Chapter 15

Dynamics and dynamic
networks

Some networks, many in fact, vary with time. They may grow in size, gaining nodes
and links. Or they may shrink, losing links and becoming sparser over time. Sitting
behind many networks are drivers that change the structure, predictably or not, leading
to dynamic networks that exhibit all manner of changes. The focus of this chapter is
describing and quantifying such dynamic networks, recognizing the challenges that
dynamics bring and finding ways to address those challenges. Dynamic network data
brings along practical issues as well, and we discuss working with date and time data
and file formats.

15.1 Dynamic networks and dynamics on networks

Let’s distinguish two sources of dynamics. The first, which plays a role in network
analysis but is not our focus here (we discuss it shortly), considers dynamical processes
that run on the network topology. Imagine, for example, assigning a time-dependent
variable x; (¢) to each node i in the network. This variable tracks a dynamical process
across the network where the neighbors of i play a role in how x; changes. That is,
x;(t + 1) is a function not only of x;(¢) but also, among other things, x;(¢), for each
node j which is a neighbor of i. The network structure affects the dynamics of x by
dint of the neighborhoods. Examples of such dynamics mediated by a network structure
include the Kuramoto model [2], voter model [438], and many other models that fall
in the class of interacting particle systems [274, 275] and, more generally, dynamical
systems [375].

The second source of dynamics is that of the network structure itself. Here the
graph representing the network changes with time: G (¢) = (V(¢), E(t)), meaning the
node and edge sets are both time-dependent or indexed in time.! Nodes can appear

! Note that time can be discrete or continuous. For the discrete case, time increments in steps, with each
timestep # = 1,2, ... . This makes it easy to consider changes to the network. Continuous time, where ¢ is
now real-valued instead of integer-valued, is more challenging, as now we need to consider mathematically
an uncountable index set.
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or disappear, as can edges. Evolving network structures and organizing patterns can
then manifest: triangles and other motifs can emerge and disintegrate, communities can
appear, growing or shrinking over time. The overall density of the network may vary,
perhaps periodically, or not.

Q A dynamic network is also called a temporal network.

Many questions arise due to the network’s dynamics:

1. Does the network change slowly over time, or drastically? Can we predict what
the network will look like in the future, or is its evolution too chaotic?

2. What kinds of changes occur? Are changes due to changes in the node set or the
edge set? Both?

3. Do many nodes appear, leading to a growing network? Do nodes disappear, lead-
ing to a shrinking network? Are nodes exclusively added over time, exclusively
removed, or do both occur together?

4. How do edges changes? Do edges appear or disappear? Both? Do new edges tend
to form between existing nodes? Perhaps the node set is static in time and only
the edges between those nodes change?

5. How best to quantify or represent the network dynamics? Is it meaningful to
simplify the dynamic network with a static network?

6. Can we use information from the dynamics of the network structure to better
understand the network?

15.2 Representations

The first challenge with a dynamic network structure is how to represent it. The two
most common and complementary approaches are edge-event sequences (event repre-
sentation) and network snapshots (snapshot representation). A third, the signals repre-
sentation, appears when time series are available for nodes but the network structure is
absent and needs to be inferred.

15.2.1 Event representation

Here we treat the network as a sequence of edge events, where each edge event is a
tuple (u, v, t, At). (We assume At > 0.) This tuple tells us that edge (u, v) appeared at
time ¢ and disappeared at time ¢ + At (which may be the end of our data window if the
edge never disappeared). The full dynamics of the network comes from a sequence of
the form

events = {(Mi,vi,li,Ali),iZ 1,2,...}. (15.1)
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Of course, this is quite general. We may be studying data where duration is fixed across
all events, for example, in which case we can omit Az. A useful bookkeeping device is
to decompose the full set of events (Eq. (15.1)) by edge or by node:

events,, = [(t;, At;) | (u,v,t;, At;) € events],

(15.2)
events, = [(#;, At;) | (u,v;, t;, At;) € events] .

(We use [-] to denote these as sequences, not sets, ordered in time.)

An equivalent way to consider the event representation is to define a network G
containing every edge that appears in at least one event, then define an edge attribute
that lists all the time periods (¢, At) when that edge occurred. The length of this attribute
can vary from edge to edge, as some edges may appear in more events than others.

