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In a three-layer system, weakly nonlinear theory predicts that breathers exist under certain
conditions which, under the Boussinesq approximation, include symmetric stratifications
in which the density jump across each interface is the same and the upper and
lower layer thicknesses are equal and less than 9/26 of the total water depth. The
existence and characteristics of fully nonlinear breathers in this symmetric stratification
are poorly understood. Therefore, this study investigates fully nonlinear breathers in a
three-layer symmetric stratification in order to clarify their characteristics by making
direct comparisons between numerical simulation results and theoretical solutions. A
normalization of the breather profiles is introduced using theoretical solutions of a
breather and a new energy scale is proposed to evaluate their potential and kinetic energy.
We apply fully nonlinear and strongly dispersive internal wave equations in a three-layer
system using a variational principle. The computational results show that the larger the
amplitude, the shorter the length of the envelope of breathers, which agrees with the
theoretical solution. However, breathers based on the theoretical solutions cannot progress
without deformation and decay due to the emission of short small-amplitude internal
waves. Furthermore we demonstrate that the shedding of larger amplitude waves occurs,
and the amplitude of the envelope decays more strongly when the density interface crosses
the critical depth where the ratio of the upper layer thickness and the total water depth is
9/26 suggesting a limiting amplitude for fully nonlinear breathers.

Key words: internal waves, stratified flows

1. Introduction

Large-amplitude internal waves are often observed in the ocean (Helfrich & Melville
2006; Lamb 2014) and in lakes (Wiiest & Lorke 2003). These waves progress over the
continental shelf and break over the slopes, which plays an important role in resuspension
of mass and mass transport (Lamb 2014; Boegman & Stastna 2019). In field observations,
Pineda (1994), Inall (2009) and Bourgault et al. (2014) show that internal waves induce
long-term mass transport due to breaking over a sill or a bottom slope and have an
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important influence on the environment in stratified fluids. In numerical calculations it has
been shown that the breaking of internal solitary waves can be categorized using the wave
slope, bottom slope and an internal solitary wave Reynolds number (Aghsaee, Boegman &
Lamb 2010; Nakayama et al. 2012, 2019b). Additionally, the occurrence of long-term mass
transport by internal waves has been observed in laboratory experiments (Nakayama &
Imberger 2010; Nakayama et al. 2012; Sutherland, Barrett & Ivey 2013). It is thus thought
that ecological systems and water quality in oceans and lakes are affected by long-term
mass transport associated with internal waves (Davis & Monismith 2011; Aghsaee &
Boegman 2015). To improve our understanding of these processes it is necessary to clarify
which types of internal waves can be generated and how they propagate under various
stratified conditions.

In a two-layer system, a single internal wave mode, called a mode-1 wave, exists.
Internal solitary waves exist, in general, as waves of depression/elevation if the interface is
in the upper/lower half of the water column. Solitary waves do not exist when the interface
is at the mid-depth. Here we have made the Boussinesq approximation and assumed
the absence of background currents. In a three-layer system, the internal wave field is
much richer. Mode-1 waves, in which the two interface displacements have the same sign,
still exist but there is a new wave mode, called a mode-2 wave, in which the interface
displacements have opposite signs. Under appropriate conditions it is now possible to
have mode-1 solitary waves of either polarity and a new type of pulsating wave, called
a breather. If not too large, these waves can be modelled with the Gardner equation,
i.e. the Korteweg—de Vries (KdV) equation with an additional cubic nonlinear term.
For symmetric stratifications, i.e. equal upper and lower layer thicknesses and the same
density difference across each interface, under the Boussinesq approximation the quadratic
nonlinear coefficient of the Gardner equation is zero. If the cubic nonlinear coefficient
is positive, solitary waves of either polarity and breather solutions exist. Grimshaw,
Pelinovsky & Talipova (1997) revealed that solitary waves have a zero pedestal when the
cubic nonlinear coefficient is positive. Lamb et al. (2007) found that breathers exist in fully
nonlinear numerical solutions when the cubic nonlinear coefficient is positive. However,
it is necessary to more completely investigate fully nonlinear breathers in a three-layer
system in order to more accurately clarify their characteristics. Here we contribute to
this by making direct comparisons of numerical simulations of breathers in a three-layer
symmetric stratification with theoretical solutions.

