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Abstract We present an alternative proof of the existence of density-conserving solutions to the discrete
coagulation–fragmentation equations when the coagulation rates grow at most linearly. The proof relies
on the study of the propagation of some moments of the solutions to approximating equations and
simplifies the previous argument of Ball and Carr which involves rather delicate estimates. The case of
multiple fragmentation is also considered, and the question of uniqueness as well.
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1. Introduction

The coagulation–fragmentation equations are a model for the dynamics of cluster growth
and describe the time evolution of a system of clusters undergoing coalescence and
breakup simultaneously. In the model considered in this paper the clusters are assumed
to be discrete, that is, they consist of a finite number of elementary particles. The basic
reactions between clusters that are taken into account are the coalescence of two clusters
to form a larger one and the breakage of a cluster into smaller pieces. Other effects (mul-
tiple coagulation, spatial fluctuations, etc.) are neglected. Denoting by ci(t), i ∈ N \ {0},
the number of clusters made of i particles (i-clusters) per unit volume at time t � 0, the
discrete coagulation–fragmentation equations read

dci

dt
= 1

2

i−1∑
j=1

(φj,i−jcjci−j − ψj,i−jci) −
∞∑

j=1

(φi,jcicj − ψi,jci+j), (1.1)

ci(0) = c0
i , (1.2)

for i � 1, under the additional assumption that only binary fragmentation is allowed for.
Here the coagulation rates φi,j and the fragmentation rates ψi,j are non-negative real
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numbers satisfying
φi,j = φj,i and ψi,j = ψj,i, i, j � 1. (1.3)

On the right-hand side of (1.1) the first term accounts for the formation of i-clusters by
binary coalescence of smaller ones and the second one for the fragmentation of i-clusters
into two smaller ones. The third term describes the depletion of i-clusters by coagulation
with other clusters, while the fourth term represents the creation of i-clusters resulting
from the breakage of larger ones. System (1.1) without fragmentation (ψi,j = 0) was
originally introduced by Smoluchowski [21, 22] and we refer to [6] for a derivation of
(1.1) and some physical background. Observe that, since particles are neither created
nor destroyed in the reactions described by (1.1), the density

�(t) =
∞∑

i=1

ici(t) (1.4)

is expected to be conserved through time evolution. It is, however, well known by now
that, in the absence of fragmentation, there are physically relevant coagulation rates for
which density conservation breaks down in finite time, a phenomenon known as gelation
[8,9,12,15,16]. We will, however, not consider this issue here and concentrate on the
case when the coagulation rates satisfy

φi,j � K(i + j), i, j � 1. (1.5)

Under assumption (1.5) on the coagulation rates and without any further assumption
on the fragmentation rates, existence of a solution to (1.1), (1.2) satisfying �(t) = �(0)
for t � 0 has been shown by Ball and Carr for any initial datum c0 = (c0

i ) in X+ [1].
Here, X+ denotes the positive cone of the Banach space X defined by

X =
{

x = (xi)i�1 ∈ R
N\{0},

∞∑
i=1

i|xi| < ∞
}

,

with the norm

‖x‖X =
∞∑

i=1

i|xi|;

that is,
X+ = {x ∈ X, xi � 0 for each i � 1}. (1.6)

The existence proof in [1] is carried out by taking a limit of solutions to approximat-
ing finite-dimensional systems of ordinary differential equations and requires delicate
estimates in order to recover the infinite series on the right-hand side of (1.1) (see [1,
pp. 211–215]).

Our aim in this paper is to present a simpler proof of [1, Theorems 2.4 and 2.5]. Our
approach relies on the study of the propagation of the moments

∑
gici for approximating

solutions. Under assumption (1.5) the propagation of moments for approximating solu-
tions has been investigated in [7,24] in the absence of fragmentation and in [2–4] for the
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full model (1.1) with gi = im, m � 1, and we will generalize these results to a wider class
of sequences (gi). Combining such estimates with a refined version of the de la Vallée–
Poussin theorem [5, 14] then yields an alternative proof of [1, Theorems 2.4 and 2.5].
Our method is actually sufficiently flexible that we can also handle multiple fragmenta-
tion [17] and obtain a new existence result for this model. Let us finally mention that
several existence results have been obtained for (1.1), (1.2) when the coagulation rates
do not satisfy (1.5) but the weaker condition

φi,j � Kij, i, j � 1,

either in the absence of fragmentation [12,15,18,19,24] or for some classes of fragmen-
tation rates [4,23].