15.2.2 Snapshot representation

Another way to treat the dynamics of the network is to divide time into specific pe-
riods, sometimes called windows (see also Sec. 10.5.4), and aggregate all the edge
events in a given period into a single network. This gives us a sequence of networks
G(T1),G(T»), ... for periods Ty, T, . . . . We call these snapshots or snapshot networks.
This representation can be derived from an event sequence by taking all the nodes and
edges that occur during? a time period,

V(T) = U{Mi,vi},
€T (15.3)
E(T) ={(u;,v;) | t; €T},

and constructing a corresponding network G (T') = (V(T), E(T)). (Here E(T) uses the
set notation we describe in Ch. 4.)

A word of caution. To properly include nodes and links in the snapshot networks,
you need to ensure that the period when a given node or link is present in the network
intersects with the time period of the snapshot:

Account for event duration when building snapshots. An event i that begins at time
t; and lasts until time #; + Az; may be present in more than one snapshot depending
on the duration Az;. This can be lost if only using #; from Eq. (15.1) to define the
snapshot graphs.

While this sounds obvious, care may be needed. For example, it is naive to assume that a
node or link is present in the window if the earliest time a node or link appears is before
the time window and the latest time a node or link appears is after the time window—a
node or link may be present for multiple periods before and after the window but not
during it.

The sequence G(T1), G(T3), . . . invites us to consider a sequence of corresponding
adjacency matrices A(77),A(T>), ... where A;;(¢) = 1 if i and j are neighbors at time

2 We use the notation #; € T to denote this, but a more proper notation would consider the intersection of
the interval [#;, t; + At; | with the interval T'.
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t and zero otherwise, or even an adjacency “tensor” A;;; where a third index has been
added to capture time. And we could also consider the sequence as a single multilayer
network, where each layer represents one period. While fundamentally the same, such
different viewpoints on the network can help with different problems.

Of course, dividing the network into snapshots raises an important question: how
to define the periods T}, 7>, .. .? Sometimes it may be obvious. In a social network, it
may make sense to have one snapshot per day, or perhaps one snapshot per week. In
a financial network, perhaps business quarters would justify four snapshots per year.
In other data it may not be so clear, perhaps there are no obvious cycles to base your
snapshots on.3 One choice in this situation would be to base snapshots on the data: for
example, define a fixed number of events n and then choose periods such that each period
contains n events. Fundamentally, what has occurred is that the snapshot representation
returns us to the upstream task (Ch. 7), and with a dynamic network we should take the
same care with our snapshots as we did when extracting a static network.

15.2.3 Signals representation

Yet another way to consider a dynamic network is from a multivariate time series,
or a set of N time series, one per node. This sounds like the dynamics on networks
discussed above where each node i has an associated time-varying quantity x; (¢), but
it differs in that we do not know the network—we only know the time series. The most
common example is in neuroscience, where functional imaging data gives us activity
levels for different regions of the brain but nothing on how those regions are connected.
From the time series, we can devise an N X N similarity matrix, using a measure
such as correlation between every pair of time series. We can extract a static network
from this matrix, as we discussed in Sec. 10.5, but we can also in principle extract a
time-dependent network.

A snapshot representation can be extracted fairly easily: divide the time series into
snapshot periods, compute a similarity matrix for each period, and extract a static
network from each similarity matrix. When doing so we may want to use overlapping
snapshots, creating a sliding-window effect, that may be more robust. Many other
approaches exist, utilizing ideas from statistical inference and signal processing. See
Dong et al. [133] and Masuda and Lambiotte [297] for overviews.

15.2.4 From dynamic to static

Often a dynamic network is too much to bear, and you may find yourself wishing to
have a static network. Maybe you want to apply a particular data processing algorithm
which only works for a static network. Or you’d rather begin with something simple
and easy to work with before investigating the dynamics. Or you may simply be limited
in capacity, with a computer that cannot handle the full dynamic network (this is

3 Even in more clear situations, you may need to consider less obvious possibilities. For example, a
social network that describes a workplace, such as an office building or factory, may need to be divided into
snapshots based on work shifts, not work days. Likewise, you may want to make two snapshots for each week,
separating weekdays and weekends. This choice leads to snapshots of varying durations, something to keep
in mind.
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increasingly less of an issue as computers improve in memory capacity and computing
power, but networks can get big). Keep in mind that information is necessarily lost when
neglecting the dynamics, and you will need to judge whether a static representation is
either appropriate or sufficient for your research—it may be neither.

