HANKEL OPERATORS FROM THE SPACE OF BOUNDED ANALYTIC FUNCTIONS TO THE BLOCH SPACE

Ruhan Zhao

Boundedness and compactness of little Hankel operators from H^{∞} to the Bloch space and the little Bloch space are characterised.

1. INTRODUCTION

Let $D = \{z : |z| < 1\}$ denote the unit disk in the complex plane \mathbb{C} . Let A(D) be the set of all analytic functions in D. For $1 \leq p < \infty$, let $L^p(D)$ denote the Banach space of Lebesgue measurable functions f on D with

$$||f||_{p} = \left(\int_{D} \left|f(z)\right|^{p} dA(z)\right)^{1/p} < \infty,$$

where dA(z) is the normalised area measure on D. The Bergman space L^p_a consists of the analytic functions which lie in $L^p(D)$. Let H^{∞} denote the space of all bounded analytic functions f on D with norm $||f||_{H^{\infty}} = \sup_{z \in D} |f(z)|$.

For $f \in L^1(D)$ and $g \in H^{\infty}$, the (little) Hankel operator is defined by

(1)
$$h_f g = P(f\overline{g}),$$

where P denotes the Bergman projection, which is the orthogonal projection from $L^2(D)$ onto L^2_a . Thus for $h \in L^2(D)$,

(2)
$$Ph(z) = \int_D \frac{h(w)}{\left(1 - \overline{w}z\right)^2} \, dA(w)$$

Note that, using (2), we can extend P to a linear operator from $L^1(D)$ into A(D). Recall that the Bloch space B consists of the analytic functions f satisfying

$$||f||_B = |f(0)| + \sup_{z \in D} |f'(z)| (1 - |z|^2) < \infty,$$

and the little Bloch space B_0 consists of the analytic functions f satisfying

$$\lim_{|z|\to 1} |f'(z)| (1-|z|^2) = 0.$$

The following result is well known:

Received 11th May, 1998

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

THEOREM A. Let 1 , and let f be analytic on D.

- (i) The Hankel operator h_f is bounded on L_a^p if and only if $f \in B$;
- (ii) The Hankel operator h_f is compact on L^p_a if and only if $f \in B_0$.

See, for example, [6, Section 7.6], for the case p = 2. For general p, the proof is similar. Note that, in Zhu [6], the little Hankel operator h_f is defined by using the orthogonal projection from $L^2(D)$ onto $\overline{L_a^2}$. But, essentially, there is no difference between our Hankel operator defined above and $h_{\overline{f}}$ given in Zhu's book. In fact, it is easy to see that our Hankel operator defined by (1) is the same as $\overline{h_{\overline{f}}}$ in Zhu's book.

Because the Bergman projection is a bounded operator from the space $L^{\infty}(D)$ onto the Bloch space B, B is the natural limit of L^p_a as p tends to infinity. In view of Theorem A, one may guess that the spaces B and B_0 characterise the bounded and compact Hankel operators h_f from H^{∞} to B. Solving this problem is the main purpose of this note. Our main results are the following two theorems.

THEOREM 1. Let $f \in L^1_a$. Then $h_f: H^{\infty} \to B$ is bounded if and only if $f \in B$.

This theorem may be compared with [3, Theorem 3' (ii)], which showed, if f is analytic, then the Hankel operator H_f on Hardy spaces is bounded from H^{∞} to B if and only if $f \in BMOA$. Here $H_f g = \widehat{P}(f\overline{g})$, where \widehat{P} is the orthogonal projection of $L^2(\partial D)$ onto the Hardy space H^2 .

The next theorem deals with compactness. It turns out that the set of compact Hankel operators from H^{∞} to the Bloch space *B* coincides with the set of bounded Hankel operators from H^{∞} to the little Bloch space B_0 .

THEOREM 2. Let $f \in L^1_a$. Then the following statements are equivalent:

(i) $h_f: H^{\infty} \to B$ is compact; (ii) $h_f: H^{\infty} \to B_0$ is compact; (iii) $h_f: H^{\infty} \to B_0$ is bounded; (iv) $f \in B_0$.