We now describe the contents of this paper: § 2 introduces the discrete coagulation
equations with multiple fragmentation together with the statement of our main results.
The finite-dimensional systems of ordinary differential equations approximating (1.1) are
described in § 3 and the propagation of the moments of their solutions is investigated.
Section 4 is devoted to the proof of our existence result and a partial uniqueness result
is given in § 5.

2. Main results

As already mentioned, we consider a generalized version of (1.1) which allows multiple
fragmentation [17] and reads

dci

dt
= 1

2

i−1∑
j=1

φj,i−jcjci−j − aici −
∞∑

j=1

(φi,jcicj − ai+jbi+j,ici+j), (2.1)

ci(0) = c0
i , (2.2)

for i � 1. Here φi,j still denotes the coagulation rates, while ai gives the rate of frag-
mentation of i-clusters (with a1 = 0) and bi,j is the average number of particles of size j

produced upon the breakup of an i-cluster. Conservation of mass during the fragmenta-
tion reaction implies

i−1∑
j=1

jbi,j = i, i � 2,

and such a model clearly allows the breakage of i-clusters into more than two pieces.
Throughout the paper the assumptions made on the data (φi,j), (ai) and (bi,j) are the

following: there is a positive real number K such that

0 � φi,j = φj,i � K(i + j), i, j � 1, (2.3)

a1 = 0 and ai � 0, i � 2, (2.4)

(bi,j) ∈ [0, +∞)i−1 and
i−1∑
j=1

jbi,j = i, i � 2. (2.5)
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Remark 2.1. The discrete coagulation–fragmentation equations (1.1) are actually
a particular case of (2.1). Indeed, given fragmentation rates (ψi,j) satisfying (1.3), we
recover (1.1) from (2.1) by setting

ai = 1
2

i−1∑
j=1

ψj,i−j , i � 1,

with

bi,j =
ψj,i−j

ai
if ai �= 0.

We also point out that, in that case, the symmetry of (ψi,j) entails that bi,j = bi,i−j ,
1 � j � i − 1.

Before stating our existence result we specify what we mean by a solution to (2.1),
(2.2).

Definition 2.2. Let T ∈ (0, +∞] and c0 = (c0
i )i�1 be a sequence of non-negative real

numbers. A solution c = (ci)i�1 to (2.1), (2.2) on [0, T ) is a sequence of non-negative
continuous functions satisfying, for each i � 1 and t ∈ (0, T ),

(i) ci ∈ C([0, T )),
∑∞

j=1 φi,jcj ∈ L1(0, t) and
∑∞

j=i+1 ajbj,icj ∈ L1(0, t),

(ii) and there holds

ci(t) = c0
i +

∫ t

0

(
1
2

i−1∑
j=1

φj,i−jcj(s)ci−j(s) − aici(s)

−
∞∑

j=1

(φi,jci(s)cj(s) − ai+jbi+j,ici+j(s))
)

ds.

Our existence result then reads as follows.

Theorem 2.3. Consider c0 ∈ X+ (where X+ is defined in (1.6)). Under the assump-
tions (2.3)–(2.5) there is at least one solution c to (2.1), (2.2) on [0, +∞) satisfying

‖c(t)‖X = ‖c0‖X , t ∈ [0, +∞). (2.6)

In other words, the density of the solution c is conserved through time evolution.
We actually prove a more precise result. We first introduce some notation. We denote

by K1 the set of non-negative and convex functions U ∈ C1([0, +∞)) ∩ W 2,∞
loc (0, +∞)

such that U(0) = 0, U ′(0) � 0 and U ′ is a concave function. We next denote by K1,∞
the set of functions U ∈ K1 satisfying, in addition,

lim
r→+∞

U ′(r) = lim
r→+∞

U(r)
r

= +∞. (2.7)
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We finally introduce the set K2 of non-negative and convex functions U ∈ C2([0, +∞))
such that U(0) = U ′(0) = 0 and U ′ is a convex function satisfying the ∆2-condition, that
is,

U ′(2r) � kUU ′(r), r ∈ [0, +∞), (2.8)

for some kU > 0. It follows from [11, Theorem 4.1] that, if U ∈ K2, there exists �U > 0
such that

rU ′′(r) � �UU ′(r), r ∈ [0, +∞). (2.9)

Remark 2.4. It is clear that r �→ rm belongs to K1,∞ if m ∈ (1, 2] and to K2 if m � 2.