Probably the simplest way to generate a static network from a dynamic one is
to simply take the cumulative network by accumulating all nodes and links.# This
cumulative network is defined such that every node and edge that ever appeared in the
dynamic network is present in the static network. This accumulation may be fine for
simple networks that change slightly, but it has significant potential downsides too. For
instance, paths may exist in the static network that are impossible in reality, as the edges
of those paths were never present simultaneously.

Significant information can be lost in this accumulation as well. An edge that
appeared and disappeared many times and an edge that appeared only once are on equal
footing in the cumulative network. One obvious way to address this is with weights:
assign to each link in the static network a weight counting how many times the link
appeared (how many events) over the course of the data or, if appropriate, the total
duration of time (3 Ar) the link was present. When extracting this static network, it
may need further processing. For example, many rare edges may occur. Consider using
a thinning technique such as backbone extraction (Ch. 10). Many such techniques exist
tailored specifically to dynamic networks.

15.3 Quantifying dynamic networks

Many network statistics discussed in previous chapters can be applied to dynamic
networks. But many also need to be modified because they are either ill-suited or
entirely ill-defined for dynamic networks. On top of that, we also have information on
event times, which we may wish to quantify. Let’s discuss some examples:

Degree We can count node degree several ways. First, we can take node i’s degree
to be the number of unique nodes j # i that have at least one event with i:
ki = |{Jj | i, j € events}|. But we may want to define a weighted sum to count for
how often j is a neighbor of i. This can distinguish a node with many fleeting
neighbors from one with many long-term neighbors.

We may also want to consider the time-dependent degree k;(¢) by counting the
number of neighbors of i during some time period denoted 7. If we aggregate
the events into network snapshots, we can take the degree of the node in each
snapshot, essentially defining the degree as the number of edges connecting the
node that activate at least once during a snapshot period. One issue here is if
we are looking at many snapshots, or otherwise aggregating over small time
periods, k; may be small or even zero most of the time. A solution is to define a
time-weighted average degree, like a rolling mean of degree, across snapshots.

4 This is equivalent to the snapshot representation with a single snapshot covering all events; see the upper
left of Fig. 10.1 for an example.
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Clustering Clustering considers triangles, and now we need to consider not just
whether nodes a, b, ¢ form a triangle but whether they do so at the same point in
time, a concept known as temporal coherence. To define the clustering coefficient
for a node, we need to consider every time period where a two-path exists with
that node in the center, and then ask if and for how long during that period do
the three nodes form a cycle. Let 7, be the set of all time periods where edge
u, v exists, which can be computed from Eq. (15.1). Then the temporal clustering
coefficient [263] of a node u is

Z |TMV1 ﬁ Tuv2 m TV1V2|

V1 <V2;Vi, W #U

Z |TMV1 n TMV2|

Vi<V2iVi, M FU

Cu) = , (15.4)

where the sums run over every pair of nodes v, v, such that neither node is # and
not separately counting both vy, v, and v, v{. From this we can define a measure
like transitivity or an average of C over the nodes.>

Paths Temporal versions of shortest paths and related quantities such as betweenness
can be defined by accounting for the time-ordered existences of edges as we
move along a particular path. One subtlety is that paths in the cumulative (one-
snapshot) network always over-count the number of temporally valid paths. In the
cumulative network, we assume all the edges on a path exist simultaneously, but
this may not be and often isn’t true. A path between nodes i and j is temporally
valid over a period T if we can start at node i during ¢ € T and follow edges from
i to j forward in time such that those edges exist at the times we need to move
on them. We call such paths temporal paths and we say i and j are temporally
connected or that j is reachable from i if a temporal path exists from i to j. (Note
that, even for undirected networks, temporally valid paths are not necessarily
symmetric, we may be able to reach j from i during 7 but not vice versa.) We can
define the temporal path length as the number of edges traversed or, sometimes,
the total duration ¢; — ¢;, where ¢, is the earliest time we could arrive at node j
if we leave node i at time ;. Shortest path lengths are usually defined based on
such “travel times”; several definitions exist [297].

Finding temporal paths allows us to define temporal connected components. The
temporal component of i is the largest set of reachable nodes j. This gets com-
plicated quickly, as reachability is not only not symmetric but also not transitive:
Just because we can reach node v, from v and we can reach v3 from v, does not
necessarily mean we can reach v3 from v . It may be that the path between v, and
v3 occurs before the path between v| and v,. By the time we reach v, from vy,
the path onward to v3 is gone. These effects make connected components more
complicated in temporal networks—for example, a node can belong to multiple
connected components at the same time!® And finding temporal components

5 For an average clustering, we recommend taking an average of C (1) weighted by how often u is present
in the network, which can again be calculated from Eq. (15.1). Doing so ensures the contribution of u to the
average depends on how often u is present in the network.