In contrast to a two-layer system, there are breather solutions in a three-layer system
(Grimshaw et al. 1997; Talipova et al. 1999; Lamb et al. 2007). For the symmetric
stratifications described above, if the cubic nonlinear coefficient is positive, breather
solutions of the Gardner equation exist (Grimshaw et al. 1997; Talipova et al. 1999).
Pelinovsky & Grimshaw (1997) demonstrated that large soliton-like initial perturbation
may transform into breathers, and Grimshaw, Pelinovsky & Talipova (2003) showed the
importance of the damping of large-amplitude solitons due to the occurrence of breathers.
Grimshaw et al. (2005) revealed that breathers may be connected to the modulational
instability of internal waves using the Ablowitz—Kaup—Newall-Segur scheme. Clarke
et al. (2000) and Grimshaw, Slunyaev & Pelinovsky (2010) demonstrated that initial
disturbances consisting of a mix of polarities may result in the formation of breathers.
Lamb er al. (2007) found that breathers exist when the cubic nonlinear coefficient is
positive by applying fully nonlinear equations. However, the characteristics of fully
nonlinear breathers are still only partially understood.

Nakayama & Kakinuma (2010) developed the fully nonlinear and strongly dispersive
internal wave (FDI) equations in a multilayer system. The FDI equations in a two-layer
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system were successfully applied to investigate the interaction of two internal solitary
waves, which revealed that resonance occurs under the suppression of the amplitude due
to strong nonlinearity and a critical depth (Nakayama, Kakinuma & Tsuji 2019a). A critical
depth is the position where internal solitary waves do not exist because the nonlinearity
vanishes and dispersion prevails in the KdV equation (Lamb & Wan 1998; Tsuji & Oikawa
2007; Nakayama et al. 2012). In this paper we apply the FDI equations in a three-layer
system (FDI-3s equations) to investigate the characteristics of fully nonlinear breathers.
Firstly, normalization of the profile of breathers is introduced using a representative length
scale, wavelength of a breather, and a ratio of an amplitude of breathers and a total water
depth by using 16 different analytical conditions. Finally, we investigate the applicability of
the breather solutions and the characteristics of breathers are demonstrated by comparing
the length and group velocity of the simulated breathers with theoretical solutions. A new
energy scale is proposed to evaluate the potential and kinetic energy of breathers.

2. Solutions of breathers

The extended KdV or Gardner equation has the form

an an an 501 3%y
an 9n an AL " 21
or gy T T TP @D

where 7 is the vertical isopycnal displacement, x is the horizontal coordinate, ¢ is time,
co is the linear long-wave speed, o is the quadratic nonlinear coefficient, o is the cubic
nonlinear coefficient and S is the dispersion coefficient.

For a symmetric Boussinesq three-layer stratification with upper and lower layer depths
h, total depth H, reference density p, and density jump Ap across both interfaces, the
coefficients in the Gardner equation for rightward- and leftward-propagating waves are

co = =/ g'h, (2.2)

o« =0, 2.3)
3C0 OH
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where g = (Ap/po)g is reduced gravity (Grimshaw er al. 1997; Talipova et al. 1999;
Lamb et al. 2007) and g is the gravitational acceleration. Equation (2.1) becomes the
modified KAV (mKdV) equation when o = 0. The value of «; /¢ is positive when

h 9 2.6)
D .
H 26

in which case the mKdV equation has breather solutions.

In the following theoretical discussion we assume rightward-propagating waves (co > 0)
and use a reference frame moving with the linear long-wave speed cy. In this reference
frame, breather solutions of the mKdV equation have the form (note that sinh? in (3) of


https://doi.org/10.1017/jfm.2020.653

https://doi.org/10.1017/jfm.2020.653 Published online by Cambridge University Press

903 40-4 K. Nakayama and K. G. Lamb

z=hy +hy)2

v//4 _
z=1, » Py Pyl
z Ay
e b
X Py ¢2 Pz 12 H

Py ¢y P hy

Il
S

z

FIGURE 1. Schematic diagram of a three-layer system for FDI-3s.
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where p and g are the parameters of the breather and the ‘carrier’ ¢ and ‘envelope’ 6
phases are

X 5 5 t
Y= sz +38p(p™ — 3¢q ); + o, (2.8)
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Since 7 is independent of the signs of p and ¢ we assume both of these parameters are
positive.
When |g/p| < 1 the envelope of the breather solution is

_ 4 (2.12)
e = = Cosho’ '

the remaining factor describing oscillations within the envelope. In this limit the amplitude
of the breather is 4gH. In the numerical simulations the amplitude of the breather, ay,
decays with time from this initial value, and is estimated numerically (figure 1).