Our next result then reads as follows.

Theorem 2.5. Consider c0 ∈ X+ and assume that there is U ∈ K1 ∪ K2 such that
∞∑

i=1

U(i)c0
i < ∞. (2.10)

Under the assumptions (2.3)–(2.5) there is at least one solution c to (2.1), (2.2) on [0, +∞)
satisfying (2.6) and, for each T ∈ (0, +∞),

sup
t∈[0,T ]

∞∑
i=1

U(i)ci(t) < ∞. (2.11)

Consequently, if the initial datum has some finite moment (in a suitable class), there
is at least one solution to (2.1), (2.2) enjoying the same property for all times.

Remark 2.6. When applied to the discrete coagulation–fragmentation equations
(1.1), (1.2), Theorem 2.3 is nothing but [1, Theorems 2.4 and 2.5], while Theorem 2.5
extends [3, Theorem 3.3].

From now on we assume that the rate coefficients (φi,j), (ai) and (bi,j) are given and
satisfy the assumptions (2.3)–(2.5). We also fix c0 ∈ X+.

3. Approximating systems

As in previous works on similar equations, existence of solutions to (2.1), (2.2) follows by
taking a limit of solutions to finite-dimensional systems of ordinary differential equations
obtained by truncation of (2.1). More precisely, given N � 3, we consider the following
system of N ordinary differential equations:

dcN
i

dt
= 1

2

i−1∑
j=1

φj,i−jc
N
j cN

i−j − aic
N
i −

N−i∑
j=1

(φi,jc
N
i cN

j − ai+jbi+j,ic
N
i+j), (3.1)

cN
i (0) = c0

i , (3.2)

for i ∈ {1, . . . , N}. Proceeding as in [1, Lemmas 2.1 and 2.2] we obtain the following
result.
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Lemma 3.1. For each N � 3 system (3.1), (3.2) has a unique solution

cN = (cN
i )1�i�N ∈ C1([0, +∞); RN )

with cN
i (t) � 0 for 1 � i � N and t � 0. Furthermore, there holds

N∑
i=1

icN
i (t) =

N∑
i=1

ic0
i , t ∈ [0, +∞), (3.3)

and, if (gi) ∈ R
N ,

N∑
i=1

gi
dcN

i

dt
= 1

2

N∑
i=1

N−i∑
j=1

(gi+j − gi − gj)φi,jc
N
i cN

j −
N∑

i=2

(
gi −

i−1∑
j=1

gjbi,j

)
aic

N
i . (3.4)

Our aim is now to estimate the propagation of moments of the solutions cN to (3.1),
(3.2). We shall, however, first derive some properties of the sequence (U(i))i�1 for U ∈
K1 ∪ K2.

Lemma 3.2. Consider U ∈ K1 ∪ K2. There is a constant mU depending only on U

such that

(i + j)(U(i + j) − U(i) − U(j)) � mU (iU(j) + jU(i)), i, j � 1. (3.5)

The inequality (3.5) has already been noted for U(r) = rm, m � 1, in [2, Lemma 2.3]
and for U ∈ K1 in [13]. We recall the proof of the latter below for completeness. Our
proof also differs from the one of [2, Lemma 2.3], which uses the homogeneity of the
power functions.

Proof. Assume first that U ∈ K1 and consider i, j � 1. For ρ ∈ [0, i] and σ ∈ [0, j]
the concavity of U ′ yields

U ′(ρ + σ) − U ′(ρ) � σU ′′(ρ + σ),

U ′(ρ + σ) − U ′(σ) � ρU ′′(ρ + σ).