6 See how difficult temporal networks are? We can understand the appeal of ignoring time!
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becomes computationally challenging. Unlike in a static network where BFS can
find a connected component in O (M) time, finding all temporal components is
known to be an NP-complete problem [297].

Centralities Temporal paths allow us to adapt betweenness centrality (Eqs. (12.23)
and (12.24)) and closeness centrality (Eq. (12.22)). Another measure, femporal
efficiency, similar to closeness centrality, is

ho Lo 1
eff(i) = —— ; W (15.5)

where £(i, j) is, for example, the shortest (or fastest) path length observed at any
time. Efficiency is sometimes used in place of closeness centrality as it is less
biased by disconnected nodes (which appear more often in temporal than static
networks) [297].

Many other temporal centralities can be used, including time-dependent eigen-
vector centralities. One interesting approach is to build a “supra”’-matrix that
aggregates all the N x N matrices (such as A(¢)) from the snapshots into one
larger matrix. The aggregation process can also be interpreted as a multilayer
network and spectral properties of the supra-matrix can be used for centralities
and ranking. See Taylor et al. [454] and Masuda and Lambiotte [297] for more
details.

Communities Communities are especially interesting in dynamic networks. Just as
the events lead to evolving sets of nodes and edges, a dynamic network can
have communities that grow, shrink, appear or disappear. Different communities
can merge into one, and one community can split in two or more. A temporal
community detection method should not only find communities but connect
together related communities based on their changes, even building an “ancestry
structure” relating “parent” and ‘““child” communities.

Methods to find dynamic communities involve adjusting modularity (Eq. (12.15))
to account for time or by using a multilayer representation aggregating the snap-
shots. We can also treat the snapshots as separate networks, find the communities
in each, and use a “matching” algorithm to find which communities in snap-
shot T are closest to which communities in snapshot 7,_;. Other approaches
include extending matrix factorization to tensor factorization, and applying it
to the adjacency tensor with elements A;j;, or extending the stochastic block
model to temporal networks and performing inference of block membership. For
a detailed overview of such methods, see Masuda and Lambiotte [297].

15.3.1 Change measures and change detection

With network statistics, even simple ones like degree, now being time-dependent, we
may want to explore such measures as time series. For example, what does k;(¢) look
like over time? In effect, this question points us to a time series exploratory data analysis
(Ch. 11), where we look at the networks and their structural measures (Ch. 12) over
time.
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Further, suppose the network is relatively static until some particular time 7 when
it suddenly changes. Can we detect this changepoint from our data? If the network
suddenly became very dense, this would be evident in a sudden increase in k(t), but
what about other structural changes? For those we may wish to use a network comparison
measure (Ch. 14) and compare adjacent snapshots.

Changepoint detection—and the related question of anomaly detection—is often
formulated as a statistical inference problem. The strategy is to build a statistical model
whose parameters 6 depend on a “switchpoint™: 6(z) = 0 if t < 7,6, if t > 7. We can
then perform a hypothesis test on whether 8; # 6, or we can build a Bayesian model
and look at the posterior distributions for 6; and 6, (the posterior of 7 even tells us
when the change occurs). Masuda and Lambiotte [297] discuss network changepoint
detection in more detail.

15.3.2 Time-dependent attributes—dynamics on networks

For the most part, we are focusing on networks that are themselves dynamic, the nodes
and edges change. But we can also consider dynamics on top of a network. Consider
a dynamical process x; () associated each node i that evolves in time. Often this is
something network scientists consider as a mathematical model; x(z) could come from
a simulated epidemic running over the network, for example. But we could also have
data for such a process. How best to consider it?

For a static network, we recommend considering x(¢) as a node attribute (Ch. 9)
that varies with time. We can treat each node’s x; () separately, and quantify it using
any time series or other appropriate statistics. We can also compare between nodes
x;(¢) and x;(t). We can make this comparison at specific times or across time using
any manner of summary statistics and comparison measures, such as the correlation
coefficient between x; and x;. If we focus on nodes that are adjacent, we arrive at an
assortativity measure (Sec. 12.5). We can either measure the correlation between x; and
x; at each time ¢, giving a time-dependent assortativity across edges, or we can devise
a time-independent similarity between x; and x; using all times and then incorporate
that similarity into an assortativity.