2. PROOFS OF THEOREMS

In our proofs, we shall frequently use the facts that the dual space of the little Bloch space B_0 is L_a^1 and the dual space of L_a^1 is the Bloch space B, that is, $B_0^* = L_a^1$ and $(L_a^1)^* = B$, under the following integral pairing

$$\langle f,g\rangle = \int_D f\overline{g}\,dA$$

(See, for example, [6, Theorem 5.1.4 and Theorem 5.2.8].) The proof of Theorem 1 is quite elementary.

PROOF OF THEOREM 1: Let $f \in B$, $g \in H^{\infty}$ and $h \in L^{1}_{a}$. A simple application of Fubini's Theorem shows that

(3)
$$\langle h, h_f g \rangle = \langle gh, f \rangle$$

Since $(L_a^1)^* = B$, we get that

(4)
$$||h_fg||_B = \sup_{\|h\|_1 \leq 1} |\langle h, h_fg \rangle| = \sup_{\|h\|_1 \leq 1} |\langle gh, f \rangle|.$$

Since $g \in H^{\infty}$, it is obvious that for $h \in L^{1}_{a}$, we have $gh \in L^{1}_{a}$ and

$$\|gh\|_1 \leq \|g\|_{H^{\infty}} \|h\|_1$$

Thus from (4) we have

$$\|h_f g\|_B \leq \sup_{\|h\|_1 \leq 1} \|gh\|_1 \|f\|_B \leq \|g\|_{H^{\infty}} \|f\|_B$$

Thus $h_f: H^{\infty} \to B$ is bounded.

Conversely, if $h_f: H^{\infty} \to B$ is bounded, then $f = h_f 1 \in B$. The proof is complete.

It is easy to see that for $f \in L^1(D)$, $h_f = h_{Pf}$ (see also, [6, Proposition 7.6.2]). Thus we get immediately from Theorem 1 the following result.

COROLLARY 1. Let $f \in L^1(D)$. Then $h_f : H^{\infty} \to B$ is bounded if and only if $Pf \in B$.

The same idea is used for proving Theorem 2. However, more work is needed in this case. The following weak convergence lemma is needed.

LEMMA 1. Let $f \in L^1(D)$. Then the following statements are equivalent.

- (i) $h_f: H^{\infty} \to B$ is compact.
- (ii) If $\{g_n\}$ is a sequence that is bounded on H^{∞} and converges to zero uniformly on compact subsets of D, then $\lim_{n\to\infty} ||h_f g_n||_B = 0$.

The proof is similar to the proof of the weak convergence theorem for composition operators given in Shapiro's book [4, p.29-30]. Note that the above lemma is still valid if we replace the Bloch space B by any *functional Banach space* (see [2, p.2] for the definition); these include many well-known function spaces. Note also that the condition $f \in L^1(D)$ is needed in the proof. We leave the details of the proof of Lemma 1 to the reader.

PROOF OF THEOREM 2: We first prove (iv) \Rightarrow (iii). Let $f \in B_0$, $g \in H^{\infty}$ and $h \in L_a^1$. By [6, Theorem 5.2.5], there is a function $\varphi \in C_0(D)$ such that $f = P\varphi$, where

R. Zhao

 $C_0(D)$ denotes the algebra of complex continuous functions f on \overline{D} with $f(z) \to 0$ as $|z| \to 1$. It is easy to see that for any $\psi \in L^1_a$,

$$\langle f,\psi
angle=\langle Parphi,\psi
angle=\langlearphi,\psi
angle$$

Thus from (3) we have

(5)
$$\langle h_f g, h \rangle = \langle f, gh \rangle = \langle \varphi, gh \rangle = \langle h_{\varphi} g, h \rangle.$$

The last equality is from Fubini's Theorem. Since (5) is true for any function $h \in L^1_a$, we see that

$$h_f g = h_{\varphi} g = P(\varphi \overline{g}).$$

Since $g \in H^{\infty}$ and $\varphi \in C_0(D)$, it is obvious that $\varphi \overline{g} \in C_0(D)$. Thus, again by [6, Theorem 5.2.5], we get that $P(\varphi \overline{g}) \in B_0$. Thus $h_f g \in B_0$ and so the Closed Graph Theorem implies that $h_f : H^{\infty} \to B_0$ is bounded.