Therefore,

(ρ + σ)U ′′(ρ + σ) + 2U ′(ρ + σ) � 4U ′(ρ + σ) − U ′(ρ) − U ′(σ). (3.6)

Again using the concavity of U ′ we have

U ′′(τ) � U ′′(τ + σ), τ ∈ (0, +∞).

Integrating the above inequality with respect to τ over (0, ρ) we obtain, since U ′(0) � 0,

U ′(ρ + σ) � U ′(ρ) + U ′(σ). (3.7)

Combining (3.6) and (3.7) we conclude that

(ρ + σ)U ′′(ρ + σ) + 2U ′(ρ + σ) � 3(U ′(ρ) + U ′(σ)). (3.8)
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Now, as

(i + j)U(i + j) − iU(i) − jU(j) =
∫ i

0

∫ j

0
((ρ + σ)U ′′(ρ + σ) + 2U ′(ρ + σ)) dρ dσ,

we infer from (3.8) that

(i + j)U(i + j) − iU(i) − jU(j) � 3(iU(j) + jU(i)),

from which (3.5) follows (with mU = 2).
We now consider U ∈ K2 and i, j � 1. For ρ ∈ [0, i] and σ ∈ [0, j] the convexity of U ′

ensures that

U ′(ρ) − U ′(ρ + σ) � −σU ′′(ρ + σ),

U ′(σ) − U ′(ρ + σ) � −ρU ′′(ρ + σ).

We infer from (2.9) and the above inequalities that

(ρ + σ)U ′′(ρ + σ) + 2U ′(ρ + σ) � 2�UU ′(ρ + σ) + U ′(ρ) + U ′(σ).

Next we use the convexity of U ′ and (2.8) to obtain

(ρ + σ)U ′′(ρ + σ) + 2U ′(ρ + σ) � U ′(ρ) + U ′(σ) + �U (U ′(2ρ) + U ′(2σ))

� (1 + kU �U )(U ′(ρ) + U ′(σ)).

We then proceed as above to obtain (3.5) (with mU = kU �U ). �

We are now in a position to state and prove the main result of this section.

Proposition 3.3. Consider T ∈ (0, +∞) and U ∈ K1 ∪ K2. There is a constant γT

depending only on K, U , ‖c0‖X and T such that, for each N � 3 and t ∈ [0, T ], there
holds

N∑
i=1

U(i)cN
i (t) � γT

N∑
i=1

U(i)c0
i , (3.9)

0 �
∫ T

0

N−1∑
i=1

i

N∑
j=i+1

(
U(j)

j
− U(i)

i

)
ajbj,ic

N
j (s) ds � γT

N∑
i=1

U(i)c0
i . (3.10)

Proof. For N � 3 and t ∈ [0, T ] we put

MN
U (t) =

N∑
i=1

U(i)cN
i (t).
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It follows from (3.4), (2.3), (3.5) and (3.3) that

dMN
U

dt
� 1

2K

N∑
i=1

N−i∑
j=1

(i + j)(U(i + j) − U(i) − U(j))cN
i cN

j

−
N∑

i=2

(
U(i) −

i−1∑
j=1

U(j)bi,j

)
aic

N
i

� 1
2KmU

N∑
i=1

N−i∑
j=1

(iU(j) + jU(i))cN
i cN

j

−
N∑

i=2

(
U(i) −

i−1∑
j=1

U(j)bi,j

)
aic

N
i ,

dMN
U

dt
� KmU‖c0‖XMN

U −
N∑

i=2

(
U(i) −

i−1∑
j=1

U(j)bi,j

)
aic

N
i . (3.11)

Observe next that, since U(0) = 0, the convexity of U and (2.5) yield

i−1∑
j=1

U(j)bi,j � U(i), (3.12)

and the second term on the right-hand side of (3.11) is non-negative. We therefore deduce
from (3.11) and the Gronwall lemma that (3.9) holds true. We next combine (3.9), (3.11)
and (3.12) to obtain

0 �
∫ T

0

N∑
i=2

(
U(i) −

i−1∑
j=1

U(j)bi,j

)
aic

N
i (s) ds � γT MN

U (0). (3.13)

But, thanks to (2.5) we have

N∑
i=2

(
U(i) −

i−1∑
j=1

U(j)bi,j

)
aic

N
i =

N−1∑
i=1

i

N∑
j=i+1

(
U(j)

j
− U(i)

i

)
ajbj,ic

N
j ,

and (3.10) follows at once from (3.13). �

Remark 3.4. Notice that the convexity of U entails that r �→ U(r)/r is a non-
decreasing function. Consequently, each term of the double sum in (3.10) is non-negative.