An especially interesting, but also challenging, situation is when we have both
dynamics on networks and dynamics of the network. Now we need to understand how
x(t) evolves in time on a network that is itself dynamic, no mean feat.

15.4 Null models

Chapter 11 describes ways to understand a static network structure by comparing it to
null models, often randomizing the original network while preserving its degree using
monte carlo (the edge exchange method) or by building a new network from scratch
using the degrees of the original network (the configuration model). Such methods are
applicable to dynamic networks as well, but we can do even better by accounting for
the temporality of the network in our null.

If we suspect time plays an important role in our network, a temporal null model,
chosen appropriately, can dampen or remove the effects of time through randomization.
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Considering the event representation, we can randomize events across links or random-

ize the order events occur on links. And while doing so we may wish to preserve various

quantities, such as the number of events on a given link or the time between events.
Some possible null models:

Random times A simple randomization is to distribute the same number of events but
uniformly at random over the full time span of the network, call it the interval
[0, tmax | or, if we wish to preserve the times when edge u, v exists, the interval
[min (events,, ) , max (events,, )]. This preserves the number of events, and the
time span of the events but otherwise breaks all other statistics. For one, the
distribution of interevent times, or waiting time between events, is not the same.”

Interevent shuffle Here we explicitly control for the times between events by shuffling
the interevent times. If we think of the time span of the edge, [min (events,, ),
max (events,, )], as being divided up by the events into time segments that add
up to the full time span, we simply shuffle those segments. Now the interevent
times are fixed, but when those interevent times begin and end is random. Note
that doing this requires fixing the first and last interevent time, which preserves
the first two and last two events. If there are four or fewer events, you won’t be
able to carry out this shuffle.

Across-edge shuffle Here we preserve when events occur but randomize which edge
they belong to. One way to do this is to build two lists from the events, a list of
edges and a list of times, randomly permute the list of times, then put the list of
edges and times back together to create a random events list:

eventSyyy = {(Mi,vi,l‘o—(i),Ato-([)),i =1,2,.. } R (15.6)

where o (7) in the subscript of ¢ represents a random permutation across all event
indexesi=1,2,....

Edge exchange The temporal analog of edge exchange, here we exchange the endpoints
of edge pairs in the sequence of events, and randomly distribute the original edges’
events between the new edges.

Complicating matters further, we can also apply multiple randomizations one after
the other, testing even more the role of temporality by destroying it further in our null.
In fact, a broader mathematical framework classifying these and other temporal nulls
as different levels of a graph ensemble (Ch. 22) was recently proposed [175].

What about snapshots? While we’ve discussed null models in terms of the event
representation, where it’s generally easier to envision the nulls, the same procedures can
be applied to the snapshots by first randomizing the events, aggregating them into the
snapshots Gy (T1), Gpun(72), - - - and then proceeding with further analysis. Depending

7 In fact, this randomization turns the event sequence into a Poisson process, where events occur at random
and without memory, meaning the probability for a new event to happen does not change given when previous
events happened.
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on what the null preserved, we can even compare the real and random snapshots on a
per-period basis (G(T) vs. Gy (7)) using some techniques outlined in Ch. 14. That
said, if you only have the snapshot networks and not the event times, you can still
randomize the G (T') individually but information such as interevent times will not be
available, so not every null model can be used.

15.5 Visualization

15.5.1 Dynamic and static network visualization

Visualization can show how a dynamic network changes. One option is to create an
animation (Sec. 13.2.3), drawing the network and then changing the drawing as the
network changes, but animated visualizations are limited to certain contexts such as
webpages or slideshows. A static network visualization can still be used on dynamic
networks in a few ways. One is to build a larger network that contains one or more
snapshots and visualize those. One can draw several network snapshots next to one
another, with common node positions across time—essentially, treating time as the
layers in a multilayer network and drawing a prism plot (Sec. 13.2.3). This may work
well for a small network but a viewer may struggle to scan across snapshots if the
network is too large.

Another way to incorporate temporal information into a static visualization is by
mapping time-related quantities to graphical attributes. For example, node color can be
used to represent age, the time when the node first appeared in the network, with, say,
blue nodes being very young, and red nodes being old. Link age can also be mapped
likewise. We can even combine these ideas with the previous approach by visualizing
multiple snapshots using graphics for various temporal attributes. Some creativity can
go a long way.