The length of the breather A, is defined by

1 / N ! ar = (2.13)
. = —_——dx = —, .
_oo COsh(2gx /L) 2q
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and the group velocity of the breather, from (2.9), is

_ e (HY (3 OHY (o g
=5 <h> <13— 2h)(q —3pY). (2.14)

Since (2.6) is satisfied, the group velocity is positive if |¢| > +/3|p| and negative if |¢| <
V/3|p|, which means that the breather propagates faster/slower than the linear long-wave
propagation speed, respectively.

From (2.8), we can define a wavenumber and wavelength of a breather as follows:

2p
ky, = T (2.15)
2n 7L
Ap=—=—. (2.16)
ky p
The frequency and period of a breather are
3 2 2
o, = 8p (u) , 2.17)
T
r,= |1 2.18)
T ap |3 — | '
Introducing non-dimensional variables x” and ¢ via
X = Apx/, 2.19
=Ty, ’
the ‘carrier’ ¢ and ‘envelope’ 6 phases can be written as
2 2
: P —3q /
¢ =2nx" 4+ 27 T = I+ ¢, (2.20)
qa., ., 493%° —¢ :
0 =2n- 2= 1+ 6. 2.21
T T gt T @20
We define a representative energy, E,, based on the envelope as follows:
1 o 4qH)?
E =g / (zq—) dx = 8¢/qH>L. (2.22)
2% J o cosh”(2gx /L)

To understand the rate at which the initial theoretical breather waveform loses energy,
referred to as the energy reduction rate, potential and kinetic energy scales are defined
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using the representative length, 44,, as follows:

1 (1 g hy
PE[ = — n — — dx, (223)
E, J o, 2% 2
24, 1 2
= — ! dx, 2.24
/uz(””z) ) 229
A pH/2
KE, = — / / —uf dzdx, (2.25)
m
KE, = / —uz dzdx, (2.26)
—24,
KE; = —/ / —u? dzdx, (2.27)
‘T E oa Jomp 2 ’
with total energy scale
Er = PE, + PE, + KE| + KE, + KE;3, (2.28)

where 7, and 7, are the interface displacements for the upper and lower layers, and u,, u,
and u; are the horizontal velocities in the first, second and third layers (figure 1). We use
the length span 41, because it spans the energetic zones of the breathers.

If there is no deformation and no attenuation in a breather, its total energy should remain
constant.

3. The FDI-3s model

By following Luke (1967) and Isobe (1995), the functional for the variational problem in
each layer (Nakayama & Kakinuma 2010; Nakayama er al. 2019a; Sakaguchi et al. 2020)

(figure 1) is
hi+hy /2
F1[¢1,771]—/ /// { + = (V¢ )?

2
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where in the ith layer (i = 1, 2 and 3) F; and ¢; are the functional and velocity potential,
(u;, v;) = V¢; is the horizontal velocity field, w; = d¢;/0dz is the vertical velocity, p; is
the density, p;_; is the pressure at the density interface j, j = 0 and j = 1 correspond to
the lower and upper density interfaces of the layer, P; is the average pressure in the layer,

= (d/dx, d/dy) is the gradient operator in the horizontal plane, fy and ¢, are the time
and A is the projection area in (x, y).

We consider solutions that are independent of y and make the rigid lid approximation.
Thus we expand ¢; in the series

N—1

$i(x. 2.0 =Y Zix(@fix(x, 1), (3.4)
X=0

Zix =72, (3.5)

where f; x is the coefficient for the velocity potential in the ith layer and N is the total
number of an expanded function.

We substitute (3.4) into (3.1)—(3.3), after which the equations are integrated vertically.
The variational principle was applied to obtain the Euler-Lagrange equations for each
layer. The final system of equations, referred to as the FDI-3s equations, is

[ First layer ]

3’71 1 h2 pnv+1 |
N e T v/ h = — iy
n 8t+u+v—|—1 |:{(1+2> m fiu

MV h n+v—1 .
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where hy, h, and h; are the undisturbed water depths in the first, second and third layers,
nw=12...,Nv=1,2,...,Nandk = 1,2, ..., N. For our symmetric stratifications,
the surface is at z = H/2 and the bottomisatz = b = —H/2.

