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HOMOGENEOUS SIEGEL DOMAINS
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In 1935 E. Cartan classified all symmetric bounded domains [6]. At
that time he proved that a bounded symmetric domain is homogeneous
with respect to its group of holomorphic automorphisms. Thus the more
general problem of investigating homogeneous bounded domains arose. It
was known to E. Cartan that all homogeneous bounded domains of di-
mension <3 are symmetric [6]. For domains of higher dimension little
was known. The first example of a 4-dimensional, homogeneous, non-
symmetric bounded domain was provided by I. Piatetsky-Shapiro [41]. In
several papers he investigated homogeneous bounded domains [20], [21],
[41], [42], [43]. One of the main results is that all such domains have
an unbounded realization of a certain type, as a so-called Siegel domain.
But many questions still remained open. Amongst them the question for
the structure and explicit form of the infinitesimal automorphisms of a
homogeneous Siegel domain.

Important contributions on this problem have been provided by N.
Tanaka [64] and W. Kaup, Y. Matsushima, T. Ochiai [29]. They used
graduations of the Lie algebra g of infinitesimal automorphisms of a Siegel
domain D. Starting from these two papers several articles have been
published which dealt with a more precise description of the elements of
g [37], special cases and examples [49], [50], [51], [56], [57], symmetric sub-
spaces [38], the representation of D as a Siegel domain of type IIT [39],
as well as other questions.

In this work we present a new method for the description of homo-
geneous Siegel domains. This method entails a classification of the
domains considered and makes it possible to answer several of the open
question. We are able to reproduce the known results and, in some cases,
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get a geometric interpretation.

There are several applications of the results of this paper. We would
like to mention three of them. Using the theory of representations of
Jordan algebras [24] and the theory of clifford algebras [2], [8] it is pos-
sible to find an explicite description of all quasisymmetric Siegel domains.
This in particular reproduces results of I. Satake [46], [47], [48], and M.
Takeuchi [53]. Moreover, a Cayley transformation for quasisymmetric
Siegel domains and the symmetries of a symmetric Siegel domain can be
stated explicitly. Further, by the results of [10] and of this paper it is
relatively easy to construct all homogeneous Siegel domains of dimension
<10. This has been previously done by S. Kaneyuki and T. Tsuji using
different methods [27], [65]. Finally, it is possible to find explicit expres-
sions for the l-parameter groups of vector fields Xeg, [62]

We note that for simplicity of presentation we shall concentrate on
the investigation of homogeneous Siegel domains, but the method which
we present can be applied as well to non-homogeneous Siegel domains.
In particular this applies to investigations on non-affine infinitesimal
automorphisms.

We briefly review the contents of this article. For ease in reading
this paper most of the definitions and results concerning homogeneous
Siegel domains and their infinitesimal automorphisms will occur in § 1.
In § 2 we provide the tools which are characteristic for our method. In
particular we define—starting from the Bergmann kernel of a Siegel
domain D(K, S) in V¢ X U — a commutative algebra ¥ and a linear map
¢: A — End; U. In §2,6 we establish three different descriptions of homo-
geneous Siegel domains. Using Theorem 2.14 and [15], 8 we thus get an
algebraic classification of all homogeneous Siegel domains. The charac-
terization of these domains by morphisms of homogeneous cones is
especially useful for developping examples.

As remarked above, in §1 we assemble results on the infinitesimal
automorphisms g = g(K, S) of D(K, S). We there introduce the graduation
g=g.:+ 83+ g+ g + g of g. Sections 3, 4 and 5 provide an explicit
description of the elements of g,, A= 0, 3,1 for arbitrary homogeneous
Siegel domains. To be more precise, in § 3 we use the results of [15] on
J-morphisms of homogeneous cones to explicitly describe g, and thus to
clarify its structure. We use this result to investigate Ker ¢ and nonde-
generate Siegel domains. The elements of g, are characterized in §4. It
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turns out that there exists a complex vector space P, which parametrizes
g;- In §5 we investigate g, We prove that g, is parametrized by a sub-
space P, of %A. Further, the relations between P, and P, are clarified.
We thus find a simple and unifying explanation for several results of the
literature on g, and g,.

We would like to mention that for the case of a symmetric Siegel
domain the infinitesimal automorphisms have been described independently
by I. Satake [48].

In §6 we collect the identities which arise when we express the ele-
ments of [g, g,] by the parameters of the elements of g, and g,. The last
section, §7, is devoted to the investigation of the radical v of g and
provides a Levi decomposition g =1+ § + v of g. The Lie algebra [ of
the semisimple summand ! 4+ § of this Levi decomposition is the Lie
algebra of infinitesimal automorphisms of a symmetric Siegel domain. The
existence of such a Levi decomposition has been proved in [38]. Here
we choose I so that in Pf X P, we get a canonical realization of the
corresponding symmetric domain D(Y).

Part of this work has been done during a stay at the Institute for
Advanced Study, Princeton, N.dJ. I would like to express my thanks to
A. Borel for giving me the opportunity to work at the Institute. Special
thanks are due to M. Koecher who supported the author in all regards.

§1. Definitions and fundamental results

1. Let V be a finite dimensional vector space over the reals R. We
provide V with the canonical topology. By V¢ we denote the complexifi-
cation of V; the elements of V¢ will be written z = x + iy, x,ye€ V. Real
part Re (2), imaginary part Im (2) and conjugation z — zZ (of V¢ with respect
to V) are defined as usual.