Lemma 3.5. Let T ∈ (0, +∞) and i � 1. There is a constant γi(T ) depending only
on K, ‖c0‖X , i and T such that, for each N � i,

∣∣∣∣dcN
i

dt

∣∣∣∣
L1(0,T )

� γi(T ). (3.14)

https://doi.org/10.1017/S0013091500000316 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000316


Coagulation equations with multiple fragmentation 75

Proof. By (3.1) we have

0 �
∫ T

0

N−i∑
j=1

ai+jbi+j,ic
N
i+j(s) ds

�
∫ T

0
aic

N
i (s) ds +

∫ T

0

N−i∑
j=1

φi,jc
N
i (s)cN

j (s) ds + cN
i (T ).

From (2.3) and (3.3) we may estimate the right-hand side of the above inequality and
obtain ∣∣∣∣

N−i∑
j=1

ai+jbi+j,ic
N
i+j

∣∣∣∣
L1(0,T )

� aiT‖c0‖X + 2KiT‖c0‖2
X + ‖c0‖X .

Estimate (3.14) then follows from (3.1), (2.3), (3.3) and the above estimate. �

4. Existence

We are now in a position to prove the existence results (Theorems 2.3 and 2.5). To do
this we first recall a refined version of the de la Vallée–Poussin theorem for integrable
functions [14, Proposition I.1.1].

Theorem 4.1. Let (Ω, B, µ) be a measured space and consider a function w ∈
L1(Ω, B, µ). Then there exists a function V ∈ K1,∞ such that

V (|w|) ∈ L1(Ω, B, µ).

Remark 4.2. Theorem 4.1 is a classical result when µ(Ω) < ∞ (see, for example, [5,
p. 38]), except for the possibility of choosing V ′ concave. This last fact has been noted
in [14].

Proof of Theorem 2.3. We apply Theorem 4.1, Ω being the set N \ {0} and B the
set of all subsets of N \ {0}. Defining the measure µ by

µ(I) =
∑
i∈I

c0
i , I ⊂ N \ {0};

the condition c0 ∈ X+ ensures that x �→ x belongs to L1(Ω, B, µ). By Theorem 4.1 there
is thus a function U0 ∈ K1,∞ such that x �→ U0(x) belongs to L1(Ω, B, µ), that is,

U0 :=
∞∑

i=1

U0(i)c0
i < ∞. (4.1)

In the following we denote by C any positive constant depending only on K, ‖c0‖X ,
U0 and U0. The dependence of C upon additional parameters will be indicated explicitly.

By (3.3) and (3.14) the sequence (cN
i )N�i is bounded in L∞(0, T ) ∩ W 1,1(0, T ) for

each i � 1 and T ∈ (0, +∞). We then infer from the Helly theorem [10, pp. 372–374] that
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there are a subsequence of (cN
i )N�i, still denoted (cN

i )N�i, and a sequence c = (ci)i�1 of
functions of locally bounded variation such that

lim
N→+∞

cN
i (t) = ci(t) (4.2)

for each i � 1 and t � 0. Clearly, ci(t) � 0 for i � 1 and t � 0 and it follows from (4.2)
and (3.3) that c(t) ∈ X+ with

‖c(t)‖X � ‖c0‖X , t � 0. (4.3)

Furthermore, as U0 ∈ K1,∞, we infer from (4.1) and Proposition 3.3 that, for each T � 0
and N � 3, there holds

N∑
i=1

U0(i)cN
i (t) � C(T ), t ∈ [0, T ], (4.4)

0 �
∫ T

0

N−1∑
i=1

i

N∑
j=i+1

(
U0(j)

j
− U0(i)

i

)
ajbj,ic

N
j (s) ds � C(T ). (4.5)

Consider now T ∈ (0, +∞) and M � 2. By (4.4), (4.5) and Remark 3.4 we have, for
N � M + 1,

M∑
i=1

U0(i)cN
i (t) � C(T ), t ∈ [0, T ],

0 �
∫ T

0

M−1∑
i=1

i

M∑
j=i+1

(
U0(j)

j
− U0(i)

i

)
ajbj,ic

N
j (s) ds � C(T ).