For numerical simulations, an implicit iteration scheme by Nakayama & Kakinuma
(2010), where further details can be found, was applied at each grid point for all the
layers to obtain stable computational solutions of (3.6)—(3.15). A total water depth of
H =1 m was used and the grid resolution was 0.05 and 0.1 m for cases 1 to 4 and
cases 5 to 8, respectively. These correspond to a Courant-Friedrichs—Lewy condition of
~0.0035 based on the linear long-wave speed. If we set N =1 in (3.6)—(3.15), weakly
nonlinear long-wave equations are obtained. Sakaguchi et al. (2020) show that the FDI-2s
equations (FDI equations for a two-layer system) can reproduce solitary waves successfully
by making comparisons with the theoretical solutions of Grimshaw (1971) and Fenton
(1972) when N > 2. Nakayama et al. (2019a) demonstrated the high applicability of the
FDI-2s equations by applying the two-layer shallow water configuration of Koop & Butler
(1981) and the deformation of internal solitary waves by Horn et al. (2000, 2002). Initial
profiles of the interface displacements in the upper and lower layers were given using (2.7).
The velocity potential in each layer was obtained by solving a Poisson equation using the
BI-CGSTAB method under the Neumann boundary conditions, which were given from
the time derivative of (2.7).

4. Results

We ran 16 cases. They all have a specific density difference of 0.01 between each
layer (figure 1) and the waves propagate to the left relative to the fluid (in contrast to
the rightward propagation of waves in the theoretical discussion in § 2). In cases 1 to 12,

g is less than +/3p so that the group velocity in a frame moving with the linear long-wave
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speed is positive, i.e. the breather envelope propagates slower than the linear long-wave

propagation speed (table 1). For cases 13 to 16, g is greater than +/3p so that the group
velocity is negative, i.e. the breather envelope propagates faster than the linear long-wave
propagation speed (table 1). The critical depth where the cubic coefficient is zero is
h/H = 9/26 = 0.346. Since n/H is a function of p and ¢g as shown in (2.7), cases 1 to
8 are categorized into four (figure 2). For example, the plots of the initial wave profile for
cases 1 and 5 in figure 2 look the same even though «; and g are different because they are
plotted as functions of x /A, so that the wave profile depends only on p and ¢, not on «; and
B. The Hilbert transform was applied to determine the envelope of the computed breathers
in figure 2 (Terletska et al. 2016). While p and g both influence the amplitude of the
breather and the oscillation wavelength, in our cases the amplitude is largely determined
by g and the wavelength by p. The approximate theoretical envelopes 1, agree well with
the envelopes obtained using the Hilbert transform (figure 2).

Short small-amplitude internal waves separated from breather-like waves in all cases
at t/T, ~ 1 as illustrated in the comparisons of the Hilbert transform and the theoretical
breather envelopes (figures 3 and 4). Since the group velocity of the short internal waves
is slower than the linear long-wave speed, these waves move off to the right relative to
the centres of the packets which in the plots are shifted so they are aligned at different
times. The emission of these linear dispersive waves results in an energy loss from the
leading nonlinear wave. In the case of h/H = 0.25 (figure 3), more short dispersive
waves are released compared to cases with h/H = 0.30 (figure 4) because the ratio of
the initial amplitude to the upper and lower layer depths, 4gH /h, is larger for smaller /H,
which means that cases with h/H = 0.25 undergo stronger adjustment. In cases 7 and 8
(h/H = 0.30), the density interface initially crosses the critical depth (h/H = 0.346) and
there is shedding of larger-amplitude waves and greater decay of the amplitude of the
envelope obtained by the Hilbert transform (figure 4c,d). Additionally, among the cases
with 7/H = 0.25, cases 3 and 4 (¢ = 0.06/4) were found to release more short internal
waves compared to cases 1 and 2 (¢ = 0.03/4). This suggests that the larger g is, the more
short small-amplitude internal waves are released, which is not surprising because of their
higher nonlinearity. Interestingly, the wavelength of breathers, A, does not change very
much even after the emission of short internal waves.

