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Abstract

Let X be a compact connected Riemann surface and f a square root of the holomorphic cotangent bundle
of X. Sending any line bundle L overX of order two to the image of dim H°(X, f ® L) -dim//°(X, | )
in Z/2Z defines a quadratic form on the space of all order two line bundles. We give a topological
interpretation of this quadratic form in terms of index of vector fields on X.

2000 Mathematics subject classification: primary 14F10, 57R25, 57R15.

1. The Arf function for a theta characteristic

Let X be a compact connected Riemann surface of genus g. The holomorphic
cotangent bundle of X will be denoted by Kx. Let £ be a holomorphic line bundle
over X such that f ®2 is holomorphically isomorphic to Kx- A line bundle with this
property is known as a theta characteristic of X. Since the degree of Kx is even, X
has a theta characteristic.

There are exactly 22g theta characteristics of X, where g is the genus of X. Indeed,
if L is a holomorphic line bundle over X of order two, that is, L®2 is isomorphic to the
trivial line bundle, then £ (g> L is also a theta characteristic, provided £ is one. It is easy
to see that this action of the order two line bundles on the theta characteristics is free
and transitive. In other words, the collection of all theta characteristics of X, which
we will denote by 5(X), is an affine space for the collection of line bundle of order
two. Note that the collection of all line bundle of order two, which we will denote by

), is a vector space over Z/2Z of dimension 2g.
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416 Indranil Biswas [2]

On J2(X) there is a bilinear form known as the Weil pairing (see [Mul, page 183]).
The Weil pairing

(1.1) 02 : J2(X) <g> J2{X) -»• 2 / 2 2

is antisymmetric (hence symmetric as the field is 1/21). Note that in [Mul], the
image of 62 is identified with ±1 by sending 1 and - 1 to 0 e 2/22 and 1 € 2/22
respectively. We recall a topological description of the pairing 92.

The 2/22 vector space J2{X) is identified with Hl{X, 1/21). With this identifi-
cation, 62 is simply the cup product on Hl(X, 2/22). It is easy to see that J2(X) is
identified with Hom(//i(X, 1), ±1). Indeed, using the natural projection n\{X) ->
Hi{X, 2) an element in Hom(//](X, 2), ±1) gives a character of order two of the
fundamental group n\(X). A character of 7t](X) gives a flat line bundle. Since the
above character is of order two, the holomorphic line bundle defined by the corre-
sponding flat line bundle is also of order two. By the above isomorphism of J2(X)
with Hom(//,(X, 2), ±1) = / / ' (X, 2/22), the cup product

H\X, 1/21) <g> Hl(X, 2/22) - • H2(X, 1/21) = 1/21

translates to the Weil pairing 82 defined in (1.1).
Take £ e S(X), a theta characteristic. Define

(1.2) co( : J2(X) -+ 2/22

by L (-• dim H°(X, £ <g> L) - dim H°(X, £) e 2/22. The bilinear form associated
with the quadratic form a>$ in (1.2) coincides with the Weil pairing in (1.1). In other
words, for any pair L1( L2 € J2(X) the identity

(1.3) a»t(L, ® L2) - ^ ( L , ) - a>s(L2) = 92{LUL2)

is valid [Mu2, page 182, (*)]. A function on J2(X) satisfying the identity (1.3) is
known as an Arffunction [Na, page 93]. In particular, o>? is an Arf function. Any Arf
function is of the form co^ for some £ e S{X) [Na, page 100, Theorem 10.1].

We will give an alternative description of a>^ using the notion of index of a vector
field on X.

2. Vector fields and Arf function

We continue with the notation of the preceding section. Take £ e S(X). Take a
meromorphic section s of the line bundle £ which is not identically zero. Therefore,
s ® s is a meromorphic section of Kx. In other words, s := ^ ® s is a meromorphic
one form of X which is not identically zero.
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Now, since s is not identically zero, it defines a meromorphic section of the holomor-
phic tangent bundle TX. Indeed, since TX = K%, we have a (unique) meromorphic
section r of TX defined by the condition that the evaluation r(s) is the constant
function 1 on X. In particular, the zeros (respectively, poles) of s becomes poles
(respectively, zeros) of r. Let C C X be the union of all the zeros and poles of r.