Due to (4.2) we may pass to the limit as N → +∞ in the above estimates and conclude
that they both hold true with cN

i replaced by ci. We next let M → +∞ and obtain
∞∑

i=1

U0(i)ci(t) � C(T ), t ∈ [0, T ], (4.6)

0 �
∫ T

0

∞∑
i=1

i

∞∑
j=i+1

(
U0(j)

j
− U0(i)

i

)
ajbj,icj(s) ds � C(T ). (4.7)

As a consequence of (4.3), (2.3), (4.7) and the properties of U0 we obtain that, for each
i � 1,

∞∑
j=1

φi,jcj ∈ L1(0, T ) and
∞∑

j=i+1

ajbj,icj ∈ L1(0, T ). (4.8)

We now claim that, for each i � 1, there holds

lim
N→+∞

∣∣∣∣
N−i∑
j=1

φi,jc
N
i cN

j −
∞∑

j=1

φi,jcicj

∣∣∣∣
L1(0,T )

= 0, (4.9)

lim
N→+∞

∣∣∣∣
N∑

j=i+1

ajbj,ic
N
j −

∞∑
j=i+1

ajbj,ici

∣∣∣∣
L1(0,T )

= 0. (4.10)
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Indeed, fix i � 1 and consider M � 2. On the one hand it follows from (4.2), (3.3), (4.3)
and the Lebesgue-dominated convergence theorem that

lim
N→+∞

∣∣∣∣
M∑

j=1

φi,j(cN
i cN

j − cicj)
∣∣∣∣
L1(0,T )

= 0. (4.11)

On the other hand we infer from (3.3), (2.3) and (4.4) that, for N � i + M + 1,
∣∣∣∣

N−i∑
j=M+1

φi,jc
N
i cN

j

∣∣∣∣
L1(0,T )

� Ki‖c0‖X

∣∣∣∣
N−i∑

j=M+1

jcN
j

∣∣∣∣
L1(0,T )

� C(i, T ) sup
j�M

j

U0(j)

∣∣∣∣
N−i∑

j=M+1

U0(j)cN
j

∣∣∣∣
L1(0,T )

,

∣∣∣∣
N−i∑

j=M+1

φi,jc
N
i cN

j

∣∣∣∣
L1(0,T )

� C(i, T ) sup
j�M

j

U0(j)
. (4.12)

Similarly, (4.3), (2.3) and (4.6) yield
∣∣∣∣

∞∑
j=M+1

φi,jcicj

∣∣∣∣
L1(0,T )

� C(i, T ) sup
j�M

j

U0(j)
. (4.13)

Combining (4.11)–(4.13) we obtain

lim sup
N→+∞

∣∣∣∣
N−i∑
j=1

φi,jc
N
i cN

j −
∞∑

j=1

φi,jcicj

∣∣∣∣
L1(0,T )

� C(i, T ) sup
j�M

j

U0(j)

for every M � 2. Recalling that U0 belongs to K1,∞, we see that the right-hand side of
the above inequality converges to zero as M → +∞, hence (4.9).

We next turn to the proof of (4.10). Consider i � 1 and ε ∈ (0, 1). As U0 ∈ K1,∞ there
is M � i such that

j � M =⇒
(

U0(j)
j

− U0(i)
i

)
� 1

ε
. (4.14)

For N � M we infer from (4.5), (4.7) and (4.14) that

∫ T

0

N∑
j=M+1

ajbj,ic
N
j (s) ds � εC(T ), (4.15)

∫ T

0

∞∑
j=M+1

ajbj,icj(s) ds � εC(T ). (4.16)

It also follows from (4.2), (3.3), (4.3) and the Lebesgue-dominated convergence theorem
that

lim
N→+∞

∣∣∣∣
M∑

j=i+1

ajbj,ic
N
j −

M∑
j=i+1

ajbj,icj

∣∣∣∣
L1(0,T )