In all cases the release of short internal waves results in a decrease in the breather
amplitude ay/H (figures 5 and 6). Here ay/H estimated from the maximum interface
displacement (see figure 3a) is different from the Hilbert transform ay/H immediately
after the initial condition, but they almost coincide when ¢/7}, > 1 for all cases. Amplitude
ay/H is equal to the amplitude of breathers at the initial condition. In cases 1 and 3
(p = 0.025), the dominant period of the ay fluctuations was ~1, whereas in cases 2
and 4 (p = 0.05) it was more than 2. Therefore, the predominant period of the ay/H
fluctuations is longer than 7, when p = 0.05 (figure 5b). Interestingly, in cases 2 and 4,
ay/H also undergoes slow fluctuations with periods of ¢/7T, = 40 and 20, respectively
(p = 0.05; figure 5b). Therefore, there may be the possibility that larger p can generate
a large lower-frequency fluctuation component when 4/H is relatively small. In cases 5
and 7 (p = 0.025), the Hilbert transform ay /H was a little larger than the computed ay /H
(figure 6a). In contrast to #/H = 0.25, no low-frequency fluctuation is apparent in these
cases, which may suggest that the smaller 4/H is, the more unstable the breathers progress
(figure 6D).

Cases 5 and 6 have the smallest emission of short internal waves from the time series
of ay/H (figure 4a,b), which may indicate that the internal waves in cases 5 and 6
most closely resemble breathers. If the internal waves in these cases are breathers, the
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Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10
Case 11
Case 12
Case 13
Case 14
Case 15
Case 16

h/H
0.25

0.30

0.25
0.30
0.25

0.30

q
0.0075

0.015

0.0075

0.015

0.0225

0.0225

0.0075

0.0075

p

0.025
0.050
0.025
0.050
0.025
0.050
0.025
0.050
0.025
0.050
0.025
0.050

0.0001

0.004

0.0001

0.004

Vgr/ o aq B L (m)

—0.0728 —-9.391 —0.00652 0.0645
—0.2978

—0.0660

—0.2910

—0.0202 —2.858 —0.00772  0.127
—0.0827

—0.0183

—0.0808

—0.0548 —-9.391 —0.00652 0.0645
—0.280

—0.0152 —2.858 —0.00772  0.127
—0.0777

0.00225 —-9.391 —0.00652 0.0645
0.000330

0.000625 —2.858 —0.00772 0.127
0.000092

TABLE 1. Computational conditions.

T (s)
—0.0412

—0.267

—0.0412
—0.267
—0.0412

—0.267

Ap (m)

8.11
4.06
8.11
4.06
16.0
8.00
16.0
8.00
8.11
4.06
16.0
8.00
2028
50.7
3999
100

Ao (m)
13.5

6.76
26.7
13.3
4.51
8.89
13.5

26.7

Ty (s)

712
87
785
89
4620
564
5088
577
947
93
6134
600
5.76 x 10°
9.82 x 10°
3.73 x 107
6.36 x 10°
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FIGURE 2. Plots of 1 /H against x/4, in cases 1 to 8 when ¢ is zero. Solid and dashed lines
indicate theoretical solutions for breathers (2.7) and theoretical solutions of an envelope (2.12).
Red lines indicate envelopes obtained by using the Hilbert transform. (a) Case 1 and case 5,
(b) case 2 and case 6, (c¢) case 3 and case 7 and (d) case 4 and case 8.
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FIGURE 3. Interface displacements for the upper and lower layers (solid and dashed lines),
and envelopes obtained using the Hilbert transform for the upper layer (red lines) for cases 1
to 4 (h/H = 0.25). Each panel shows initial interface displacement and two typical interface
displacements, which correspond to the maximum and minimum amplitude cases shifted as
indicated so that the centres align. (a) Case 1, (b) case 2, (c) case 3 and (d) case 4.
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FIGURE 4. Same as figure 3 but for cases 5 to 8 (2/H = 0.30). (a) Case 5, (b) case 6,
(c) case 7 and (d) case 8.
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FIGURE 5. Time series of ay/H in cases 1 to 4 (h/H = 0.25) (black lines). (Definition of ay is
shown in figure 3a.) Green lines indicate ay/H from the Hilbert transform. Red circles, triangles,
pluses and crosses correspond to the marks in figure 8.
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FIGURE 6. Time series of ay/H in cases 5 to 8 and cases 11 and 12 (h/H = 0.30) (black
lines). (Definition of ay is shown in figure 3a.) Green lines indicate ay/H from the Hilbert
transform. Red circles, triangles, pluses and crosses correspond to the marks in figure 8. Green
stars correspond to figure 7.
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FIGURE 7. Interface displacements and envelopes for the upper layer (black and red solid lines),
and envelopes obtained by the Hilbert transform from the theory (black dashed lines) for case
6 (h/H = 0.30, g = 0.0075 and p = 0.050). The envelope of the breather solution was obtained
using (2.12) in which g was found from ag. Green solid lines (values on right-hand axes) are the
difference of the Hilbert transform and the theoretical envelope. (a) Period t/T;, = 5.0 (left-hand
green star in figure 6b) and (b) t/T, = 30.0 (right-hand green star in figure 6b).
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FIGURE 8. Lengths of a breather. Solid lines indicate theoretical lengths of a breather given
by (2.13) and symbols indicate computational results. All marks correspond to the red marks in
figures 5 and 6. (a) Cases 1-4. (b) Cases 5-8.

