the stabilizer of � in
K. Since in this case �CMðPÞ is the Glauberman correspondent of �, it follows by the
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comments preceding the statement of this theorem that CRðPÞ is the stabilizer of
�CMðPÞ in C. Now, by Corollary 4.2 of [3], we have that �CRðPÞ 2 IrrðCRðPÞÞ. This
character lies over �CMðPÞ and, by the Clifford correspondence, we have that

ð�CRðPÞÞ
C
2 IrrðCÞ :

Now

�C ¼ ð�KÞC ¼ ð�CRðPÞÞ
C

is irreducible, proving the claim.
Let K=L be a chief factor of G. Since K is solvable, we have that K=L is abelian.

Since K ¼ ½K;P�, by Fitting’s lemma, we have that C 	 L. Now, let �0 2 IrrðLÞ be the
unique P-invariant character of L such that ð�0Þ� ¼ ��. By the uniqueness of the
Glauberman correspondence, we have that �0 is N-invariant. Now, by the going
down theorem (Theorem 6.18 of [1]), we have two possibilities: either �L is irre-
ducible or � is fully ramified with respect to K=L.

Suppose first that �L ¼ �0 is irreducible. Let W ¼ LN < G and notice that
�W ¼ �0 2 IrrðWÞ. Since ð�0ÞN is irreducible and has odd p0-degree, by induction we
have that �0C 2 IrrðCÞ. Then �C ¼ ð�0ÞC and the theorem is proved in this case. Hence
we may assume that �L ¼ e�0 with e2 ¼ jK : Lj. We claim that if U is a complement
of K=L in G, then U is G-conjugate to NL. Since we may assume that P 	 U, then
U=L ¼ NG=LðLP=LÞ ¼ N=L, and the claim easily follows. Now, by Theorem 2.3, we
conclude that �LN is not irreducible. However, �N is irreducible and so it is �LN. This
contradiction proves the theorem. &

Now we are ready to prove Theorem A, which we restate here.

Theorem 2.5. Suppose that G is p-solvable. Let P 2 SylpðGÞ and let � 2 IrrðGÞ of
p0-degree. If �ð1Þ is odd, then �NGðPÞ is irreducible if and only if G ¼ kerð�ÞNGðPÞ.

Proof. If G ¼ kerð�ÞNGðPÞ, then �NGðPÞ is irreducible by Lemma 2.2. To prove
the converse, we argue by induction on jGj. Let M ¼ kerð�Þ and N ¼ NGðPÞ. Write
�GG ¼ G=M and use the bar convention. Then �NN ¼ N �GGð

�PPÞ. If M > 1, by induction we
shall have �GG ¼ �NN. Hence NGðPÞM ¼ G and we shall be done. Hence we may assume
that � is faithful.

Since �N 2 IrrðNÞ has p0-degree and N has a normal Sylow p-subgroup P, it
follows that P0 	 kerð�NÞ 	 kerð�Þ ¼ 1. Therefore, we have that P is abelian.

Let K ¼ Op0 ðGÞ. Since P=K 	 CG=KðOpðG=KÞÞ 	 OpðG=KÞ, we have that PK / G.
Now, let � 2 IrrðKÞ be under �. Since �ð1Þ is not divisible by p and KP / G, notice
that � is P-invariant. By Theorem 2.4, we shall have that �CKðPÞ is irreducible. Hence,
½K;P� 	 kerð�Þ, by Lemma 2.1. Since ½K;P� / G, we shall have that ½K;P� 	 kerð�Þg,
for all g 2 G. Hence, ½K;P� 	 kerð�Þ ¼ 1. Then N ¼ G, as required. &

The conclusion of Theorem A fails if we allow the character � to have degree
divisible by p. For instance, choose any prime r such that p divides r � 1, and let G
be the semidirect product of an extraspecial group E of order p3 with a cyclic group
C of order r, where the action of E on C has kernel D of index p. Now, let � 2 IrrðDÞ
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such that ZðE Þ is not contained in the kernel of �. Hence �E 2 IrrðEÞ. Now, let
� 2 IrrðCÞ be nontrivial. Let � ¼ �
 � 2 IrrðCDÞ and notice that � ¼ �G 2 IrrðGÞ.
Also, � is faithful. In this case, E 2 SylpðGÞ is self-normalizing and �E ¼ �E is
irreducible.
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