Since X is a compact connected oriented smooth manifold of (real) dimension
two, using Poincare duality we have Hx{X,l/22) = H{(X,2/22). Using this
isomorphism, the quadratic formo^ on Jj{X) = Hl(X, 1/21) defined in (1.2) would
be considered as a quadratic form on Hi (X, Z/2Z).

Take any homology class c e H\{X, 2/21). Let y be a smooth oriented loop
(that is, a C°° immersion of the circle S1 = {(x, y) e R2 \ x2 + y2 = 1}) in X \ C
representing the homology class c. Since the set C of poles and zeros of the section
r is finite, such a loop exists. Since c is a homology class with coefficients in Z/2Z,
if we reverse the orientation of y then also it represents c.

Let index(r, y) € Z be the index of the vector field r on X \ C for the oriented
loop y. We recall the definition of index. If the vector field r rotates n times
clockwise with respect to the tangent vectors of the curve y (recall that y is an
immersion), then index(r, y) = n + 1. For any p e Sl, the quotient of the (real)
nonzero tangent space TYip)X — {0} by the multiplication action of R+ can be identified
with S1 = {(x, y) 6 K2 | x2 + y2 = 1} by sending (1, 0) e S] to the tangent vector
y'(p) along the loop y. Using this identification, r defines a map from Sl to S1. The
above integer n is the degree of this map.

Henceforth, by index(r, y) we will always mean the image in Z/2Z of the above
constructed number.

Note that each pole or zero of r is of even order. Therefore, although y is a loop
in X \ C, the dependence of index(r, y) on y factors through the image of y in
Hi(X, 1/21). In other words, if a loop y' represents a homology class in the kernel
of the natural homomorphism //,(X \ C, 2/21) -» //,(X, Z/2Z) (induced by the
inclusion map of X \ C in X), then index(r, y') = 0 e 1/21.

If s and s' are two meromorphic sections of £, then we have a one-parameter family
of meromorphic sections of £ defined by k i-> sk '•= A.s + (1 — X)s', where X e C.
So, we have si = s and so = s'. Note that index of a vector field along a loop is a
topological invariant. In particular, it does not change under continuous deformations
of the vector field. Let r' be the meromorphic vector field constructed using s'. Now in
view of the above remark that the dependence of index(r, y) on y factors through the
image of y in Ht(X, 1/21) it follows immediately that index(r, y) = index(r', y).

Consequently, index(r, y) e 1/21 depends only on £ and c. In other words, we
are justified in using the notation index(£, c) in place of index(r, y).

Our aim here is to prove the following theorem.
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THEOREM 2.1. The two elements in 7L/27L, namely a)$ (c) and index(£, c), coincide.

PROOF. Let XT be a holomorphic family of compact connected Riemann surfaces
with a theta characteristic parameterized by a complex manifold T. In other words,
XT is a complex manifold equipped with a holomorphic submersion n : XT —*• T
and a holomorphic line bundle £r over XT such that for any point t e T, the fiber
X, := n~x(t) is a compact connected Riemann surface and the restriction of the line
bundle £r to X, is a theta characteristic of X,. The restriction of t-T to X, will be
denoted by £,.

A basic theorem due to Atiyah and Mumford says that if the parameter space T
is connected then the image of dim H°(X,, £,) in 2/22 is independent of t (see [At,
page 28, Theorem 1], [Mu2, page 184, Theorem]). In other words, the parity of
dim H°(X,, £,) remains constant over T, provided T is connected.