envelope obtained from the Hilbert transform should agree with the theoretical solutions.
However, it was found that a short internal wave component is present at t/7, = 5 in
case 6 (figure 7a). Although the Hilbert transform approaches the theoretical solution of
the envelope at ¢/T, = 30.0, short internal waves are involved, which means that it may
be difficult for the initial waves based on theoretical breathers to progress without any
deformation and decay (figure 7b).

If Ap/py and h/H are fixed, A./H has a monotonic relation with ay/h (figure 8).
As shown with the red marks in figures 5 and 6, we extracted three sets of ay/H and
A./H values at the beginning and when ay/H has reduced to half the initial amplitude.
The theoretical solution shows that the larger the amplitude is, the shorter the length
of the breather (figure 8). Furthermore, the relationship between the breather width and
amplitude in the computational results was found to be similar to that for theoretical
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FIGURE 9. Comparisons of group velocity. Solid lines indicate the direction of group velocity
that is opposite to the propagation direction of a long wave by (2.14). Dashed lines indicate
that the direction of group velocity is the same as a long wave by (2.14). (a) Cases 1 and 3.
(b) Cases 2 and 4. (¢) Cases 5 and 7. (d) Cases 6 and 8.

breathers (see (2.13)). However, as ay/H increases, A,/H in the computational results
was slightly larger than the theoretical solution. Koop & Butler (1981), Grue et al. (1997)
and Choi & Camassa (1999) showed the same tendency in the relationship between the
wave amplitude and length of an internal solitary wave in a two-layer fluid system.

5. Discussion

Initially ay/H = 4q; however, the computed ay/H decreases in time. Figure 9 shows
theoretical values of |V,,/co| for breathers as a function of ay/H for the four pairs of h/H
and p values. Also plotted are ay/H values for the breathers in the numerical simulations
versus their average group velocity. In terms of #/7), the average group velocities were
calculated over intervals of length 2.5 for cases 1 and 3, 22.5 for cases 2 and 4, 1.2 for
cases 5 and 7, and 10 for cases 6 and 8. The computed group velocities agree with the
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FIGURE 10. Space and time contour of the upper interface displacement for (a) case 7 and (b)
case 8. Reference frame moved with the theoretical envelope speed, ¢y + V.

theoretical values when |V,,/co| was ~0.1 (figure 9a,d). But, when the computed |V, /co|
was less than 0.1, its values are larger than the theoretical value (figure 9¢). In contrast,
when the computed |V,,/co| was greater than 0.1, the computed values are less than the
theoretical value (figure 9b). For cases 7 and 8, the values in green are at times when the
density interface crosses the critical depth (figure 9¢,d). To investigate the effect of the sign
of V,./co, four additional simulations were done using small-amplitude initial conditions
(cases 13 to 16). For these simulations we chose the smaller value of g used in cases 1-8
because we found that the adjustment of the initial wave was smaller for this value of ¢.
Positive V,,/co requires that p < g+/3 2 0.00427 so we considered p = 0.0001 and 0.004
for both 7/H = 0.25 and 0.3. In all four of these cases, the breather that emerged from the
initial condition had V,,/co < 0. The computed V,,/co was —6.3 x 1073 in cases 13 and
14 and —5.2 x 107? in cases 15 and 16, which shows no dependence of V,,/c, on p.