= 0. (4.17)
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Consequently, by (4.15)–(4.17) we have

lim sup
N→+∞

∣∣∣∣
N∑

j=i+1

ajbj,ic
N
j −

∞∑
j=i+1

ajbj,icj

∣∣∣∣
L1(0,T )

� ε,

hence (4.10) after letting ε → 0.
Due to (4.2), (3.3), (4.3), (4.9) and (4.10) it is now straightforward to check that ci

satisfies Definition 2.2 (ii) for each i � 1. Recalling (4.8), the continuity of ci then follows
and we have thus shown that c = (ci) is a solution to (2.1), (2.2) on [0, +∞). In order
to complete the proof of Theorem 2.3 it remains to check (2.6). Let t ∈ (0, +∞). For
N � M � 3 we have by (3.3) that

|‖c(t)‖X − ‖c0‖X | �
M∑
i=1

i|cN
i (t) − ci(t)| +

∞∑
i=N+1

ic0
i +

N∑
i=M+1

icN
i (t) +

∞∑
i=M+1

ici(t).

It then follows from (4.4) and (4.6) that

|‖c(t)‖X − ‖c0‖X | �
M∑
i=1

i|cN
i (t) − ci(t)| +

∞∑
i=N+1

ic0
i + C(T ) sup

i�M

i

U0(i)
.

Since c0 ∈ X+, we first deduce from (4.2) that

|‖c(t)‖X − ‖c0‖X | � C(T ) sup
i�M

i

U0(i)
.

Recalling that U0 ∈ K1,∞, we conclude that ‖c(t)‖X = ‖c0‖X , and the proof of Theo-
rem 2.3 is complete. �

Proof of Theorem 2.5. We only need to show that the solution we constructed in
the proof of Theorem 2.3 enjoys the additional property (2.11). But, as U ∈ K1 ∪ K2,
(2.11) follows at once from Proposition 3.3 and (4.2). �

5. Uniqueness

We end this paper with a partial uniqueness result inspired by [1, Theorem 4.2]. A
different approach to uniqueness may be found in [20] in the pure coagulation case
(ai ≡ 0).

Proposition 5.1. Consider c0 ∈ X+, T ∈ (0, +∞) and assume that the rate coef-
ficients (φi,j), (ai) and (bi,j) satisfy the assumptions (2.3)–(2.5). Assume further that
there are a sequence (ϕi)i�1 of non-negative real numbers and κ > 0 such that

ϕi � κi and φi,j � ϕi + ϕj , i, j � 1. (5.1)

Then there is at most one solution c to (2.1), (2.2) on [0, T ) such that

‖c(t)‖X = ‖c0‖X and
∞∑

i=1

iϕici ∈ L1(0, t) for each t ∈ (0, T ). (5.2)
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Combining Proposition 5.1 and Theorem 2.5 we obtain the following result.

Corollary 5.2. Consider c0 ∈ X+ and assume that the rate coefficients (φi,j), (ai)
and (bi,j) satisfy the assumptions (2.3)–(2.5). Assume further that there are α ∈ [0, 1]
and Kα > 0 such that

∞∑
i=1

i1+αc0
i < ∞ and φi,j � Kα(iα + jα), i, j � 1. (5.3)

Then there is one and only one solution c to (2.1), (2.2) on [0, +∞) satisfying (2.6) and,
for each T ∈ (0, +∞),

sup
t∈[0,T ]

∞∑
i=1

i1+αci(t) < ∞. (5.4)

For the discrete coagulation–fragmentation equations (1.1), (1.2), the above result has
been obtained in [1, Theorem 4.2] for α = 0.

Proof. As r �→ r1+α belongs to K1, the existence of a solution to (2.1), (2.2) on
[0, +∞) satisfying (2.6) and (5.4) follows from Theorem 2.5. The uniqueness of such a
solution is then a consequence of Proposition 5.1 with ϕi = Kαiα after noting that (5.4)
entails (5.2). �

The first step towards the proof of Proposition 5.1 is the following lemma.