Now suppose that family X T of Riemann surfaces are equipped with a choice of
a first homology class with coefficients in 2/22. In other words, for each f e T we
have y, e //i(X,, 2/22) with the property that for every contractible open subset U
of 7\ the homology class

y, € / / , (*, , 1/21) = Hx(n~\U), 1/21),

where t' e U, is independent of t'. Note that the condition that U is contractible
ensures that the homomorphism//i(X,-, 1/21) -> H^(n~l(U), 1/21) induced by the
inclusion map of X,* in n~l (CO is an isomorphism. Since the index of a vector fields
is a topological invariant, in a continuous family of smooth vector fields and loops
the index remains unchanged. Therefore, if the parameter space T is connected, the
index index(£,, y,) e 2/22 is independent of t 6 T.

Consequently, both co${c) and index(£, c) are invariant under deformations of the
Riemann surface equipped with choices of a theta characteristic and a homology class.

Now, the moduli space of compact Riemann surfaces of genus g is connected.
Therefore, in order to show the equality o)^(c) = index(£, c) e 2/22, it suffices to
show that the equality holds for just one particular Riemann surface.

We will show that the equality co^c) = index(£, c) is valid for a hyperelliptic
Riemann surface. This, in view of the above observation, would complete the proof
of the theorem.

A hyperelliptic Riemann surface is a double cover of the complex projective line
CP1 = C U {oo}. Fix 2g + 2 distinct points

{Z\, Z2, • • • , Z2g+\. Zlg+2) C C.

This gives a hyperelliptic Riemann surface X defined by the polynomial equation

(2.1) P(x,y):=y2-
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where z, are as above. Therefore, we have a degree two map

(2.2) / : X -> CP1

which is ramified exactly over the points {z\, z2, • • • , Z2g+i}- The map/ sends a point
{x,y)tox.

We will now recall an explicit description of all the theta characteristics of this
Riemann surface X. The details can be found in [Mu2, page 190-191].

Let ficv1 (1) be the (unique) line bundle over CP1 of degree one. Set

where/ is as in (2.2). So r] is a holomorphic line bundle over X of degree two. Note
thatq = 0X {If ~\zi)) for each/ e [1, 2g+2] and for each z € CP'\{z,, z2, • • •, z2g+2}
we have r) = ^x(/~'(z))- (Here / ' 1 denotes the set theoretic inverse (as opposed to
the scheme theoretic inverse).)

Take an integer / 6 {0, 1 , . . . , [(g - l)/2] - 1, [(g - l)/2]} and a subset 5 C
{zi, z2,..., z2g+2] of cardinality g — 1 — 21. For such a pair {/, S] let

be the holomorphic line bundle over X of degree g — 1.
For any subset S C {zi, Z2> • • •. Z2g+2) of cardinality g + 1 and Z = — 1, let

f(/, 5) = f ( - 1 , S) := 0x(f-\S)) ® 17*

be the holomorphic line bundle over X of degree g — 1.
Each line bundle £(/, 5), where

and 5 C [zu z2,..., z2g+2]

of cardinality g — 1 — 21, has the property that £(/, 5) ®£(/, S) is isomorphic to A"̂ . In
other words, | ( / , 5) is a theta characteristic. If£ e S(X) is a theta characteristic of X,
then £ is isomorphic to £(/, 5) for some pair {/, 5}. Furthermore, if £(/, 5) = £(/', 5'),
where the pairs {/, 5} and {/', S'} satisfy the above numerical conditions, then the
following two conditions
(1) l = -\ = /'and
(2) 5' = {z,,z2 z2g+2}\S,

are valid (see [Mu2, page 191]).
Set & = / "' (oo) C X. So 8 consists of two distinct points of X (the map / in (2.2)

is unramified over the point oo € CP1), and the line bundle <?*•(<$) is isomorphic to rj.
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Given {/, 5} as above, we will construct a meromorphic section of Kx with zeros
of order two at each z e 5 and a zero (respectively, pole) of order 21 (respectively, 2)
for I nonnegative (respectively, for / = -1) at each point of the set 8.