To investigate the generation of short internal waves, we return to cases 7 and 8 in
which the initial density interfaces cross the critical depth (figure 10). In these cases short
small-amplitude internal waves separated from the breather with the rapid decrease in
ay/H (enclosed in red curves in figure 10) and we conjecture that this occurs because
the density interfaces crossed the critical depth in cases 7 and 8. Additional short
small-amplitude internal waves emerged gradually, continually reducing the amplitude
of breathers (figure 10, blue-enclosed regions). These small-amplitude internal waves
result in a gradual decrease in the amplitude of the initial theoretical breathers. For
a two-layer fluid under the Boussinesq approximation the quadratic nonlinear term is
zero when the interface is at the mid-depth and importantly internal solitary waves are
limited in amplitude by the conjugate flow limit in which the interface is displaced to the
mid-depth (Lamb & Wan 1998). Tsuji & Oikawa (2007) also showed that the amplification
rate of soliton resonance is suppressed as the interface approaches the critical depth
where the quadratic nonlinear term vanishes and dispersion prevails in the KdV equation.
For the case of the breathers it is possible that there is an amplitude limitation and
it occurs at the location where the cubic nonlinear coefficient vanishes and dispersion
prevails in the mKdV equation (h/H = 9/26), which is similar to the critical depth
in the KdV equation. To investigate the effect of the critical depth on the suppression
of the amplitude, four additional simulations were done using large-amplitude initial
conditions: case 9 with (h/H, g, p) = (0.25, 0.0225, 0.025); case 10 with (h/H, q, p) =
(0.25, 0.0225, 0.050); case 11 with (h/H, q, p) = (0.30, 0.0225, 0.025); and case 12 with
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FIGURE 11. Interface displacements for the upper and lower layers (h/H = 0.30) at a time
when the interface displacement was a maximum. (a) Case 11 with (g, p) = (0.0225, 0.025).
(b) Case 12 with (g, p) = (0.0225, 0.050).

zIH 0 -

(@) (b)
= 2.0 —PE, —KE, 2.0
N
Lum 1.5 1 —PEZ ..... KEZ 1.5
S, 1.0 —E;p KE; 1.0
20
g 0.5 v 0.5
e N

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0
C
(T) (d) 2.0
;; 1.5
= 1.0
20
g 0.5
[S3}

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0
iT, )

FIGURE 12. Time series of potential energy and kinetic energy normalized by E, in cases 1 to
4 (h/H = 0.25). (a) Case 1, (b) case 2, (c) case 3 and (d) case 4.

(h/H, g, p) = (0.30, 0.0225, 0.050) (table 1, figures 6 and 11). For cases 9 and 10 when
h/H = 0.25, the initial density interfaces do not cross the critical depth, and we found
that cases 9 and 10 are similar to cases 3 and 4 though initial a;/H in cases 9 and 10 is
larger than in cases 3 and 4. On the other hand, when i/H = 0.3, the critical amplitude,
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FIGURE 13. Time series of potential energy and kinetic energy normalized by E, in cases 5 to
8 (h/H = 0.30). (a) Case 5, (b) case 6, (c) case 7 and (d) case 8.

defined as the distance between the undisturbed density interface and the critical depth,
is 0.0462. The initial amplitude of cases 11 and 12 is 1.95 times larger than the critical
amplitude while the amplitude of cases 7 and 8 is 1.3 times larger than the critical
amplitude. In cases 11 and 12, ay /H decreases rapidly compared to cases 7 and 8 (figure 6).
Short large-amplitude internal waves separated rapidly from the initial conditions and the
amplitude of cases 11 and 12 decreased more rapidly, which is similar to that found by Tsuji
& Oikawa (2007) and Nakayama et al. (2019a) for solitary waves (figure 11). Additionally,
Lamb et al. (2007) shows the release of short large-amplitude internal waves under the
condition when h/H = 0.3, p = 0.0285 and ¢ = —0.026, which is similar to case 11,
though g is slightly larger than in our study. Therefore, the release of short large-amplitude
internal waves and the rapid decrease in the amplitude may be because the initial density
interfaces cross the critical depth in cases 7 and 8, but this cannot explain a similar
emission of short large-amplitude internal waves in cases 3 and 4 for which the initial
amplitude is below the critical amplitude. We also computed conjugate flow amplitudes
for our two stratifications (Lamb & Wilkie 2004) and found that the limiting amplitudes
for solitary waves are a;;,,/H = 0.15 and 0.23 for h/H = 0.3 and 0.25, respectively, which
exceed the distances of 0.096 and 0.046 to the critical depth. Hence displacement of the
interface to the critical depth is not a limitation for internal solitary wave amplitudes.
The model used in Lamb et al. (2007) is based on the Navier—Stokes equations, and it is
possible to consider more general stratifications, including higher-mode waves which can
complicate the wave field. On the other hand, our model is a multilayer model, and we can
ignore the effect of pycnocline thickness on waves, which eliminates mode-3 and higher
waves. Therefore, it is easy to make direct comparisons with theoretical solutions. Since
breathers are long waves (at least in the context of the Gardner equation), a finite thickness
of the pycnocline is not expected to significantly affect wave profiles.