Consider using node and link attributes based on temporal quantities in a static
visualization of a dynamic network.

As you can imagine, however, it’s easy to overdo it. Static visualizations can struggle
when too much is happening. The network could be very large, or change very quickly,
or have lots of different changes occurring simultaneously—it can be hard to capture
when nodes or edges are removed as well as added. As with most visualizations, we
have to fight against overloading the graphics and rendering them unreadable.

One possibility to overcome this is to tailor a changepoint visualization. Pick two
time periods® and look at the difference in the networks. How many nodes exist in the
first period but not the second? How many nodes exist in the second period but not
the first? How many were in both? Then draw the network as the union of the network
structure in the two periods, showing all nodes, including those that were born and
those that died. Pick some visual attributes to map the node status (born, died, survived,
etc.). From the visuals® we can then see how much change may have occurred and

8 It may be possible to extend this beyond two periods but comparison becomes difficult and it may be too
hard for the viewer to interpret the final product. Care is needed when balancing complexity and readability.
9 And visuals can and often should be complemented with quantitative analysis.
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if that change followed a pattern. Perhaps neighbors of newly created nodes tend to
die, indicating a spreading process or at least some network association between the
addition and removal of nodes. Perhaps nodes that survive the longest tend to be high
degree, or low. By focusing not necessarily on the full dynamics, but on one point, we
can narrow the complexity of the visualization and tailor it for what is (hopefully) the
most important moment in the network’s dynamics.

As with the snapshot representation itself, the key to this changepoint visualization
is determining the two time periods. As a researcher you may have a specific hypothesis
in mind that can clue you into which periods to look at. But otherwise you may wish
to do some exploration first. For example, vary the duration of the two periods and
slide them along your data window. As you do, examine a network property such as the
density of the network in the two periods or how much the networks differ. Changepoint
detection can also help you find the best snapshots to use. Network differences can be
measured by looking at similarities in nodes and edges; see also Ch. 14 on comparing
networks. See Ch. 10 for techniques specific to windowing data.

15.5.2 Other visualizations

Beyond creating node and edge attributes related to time and generating a static network
visualization, non-network visualizations are also often helpful. Any kind of time series
visualization may be appropriate, especially if working with the signals representation.
Most network statistics are now time-dependent, so even basic plots of (k), number
of nodes or edges, and more as functions of time may be helpful. Visualizing the dis-
tribution of Ar may be useful, or even the number of events over time. Some more
involved visualizations can help certain analyses. For instance, if you have found tem-
poral communities, then an “alluvial” diagram (also called a Sankey diagram), showing
the communities as flows, can highlight their sizes over time.

Space-time matrices We have found one uncommon non-network visualization to
be quite helpful, which we call, somewhat humorously, the space-time matrix. For a
dynamic network consisting of Tj,x snapshots, G(1), G(2),...,G(Tnax), let M and N
be the numbers of edges and nodes that appear in at least one snapshot:

M=

max E (t) ’

Tm““V(t)‘ (15.7)

The space-time edge matrix E is an M X Tjy,x matrix with one row per edge and one
column per snapshot. Likewise, the space-time node matrix N is the N X Tjp,x matrix
with one row per node and one column per snapshot. The entries E.7 and N, of these
matrices equal the number of events involving edge e or node v, respectively, during
snapshot period 7"

E.r = |{eventsuv | t; €T, (M, V) = e}l >

15.8
Nyr = |{events, | t; € T}|. (15.8)

In other words, the matrices tell us how much activity is happening across the elements
of the network over different time periods.
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We fi nd plotting these matrices, especiallyE, to be fascinating. Let’s look at them
* for the Malawi Sociometer Network, a temporal focal network.

This undirected network came from contact observations between participants wear-
ing sociometers, small sensors that detect and record when they are in proximity with
other sensors. Some data filtering was performed by Ozella et al. [353] after data collec-
tion and we are left with observations of edge events at At = 20s over a 14-day period.
These data follow the form of Eq. (15.1) without At readings. For the most part, until
now, when working with this network, we have reduced it to a static, weighted network
by creating a snapshot representation with a single period. But now, let’s explore its
temporality.