Recall the polynomial P(x, y) in (2.1) defining X. Consider the meromorphic
one-form

(2.3) ( { /S} )
y Is

on X. Note that if z 6 S, then dx has zero of order one at the point / ~' (z) (since /
in (2.2) is ramified over z), the function (x - z) has a zero of order two at the point
/ "' (z) (since / is ramified over z), and y has pole of order one at / "' (z). Therefore,
«({/, 5}) has a zero of order two a t / " 1 (z) if z 6 S. If z € {zi,Z2, • • •, z2g+2}\ 5, then
for the same reasons to({l, S}) is regular (it has neither zero nor pole) a t / -1(z).

It is also clear that if I > 0, then co([l, S}) has a zero of order 21 at both the points
of the subset 8 of X. Indeed, for each z € S, the function x — z has a pole of order one
at each point of 8. From (2.1) it follows that function y has a pole of order g + 1 at
each point of 8. Finally, since dx has a pole of order two at each point of 8, it follows
that &>({/, S}) has a zero of order - ( g - 1 - 21) + (g + 1) - 2 = 21 at each point of 5.

If/ = — 1, then &>({/, S}) has a pole of order 2 at each of the points of 8. The form
co({l, S}) does not have any other pole or zero.

Therefore, if D is the divisor on X defined by the meromorphic section co([l, S}),
then D is of the form 2D' with OX{D') = £(/, 5). Indeed, since the line bundle 6X(8)
is isomorphic to rj, it follows immediately from the definition of £(/, S) that £(/, 5) is
isomorphic to the line bundle &X{D').

Take any £ = £(/, 5) € 5(X) and c e Hi(X, 1/21). From the above observation
that the divisor of o)({/, 5}) is twice the divisor of a section of £ it follows immediately
that to compute index (£, c) we can use the meromorphic vector field defined by the
one-form co({l, S}). In other words, in our earlier notation, we can take x to be the
meromorphic vector field defined by co({l, S}).

The order two lines bundles over X, namely J2 (X), is generated by line bundles of
the form 6X(f "' (z,) - / "' (zj)), where {z,, zj} C {z\, z2 z2g+2}- Note that

= 0x{2f-\Zi)) ® 0x{2f-l(zj))* = r, ® i?*.

In other words, we have ^ x ( / "' (z,) - / ~' (z,)) e 72(X).
Take a pair {/, S} as above. Take a point z e S and z' e {zi, z2 , . . . , Z2g+2) \ S.

Define 5' to be S U {z'} \ {z'}. From the definition of £(/, 5) it follows immediately
that

(2.4) £(Z, S') = $(/, 5) ® 0x{f~\z') -f
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If we set 5] = 5 U (z', z"), where {z1, z") C (zi, Zi,. •., 22̂ +2} \ S are two distinct
points, then

(2.5) £(/ - 1, 50 = £(/, 5) ® 0x(f-Hz') +f-\z") - /

Note that ^ (/ -1 (z') + / ~] {z") - / - 1 (00)) is a line bundle of order two. Similarly,
if 52 = 5 \ (z, z}, where {z, z} C 5 are two distinct points, then

(2.6) f (/ + 1, 52) = f (/, 5) ® 0x(f-\oo) -f-\z) - / - ' (z ) ) .

Note that the isomorphism in (2.6) follows from (2.5) by interchanging 5 and 5]. The
isomorphisms in (2.4), (2.5) and (2.6) together describe the action of Ji{X) on S(X),
the theta characteristics on X.

We know that dim H°(X, £(/, 5)) = / + 1 for any pair {/, 5} of the above type [Mu2,
page 191]. Since the action of Ji(X) on S(X) is described by the isomorphisms in
(2.4), (2.5) and (2.6), we therefore have an explicit description of the quadratic form
&>! defined in (1.2).