Next we prove further that $h_f: H^{\infty} \to B_0$ is compact, or $(iv) \Rightarrow (ii)$. Let $\{g_n\}$ be a bounded sequence in H^{∞} such that $||g_n||_{H^{\infty}} \leq 1$ and $g_n(z) \to 0$ uniformly on compact subsets of D. Let $f \in B_0$. Then we have proved that $\{h_fg_n\}$ is a bounded sequence in B_0 . By Lemma 1, in order to prove that $h_f: H^{\infty} \to B_0$ is compact, it is enough to prove that

$$\lim_{n\to\infty}\|h_fg_n\|_B=0.$$

As before, since $f \in B_0$, there is a function $\varphi \in C_0(D)$, such that $f = P\varphi$. Thus

$$\begin{split} \|h_{f}g_{n}\|_{B} &= \sup_{\|h\|_{1} \leq 1} |\langle h, h_{f}g_{n}\rangle| = \sup_{\|h\|_{1} \leq 1} |\langle g_{n}h, f\rangle| \\ &= \sup_{\|h\|_{1} \leq 1} |\langle g_{n}h, \varphi\rangle| \\ &\leq \sup_{\|h\|_{1} \leq 1} \left| \int_{\overline{D_{r}}} g_{n}h\overline{\varphi} \, dA \right| + \sup_{\|h\|_{1} \leq 1} \left| \int_{D \setminus \overline{D_{r}}} g_{n}h\overline{\varphi} \, dA \right| \\ &= I_{1} + I_{2}, \end{split}$$

where 0 < r < 1 and $\overline{D_r} = \{z \in D, |z| \leq r\}$. Now for any $\varepsilon > 0$, since $\varphi \in C_0(D)$, when r is sufficiently close to 1 we have $|\varphi(z)| < \varepsilon$ whenever |z| > r. Thus

(6)
$$I_2 \leqslant \sup_{\|h\|_1 \leqslant 1} \varepsilon \|g_n\|_{H^{\infty}} \int_{D \setminus \overline{D_r}} |h| \, dA < \varepsilon.$$

Since $g_n(z) \to 0$ uniformly on the set $\overline{D_r}$ for a fixed $r \in (0, 1)$, we get that when n is big enough,

(7)
$$I_1 \leqslant \sup_{\|h\|_1 \leqslant 1} \varepsilon \|h\|_1 \|\varphi\|_{H^{\infty}} < C\varepsilon.$$

Hankel operators

Combining (6) and (7) we see that $\lim_{n\to\infty} ||h_f g_n|| = 0$ and so $h_f : H^{\infty} \to B_0$ is compact.

After this we can complete the circle among (ii), (iii) and (iv) by observing that (ii) obviously implies (iii) and (iii) implies (iv) since $f = h_f 1 \in B_0$ when $h_f : H^{\infty} \to B_0$ is bounded.

It is also obvious that (ii) implies (i). Thus what remains is the direction (i) \Rightarrow (iv). Let $h_f: H^{\infty} \rightarrow B$ be compact. For $0 < \alpha < 1$, let

$$g_a(z) = \frac{2z(1-|a|^2)^{1-\alpha}}{(1-\overline{a}z)^{1-\alpha}}.$$

Then $g_a \in H^{\infty}$, $||g_a||_{H^{\infty}} \leq 2$ and $g_a(z) \to 0$ uniformly on compact subsets of D when $|a| \to 1$. Since $h_f : H^{\infty} \to B$ is compact, we must have

$$\lim_{|a|\to 1} \|h_f g_a\|_B = 0,$$

which is, in view of the duality relation $(L_a^1)^* = B$, the same as

$$\lim_{|a|\to 1} \sup_{\|h\|_1 \leq 1} \left| \langle h, h_f g_a \rangle \right| = \lim_{|a|\to 1} \sup_{\|h\|_1 \leq 1} \left| \langle g_a h, f \rangle \right| = 0.$$