Lemma 5.3. Under the assumptions of Proposition 5.1 any solution c to (2.1), (2.2)
on [0, T ) satisfying (5.2) also satisfies, for t ∈ (0, T ),

lim
N→+∞

∫ t

0

∞∑
i=N+1

( N∑
j=1

jbi,j

)
aici(s) ds = 0, (5.5)

lim
N→+∞

∫ t

0

N∑
i=1

∞∑
j=N+1−i

iφi,jci(s)cj(s) ds = 0. (5.6)

Proof. Fix t ∈ (0, T ). By (5.1) we have

iφi,jci(s)cj(s) � iϕici(s)cj(s) + ici(s)ϕjcj(s)

for s ∈ (0, t), and we easily deduce from (5.2) that (5.6) holds true.
Proceeding next as in [1, Lemma 3.1], we infer from (2.1) that, for N � 2,

N∑
i=1

ici(t) =
N∑

i=1

ic0
i +

∫ t

0

∞∑
i=N+1

( N∑
j=1

jbi,j

)
aici(s) ds −

∫ t

0

N∑
i=1

∞∑
j=N+1−i

iφi,jci(s)cj(s) ds.

As c is a density-conserving solution by (5.2), we may let N → +∞ in the above identity
to obtain

lim
N→+∞

∫ t

0

( ∞∑
i=N+1

( N∑
j=1

jbi,j

)
aici(s) −

N∑
i=1

∞∑
j=N+1−i

iφi,jci(s)cj(s)
)

ds = 0.

Combining (5.6) and the above identity yield (5.5). �
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Proof of Proposition 5.1. We only sketch the proof below as it follows the lines of
the proof of [1, Theorem 4.2]. Consider two solutions c = (ci)i�1 and ĉ = (ĉi)i�1 to (2.1),
(2.2) on [0, T ) satisfying (5.2). For i � 1 we put

zi = ci − ĉi and gi = i sign(zi),

where sign(r) = r/|r| if r ∈ R\{0} and sign(0) = 0. Fix N � 2 and t ∈ (0, T ). Proceeding
as in [1, Theorem 4.2] we infer from (2.1) that

N∑
i=1

i|zi(t)| = 1
2

∫ t

0

N−1∑
i=1

N−i∑
j=1

(gi+j − gi − gj)φi,j(cizj + ĉjzi) ds

−
∫ t

0

N∑
i=2

(
gi −

i−1∑
j=1

gjbi,j

)
aizi ds −

∫ t

0

N∑
i=1

∞∑
j=N+1−i

giφi,j(cicj − ĉiĉj) ds

+
∫ t

0

∞∑
i=N+1

( N∑
j=1

gjbi,j

)
aizi ds.

Since | sign(r)| � 1 for any r ∈ R we have

(gi+j − gi − gj)zj = ((i + j) sign(zi+jzj) − i sign(zizj) − j)|zj |,
(gi+j − gi − gj)zj � 2i|zj |. (5.7)

We next deduce from (2.5) that

(
gi −

i−1∑
j=1

gjbi,j

)
zi =

(
i −

i−1∑
j=1

j sign(zizj)bi,j

)
|zi| � 0. (5.8)

We now infer from (5.1), (5.7) and (5.8) that

N∑
i=1

i|zi(t)| � (1 + κ)
∫ t

0

( N∑
i=1

iϕi(ci + ĉi)
)( N∑

j=1

j|zj |
)

ds

+
∫ t

0

N∑
i=1

∞∑
j=N+1−i

iφi,j(cicj + ĉiĉj) ds

+
∫ t

0

∞∑
i=N+1

( N∑
j=1

jbi,j

)
ai(ci + ĉi) ds.

According to (5.2) and Lemma 5.3 we may pass to the limit as N → +∞ in the above
inequality and obtain

∞∑
i=1

i|zi(t)| � (1 + κ)
∫ t

0

( ∞∑
i=1

iϕi(ci + ĉi)
)( ∞∑

j=1

j|zj |
)

ds.
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Thanks to (5.2) we may use the Gronwall lemma to conclude that

∞∑
i=1

i|zi(t)| = 0, t ∈ [0, T ),

hence c ≡ ĉ. �
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21. M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und
Koagulation von Kolloidteilchen, Physik. Z. 17 (1916), 557–599.

22. M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kol-
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