From the perspective of the energy scale, (2.22)—(2.28), it is expected that energy may
rapidly reduce in cases 3, 4, 7 and 8 (¢ = 0.06/4) when the amplitudes are relatively larger
because many short internal waves are released. In cases 3 and 7 (figures 12¢ and 13¢), E7
initially decreased rapidly for a short period of time. In the other cases the initial decay
rate (t/T, < 0.1) was much smaller. This suggests that initial attenuation is relatively large
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when the initial amplitude is large and p is small, which corresponds to larger ay and A,.
On the other hand, in all cases KE|, KE5, PE| and PE; were found to have nearly the same
energy scale. In fully nonlinear simulations, the movement of the interfaces means that
fluid in the middle layer is moving so theoretically KE, should not be zero. In particular,
in case 4 (h/H = 0.25 with the maximum p and g), the value of KE, was the largest among
all cases and the attenuation rate of Er was also the largest. Therefore, it may be suggested
that the second-mode kinetic energy is likely to be generated when /#/H and 4, are smaller.

The breather amplitude is found to decrease due to the release of short internal waves
since (2.7) is only a weakly nonlinear solution in a three-layer system. In addition to the
critical depth, the release of short internal waves may be partially due to the mismatch
of the displacements of the lower and upper interfaces, which results in the presence
of second-mode kinetic energy (figures 12 and 13). The second-mode kinetic energy is
less in the case of h/H = 0.30 than A/H = 0.25. For small 4/H the interfaces are near
the boundary and the upward displacement of the upper interface will be inhibited by
the upper boundary while the lower interface does not have the suppression as an upper
bound on its upward displacement. Similarly the downward displacement of the lower
interface will be inhibited by the lower boundary. This introduces an asymmetry in the
displacements of the two interfaces which should be expected for non-infinitesimal waves.
Such asymmetries are present in mode-1 internal solitary waves and conjugate flows. This
introduces an asymmetry that is not present in the leading-order vertical structure but it
does arise at higher order (Grimshaw et al. 1997). Figure 2 of Lamb et al. (2007) shows
the same mismatch of the displacements of the lower and upper interfaces.

6. Conclusion

The initial wave profile normalized by the total water depth, H, was plotted as functions
of x /A, so that the initial wave profile depends only on p and g, not on the cubic nonlinear
coefficient and the dispersion coefficient. The relationship of the length and amplitude
of the breathers from the computational results normalized by H was found to be the
same as for the theoretical solution (figure 8). For cases 1 to 4 (h/H = 0.25), it was found
that the larger g is, the more short small-amplitude internal waves are released with a
corresponding decrease in the amplitude and the broadening of the length of the breather.
Interestingly, the wavelength of the carrier waves does not change appreciably, i.e. p does
not significantly change even after the emission of short internal waves. For p = 0.025,
the group velocity in the simulations was similar to the theoretical value; however, for the
larger p = 0.05 and smaller i#/H, the group velocity in the simulations was considerably
lower (see figure 9b). Therefore, when //H is relatively small, there may be the possibility
that larger p can generate lower-frequency fluctuations. For cases 5 to 8 (h/H = 0.30),
short internal waves are still generated though the Hilbert transform approaches the
theoretical solution of the envelope. In cases 7, 8, 11 and 12 when the initial density
interfaces cross the critical depth, the emission of short internal waves was enhanced. The
cubic nonlinear coefficient vanishes on the critical depth (h/H = 9/26) and dispersion
prevails in the mKdV equation. Therefore, the critical depth may be a significant factor
controlling the amplitude of breathers in a three-layer fluid. Our simulations suggest that
larger values of i1/H are better able to produce breathers in our nonlinear model.
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