Let $\tilde{h}_a(z) = (1 - |a|^2)^{\alpha}/(1 - \overline{a}z)^{2+\alpha}$. Then, by [6, Lemma 4.2.2], we get that

$$\|\tilde{h}_{a}\|_{1} = \int_{D} \frac{\left(1 - |a|^{2}\right)^{\alpha}}{|1 - \overline{a}z|^{2 + \alpha}} \, dA(z) \leqslant \left(1 - |a|^{2}\right)^{\alpha} \frac{M}{\left(1 - |a|^{2}\right)^{\alpha}} = M < \infty.$$

Let $h_a = \tilde{h}_a/M$. Then $||h_a||_1 \leq 1$ for any $a \in D$ and so we have

$$\lim_{|a|\to 1} \left| \langle g_a h_a, f \rangle \right| \leq \lim_{|a|\to 1} \sup_{\|h\|_1 \leq 1} \left| \langle g_a h, f \rangle \right| = 0.$$

Thus

(8)

$$0 = \lim_{|a| \to 1} \left| \int_D g_a(z) h_a(z) \overline{f(z)} \, dA(z) \right|$$

$$= \lim_{|a| \to 1} \left| \int_D \frac{(1 - |a|^2) \overline{f(z)} 2z}{M(1 - \overline{a}z)^3} \, dA(z) \right|$$

$$= \lim_{|a| \to 1} \frac{1}{M} \left| \int_D \frac{f(z) 2\overline{z}}{(1 - a\overline{z})^3} \, dA(z) \right| (1 - |a|^2)$$

Since $f \in L^1_a(D)$, we have

$$f(a) = Pf(a) = \int_D \frac{f(z)}{\left(1 - a\overline{z}\right)^2} \, dA(z).$$

R. Zhao

By taking derivatives with respect of a on both sides we get

$$f'(a) = \int_D \frac{f(z)2\overline{z}}{\left(1 - a\overline{z}\right)^3} \, dA(z)$$

Thus the integral in the last line of (8) is f'(a) and so we have from (8),

$$\lim_{|a|\to 1} |f'(a)| (1-|a|^2) = 0.$$

Therefore, $f \in B_0$, and the whole proof is complete.

58

Similarly to Corollary 1, we immediately get from Theorem 2 the following result for a non-analytic function f.

COROLLARY 2. Let $f \in L^1(D)$. Then the following statements are equivalent:

(i) $h_f: H^{\infty} \to B$ is compact; (ii) $h_f: H^{\infty} \to B_0$ is compact; (iii) $h_f: H^{\infty} \to B_0$ is bounded; (iv) $Pf \in B_0$.

FINAL REMARK. Although this note is formulated in the case of the unit disk D, the proof goes though for the case of the unit ball of \mathbb{C}^n . Thus all results are valid for the unit ball of \mathbb{C}^n . All materials which are needed for the proof in this case can be found, for example, in Zhu [5] and Choe [1].

References

- B.R. Choe, 'Projections, the weighted Bergman spaces, and the Bloch space', Proc. Amer. Math. Soc. 108 (1990), 127-136.
- C. Cowen and B. MacCluer, Composition operators on spaces of analytic functions (CRC Press, Boca Raton, 1995).
- [3] S. Janson, J. Peetre and S. Semmes, 'On the action of Hankel and Toeplitz operators on some function spaces', *Duke Math. J.* 51 (1984), 937-958.
- [4] J. Shapiro, Composition operators and classical function theory (Springer-Verlag, Berlin, Heidelberg, New York, 1993).
- [5] K. Zhu, 'The Bergman spaces, the Bloch space, and the Gleason's problem', Trans. Amer. Math. Soc. 309 (1988), 253-268.
- [6] K. Zhu, Operator theory in function spaces (Marcel Dekker, New York, 1990).

Department of Mathematics University of Joensuu PO Box 111 Fin-80101 Joensuu Finland Current address: Department of Mathematics Faculty of Science Kyoto University Kyoto 606-8502 Japan e-mail: zhao@kusm.kyoto-u.ac.jp Π

[6]