As before, take a point z € S and z' e [zi,Zi, •••, Zig+i] \ 5. Let p denote the
tautological meromorphic section of £?x(f~](z') — / ~ ' ( z ) ) given by the constant
function 1. So/3 has a pole of order one a t / " 1 (z) and a zero of order one a t / ~\z') •
From the definition of co({l, 5}) in (2.3) it follows immediately that

The tensor product /3 ® fi which is a meromorphic function on X (since the line bundle
&x(f~l(z') - / ~ ' ( z ) ) ® &x(f~l(z') - f~\z)) is trivial) can also be described as
follows. Consider the rational function i/r on CP1 defined by xfr (x) = (x — z')/(x - z).
The function yS <8> fi on X coincides with \Jr 0 / , where / is defined in (2.2).

Now, as before, take a pair of distinct points {z', z"\ C [z\, Zi, . • •, Z2g+2) \ 5.
Consider the rational function cj> on CP1 defined by <p(x) = (x — z')(* — z")/x2. Set
5, = 5 U {z', z"}. It is easy to see that the identity

is valid, where / is defined in (2.2).
In the previous section we saw that J2(X) is naturally identified with Ht (X, 1/21).

We will now describe this identification explicitly for hyperelliptic Riemann surfaces.
By X we will denote the hyperelliptic Riemann surface in (2.2).

Let D2 := {(x, y) \ x2 + y2 < 1} be the closed unit disk and D2 := {(x, y) |
x2 + y2 < 1} the open disk, which is the interior of D2. The boundary D2 \ D2 will
be denoted by 51.
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Take a pair of distinct points {z, z'} C {z\,Zi,..., Zig+i}- Let t^o : D2 - » C be an

C°° embedding of the disk such that

and (z, z'} C Vo(£>2).
The inverse image / ~' (ijfo(D2)) is an embedded cylinder in X. To prove this first

note that the boundary \MS') of the image il/0(D
2) lifts to a loop in X. This lifting

property of ^o(Sl) follows from the observation that an embedding

y : S1 -> CIP1\{z1,Z2, ...,Z2g+2}

lifts to X as a map from S1 if and only if the number of point {z,} in some (hence
each) component of CIP1 \ y(Sx) is even. (Any embedded loop in CP1 breaks the
complement into two connected components; if one component has./' points from the
set {z,}, then the other component has 2g + 2 — j points of {z,}.) Consequently, the
inverse image / "' (\I/O{D2)) is an embedded cylinder.

Let I := [0, 1] be the closed interval, i := (0, 1) the open interval, and C2 :— Sl x I
the two dimensional cylinder with boundary. Let \}r : C2 -*• X be a C°° embedding of
the cylinder C2 into X such that f{C2) = f '\irQ{D2)). Therefore,

[f -'(z,),/-'(z2),... ,f~l(z2g+2)) = {f-\z),f-l(z'))

and{f-\z),f-l(z')) C V(S' xl) . We saw that 0x(f~l{z) - / " ' ( z ' ) ) e 72(X). The
corresponding element in //] (X, 2/22) is represented by the image, under the map i/f.
of S1 x {0}. Note that x/r(S[ x {0}) and V(S' * {1}) represent the same element in
«,(X,Z/2Z).

The element in H\ (X, 2/2Z) represented by V (̂S1 x {0}) clearly coincides with the
one represented by the lift to X of the loop ^ (S 1 ) in C. So both these loops in X
represent ffx(f~\z)-f-\z')) € 72(X) = //,(X, Z/2Z).

Using this observation and the meromorphic forms co({l, S}) we immediately ob-
tain an explicit description of index(£, c). Comparing this with the earlier obtained
description of the quadratic form co$ we conclude that a)?(c) = index(£, c).

Therefore, the equality co^(c) = index(£, c) is valid, provided X is a hyperelliptic
Riemann surface. But we already noted that it is enough to prove the equality for just
one Riemann surface. Therefore, the proof of the theorem is complete. •
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