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EMBEDDING A SEMIGROUP OF TRANSFORMATIONS
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Let X be an arbitrary set and 6 a transformation of X. One may use 6 to
induce an associative operation in 3~x, the set of all mappings of X to itself as
follows:

We denote the resulting semigroup by {^x;&) Magill (1967) introduced this
structure and it has been studied by Sullivan and by myself.

Sullivan asks when (3~x;&) can be embedded in (2TX, o), the full transfor-
mation semigroup under composition. He shows that if X is finite this can be
done if and only if 6 is a permutation of X and that any embedding (an isomorphism
perforce) is of the form

where g is a permutation of X. The infinite case is left open. The purpose of
this note is to prove the following.

THEOREM 1. IfX is infinite then any {&~x,6) may be embedded in (^x, °).

PROOF. Let X = XE\J Xo where Xo and Xo are disjoint and of the same
cardinality, necessarily that of X. Select bijections g and h such that

h:X->XE and g:X~*X0.

For a in ^~x we define a<j> as follows

xouj) = xh~1ag (xeXE)

= xg~lQa.g (xeX0).

It is clear that the first part of the definition guarantees that a -> a$ is one to one.
Observe that a</>: X -> Xg = Xo. It follows that for a and /? in 9~x we have that

= a<j)g~19pg. Thus if x is in XE,
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while if x is in A^,

xoufrP4> = xg-l0ag.g~l0pg = xg-^Ofig = (x

It follows that (a * /?)$ = a0/?</>, as required.

The classification of the embeddings of {^~x; 9) in (3~x, °) is extremely
difficult. Partial results have been obtained. We shall describe our most pleasant
result in this direction.

We call a transformation semigroup S £ 3~x irreducible if the set

xS = {xa; txeS}

coincides with X for each x in X. Further, we shall say than an embedding <j)
;9) in (^x,0) is irreducible if 3rx§ is irreducible.

THEOREM 2. Any irreducible embedding of(^~x;6) in (^~x, o) is of the form

<x-+g-l6<xg ( s e ^ j )

for some fixed permutation g of X.

PROOF. Assume (j> is such an embedding and let K = KX denote the constant
function in 3~x with range x. We choose y in the range of K(j> and consider y(K(p)~l.
If z is any member of this latter set then for any a in 3~x

(zCC(f>)K(f> — z(<XK)<f> = ZK(j> = j ; .

This shows that y{K(j>)~1 is invariant under 3~x<j> and hence, by irreducibility,
coincides with X. This shows that <j) maps constants to constants from which
follows

Kx<t> = Kxg (xeX)

where g is an injective transformation of X. But then for each a

K*e*g = (KX * a)<£ = Kx(f>a(f>

which implies Bug — gxcj). Thus Xgoccj) £ Xg, and this is contrary to irreduci-
bility unless g is onto. In this case g permutes X and a</> = g~16ocg, as required.

It is clear that <f> above is an embedding if and only if 8 is onto X. Hence
we have the following:

COROLLARY. It is possible to irreducibly embed (3~x; 9) in (JTX, 0) if and
only if 8 is onto.
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