‘We construct daily snapshots and proceed to build E and N. Looping over the edge
events per snapshot, we count the number of events involving edge u,v and node u,
populating the entries of E and N. We order the rows of these matrices by the fi rst
appearance times of the corresponding edges and nodes: min (events,, ) for edge u, v
and min (events, ) for node u so the fi rst edge that appears is the fi rst row ofE, the
second edge that appears is the second row, and so forth (and likewise for N). We
similarly order the columns of E and N by snapshot period (day). Figure 15.1 shows the
fi nal matrices.

Information about the network immediately jumps out at us in Fig. 15.1. We see that
about one-third of edges, all appearing on day 1, often frequently reappear throughout
the remaining snapshots. The remaining two-thirds of edges, meanwhile, which tend to

Edges
Nodes

* Figure 15.1 “Space-time” matrices for the Malawi Sociometer Network. Note that we have
binarized the matrices into zero and nonzero entries, for ease of printing. A bit more information
is available using a color scale for the matrix element values, but even the binarized view is very
informative.
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appear after day 1, tend not to reoccur on later days. In other words, E clearly shows a
kind of temporally “unrolled” core—periphery structure. Fascinating!

Figure 15.1 also shows N. The view we see is less exciting, but still important.
Most nodes appear immediately on day 1 and persist, appearing in most subsequent
snapshots. This tells us that the fleeting edges in E generally lie between preexisting
nodes; if N showed a pattern like that in E, the network would be growing over time.

Of course, this view doesn’t capture all possible temporal information, how could
it? For one, among the two-thirds of fleeting (peripheral) edges, it is not obvious which
nodes they connect to just from the matrix. This could be investigated. In general, we
should expect many other patterns to appear in these data. Visualizations and quantitative
analyses using some of the techniques described in this and other chapters, can extract
such information. 10

15.6 Further considerations

Some practical details specific to dynamic networks and their data warrant further
discussion.

15.6.1 Storing dynamic network data

Many data formats can store a dynamic network (see also Ch. 8). We recommend a
simple format, a temporal edge list. Each line of a temporal edge list takes the form

node <coldelim> node <coldelim> timestamp <rowdelim>

where <coldelim>, usually a comma or tab character, separates columns, <rowdelim>,
usually a newline, separates rows, and timestamp indicates when the link occurred.

When links exist over durations we recommend using a start timestamp and either
a stop timestamp to indicate the duration, or the duration itself. (Links that appear and
disappear multiple times would have multiple rows in the file, with an associated start,
stop duration for each appearance.) This is equivalent to recording Eq. (15.1).

Notice in this representation that augmenting the edge list with time information
maps nicely to the edge attributes! discussed in Ch. 9. Essentially, time is another
source of edge attributes with which we can describe the network.

15.6.2 Times and timestamps

Working with network data requires working with underlying data, and that often
includes times and timestamps. Time data are no fun to deal with. How can you tell in
a computer code that “12 Dec 2012, “December 12th, 2012,” and “12/12/12” are all
the same date? How can you deal with time zones? Daylight saving time?
Timestamps, written recordings of dates and times, usually take one of two forms.
The first, epoch-based, defines an “epoch” reference time and a unit of duration, then
each time becomes a count of how many time units since the epoch. The UNIX “Epoch”

10 Interested? We apply a statistical model, the edge observer model, to these data in Ch. 23.
11 Or, more precisely, multi-edge attributes.
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time is one example, measuring the number of seconds that have elapsed since 00:00:00
UTC, 1 January 1970.12 If you see timestamps in your data that are recorded only as
numbers, you probably have an epoch-based timestamp.!® The second form of times-
tamp, language-based, follows natural language records of time, such as the “December
12th, 2012” or “12/12/12” examples we discussed.

An epoch-based timestamp format is easy to deal with computationally once you
know the epoch time and the duration unit. But these two facts are not readily contained
in a list of numbers. Does “34095”” mean 34 thousand seconds or 34 thousand minutes?
Hopefully, from context you can rule out some possibilities, but ideally the data you are
working with properly document these two facts.

A language-based timestamp, on the other hand, is more challenging to work with
computationally, as you need to parse the text of the timestamp into a data structure
used by your code. All modern programming languages come with support for parsing
timestamps and performing operations on dates and times. The challenge really comes
when the language-based timestamps are messy, not following a single written form.
If every timestamp is written in the form “12/12/12” you may be fine (assuming you
know it’s always day first or month first). But when different timestamp formats show
up, which often happens with data produced manually by people or data coming from
different sources, you may need to produce code that handles multiple formats. Some
libraries exist for inferring timestamp formats in an automatic fashion, but it is best not
to rely on them if you can.

If you are producing data with timestamps, we recommend taking a hard stance
and always use the international standard for times and dates, called ISO 8601. This
standard records dates as YYYYMMDD or YYYY-MM-DD using four-digit years and zero-
padded two-digit months and days (example: 2012-12-01), and times as Thhmmss or
Thh:mm:ss using a “T” to denote time and a 24-hour clock (example: T16:20:00).
Dates and times are combined using <date><time> (example: 2012-1201T16:20:00
). Time zones can be included as time offsets from universal time (UTC) (example:
2012-12-01T16:20:00-05:00). While verbose compared to some formats, this standard
is generally the most supported and least ambiguous. It also has the attractive property
that alphabetically sorting timestamps in this format will also sort them chronologically.

15.7 Summary

Dynamic or temporal networks have special circumstances both in how you prepare the
data and in what you do with the generated network. Note also the distinction between
a network whose structure is changing (dynamics of networks) and a network with a
static structure where a dynamic process is running on top of that structure (dynamics
on networks). It can be acceptable to neglect temporality, avoiding much complexity
and nasty issues, but sometimes we have no choice but to confront the mess of time if
we want to truly understand our network.

12 Wonderfully, UNIX time excludes leap seconds. What could possibly go wrong?
13 Assuming they really are timestamps and aren’t confused with elapsed times or durations.
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Steps to deal with temporal networks include quantifying the dynamics or finding
static representations. The former remains a developing field with many approaches but
no broadly accepted standards; the latter is often necessary when you wish to apply a
network analysis method that does not account for temporality.

Many dynamic networks come from time series data and some time series may
require processing natural language date and time information. Use libraries to assist
with this processing as much as possible; when generating your own datestamps and
timestamps, favor the ISO 8601 standard.

Bibliographic remarks
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For those interested in learning more about time series analysis in general, we
recommend Kirchgissner et al. [243], Shumway [430], and, for time series forecasting,
Hyndman and Athanasopoulos [227].

Exercises

15.1 Given two snapshot networks, G(T;) and G(Ty,1) define a simple comparison
measure to quantify how similar they are. (Hint: unlike most of the comparison
measures discussed in Ch. 14, here we can safely assume that nodes are consistent
between the networks.) Briefly describe the intuition behind your comparison,
what it measures and why.

15.2 (Focal network) Devise daily snapshots of the Malawi Sociometer Network
network.
(a) Which snapshot is densest?
(b) Which snapshot changed the most compared to the preceding snapshot?
15.3 (Focal network) Compute the fotal appearance time for each node in the Malawi
Sociometer Network, defined as the elapsed time between the earliest and latest
appearance of that node.
(a) How many nodes are “long-lived” and how many are “short-lived”?
(b) What is the mean and median appearance time for nodes?

(c) What does the distribution of total appearance time look like? Make a
histogram or ECDF and interpret.

(d) Total appearance time may not be the best measure for tracking a node’s
lifetime. What information is lost when using total appearance time and
what may be a better measure?

15.4 (Focal network) Repeat Ex. 15.3 but for the total appearance time of edges
instead of nodes. Compare node and edge quantities.
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15.5 (Focal network) Link prediction I: Divide the Malawi Sociometer Network into
two snapshots, G| and G,, where G| covers the first half of the network’s time
span and G, covers the second. Use the following baseline link prediction rule:
Predict that a link exists in the second snapshot if it existed in the first snapshot;
otherwise, predict it does not exist.

(a) How many predicted links were actually present in G, ? How many predicted
links were absent? How many links not predicted to be in G, were actually
present?

(b) Interpret the “predictability” of the network based on how well or how badly
the baseline link prediction rule works.

15.6 (Focal network) Link prediction II: Divide the Malawi Sociometer Network into
G and G, as in Ex. 15.5.

(a) Use the first snapshot to compute a link prediction scoring function (Sec. 10.6.2).
Apply the scoring function to each pair of nodes.
(b) Use the second snapshot to validate (how?) the scoring function.

(c) Repeat your analysis but with two snapshots, where the first snapshot covers
every day but the last day, and the second snapshot is the last day. How do
your results change compared to the 50/50 split?

Provide a brief write-up describing the details of your work on this exercise.
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