A subset K of V is called a regular cone (in V) provided

(1.1) K is open and not empty ,

(1.2) xe K, « > 0 implies axe K,

(1.3 x,ye K implies x + ye K,

(1.4) K does not contain any straight line .
We set
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(1.5) Aut K = {WeGl,V; WK = K} .

Further, for a positive definite symmetric bilinear form z on V we
define the z-dual cone K* by

16) K ={ye V;z(x,y) >0 for all x s+ 0 in the closure of K in V}.

Finally, for K and ¢ as above we set
k) o(K; x) = f eemdy,  xeK,
KT

where dy denotes Lebesgue measure on V.
The function ¢«(K; ) on K is called the invariant (of K). It satisfies the
transformation formula

(1.8) (K; Wx) = |det W[ «(K;x), xe K, WeAutK.
For a more detailed description of regular cones and their respective in-
variants we refer the reader to [17].

2, Let K be a regular cone in V and U a finite dimensional vector

space over C.
A map S: U x U— V€ is called a K-hermitian form, if

(1.9 S is C-linear in the first argument ,
(1.10) S(u, w) = S(w, u) for all u,we U,
(1.11) S(u, u) lies in the closure of K (in V),
(1.12) S(u,u) =0 if and only if u = 0.

For a regular cone K and a K-hermitian map S we define
(1.13) DK, S)={(zweV®x U; Im(2) — S(u, u)e K} .

It is easily seen that D(K, S) is a domain in V¢ x U.

A domain of this type is called a Siegel domain.

If U= 0 then D(K, S) only depends on K. Such a domain is called a
tube domain and is denoted by D(K),

(1.14) D(K)=V -+ iK.
It is immediate that D(K) c D(K, S).
3. For a Siegel domain D(K, S) in V¢ X U we set
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(1.15) Aut D(K, S) = {f: D(K, S) — D(K, S) biholomorph} .
(1.16) Aff D(K, S) = {fe Aut D(K, S), f affine transformation of V¢ x U}.
(1.17) GID(K, S)= Aut D(K, S) N (Gl V X GL, U) .

A Siegel domain D(K, S) is homogeneous, if Aut D(K, S) operates transi-
tively on D(K, S).
It is known [29] that Aut D(K, S) operates transitively on D(K, S) if and
only if Aff D(K, S) operates transitively on D(K, S).

As standard references for results on the Lie groups Aut D(K, S),
Aff D(K, S) and Gl D(K, S) we refer to [26] and [36].

4. Let D(K, S) be a Siegel domain and I" C Aut K a closed subgroup
of Aut K. We call (I, S) admissible, if

(1.18) I’ operates transitively on K,

For all We I there exists a We Gle U such that

(.19) (W, W)e Gl D(K, S) .

The following lemma shows that the assumption that I" is closed is ines-
sential.

Lemma 1.1. Let D(K, S) be a Siegel domain.

a) If w:= (W,, W.);neN) is a sequence in Gl D(K, S) such that the
sequence (W,; neN) converges to a We Aut K, then o contains a sub-
sequence which converges in Gl D(K, S).

b) Let I' a (not necessarily closed) subgroup of Aut K which satisfies
(1.19). Then the closure I' of I' in Aut K also satisfies (1.19).

Proof. a) We choose a norm | - | on U and a norm ||-| on V. The
norm induced on End, U (resp. Endy, V) will be denoted by the same letter.
We prove that the sequence (Wn; neN) is bounded in the norm |- | of

End, U. Suppose the contrary, then we may assume that there exists a
sequence (x,; neN) in U with |x,|] =1, ne N, but [ann|—> oco. We put
Y= ]ann["‘ W,x, and consider the function u — || S(u, w)| on the unit
ball of U. Because of (1.12) this function attains a positive minimum d
and maximum e. It then follows that

0 < d <18 ¥l = | Wo |2 | S(W,ix,, W)l = | W, " | WaS(x,, %)
< Wl | Wt |2 [ Sy 21| < (| Wl | W, |2 e

From |W,||— || W] >0 and || W,x,||— oo we get a contradiction to d > 0.
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We therefore have proved that (W,,; neN) is bounded and, consequently,
@ contains a convergent subsequence. Hence, we may assume that o
converges to (W, W). It remains to prove We Gl, U. But Wu = 0 implies
0= S(Wu, Wu) = WS(u, u); from We Aut K we conclude 0 = S(u, u) and
so u = 0 by (1.12).

b) is an immediate consequence of a).

As a consequence we have

TueEoREM 1.2. For a Siegel domain D(K, S) there are equivalent

(1) D(X, S) is homogeneous,

(2) There exists a closed subgroup I' C Aut K such that (I, S) is
admissible.

Proof. Use [36; Propositions 2.2 and 3.1] and Lemma 1.1.

5. For a Lie group I' we denote by Lie I" the Lie algebra of I'.
To abbreviate notation we set for a Siegel domain D(K, S)

(1.20) a(K, S) = Lie Aut D(X, S) .

Where no confusion is possible we write g for g(X, S).

As usual, we identify g(K, S) with the Lie algebra of complete holomorphic
vector fields on D(K, S) [36; §4].

Further, we identify all tangent spaces of ID(K, S) with V¢ x U; hence
all elements of g(K, S) are identified with holomorphic mappings from
D(K, S) into V¢ x U. For Xeg(K, S) we therefore write

X(z, v) = (X (2, u), Xy(z,u) e VEX U for (z, u)e D(K, S),

where X, and X; are holomorphic mappings.
The Lie bracket of two vector fields X and Y of g(K,S) can be
computed as follows, w := (2, u) e D(K, S),

(1.21) [X, YI(w) = 5’;{ Yw + (X)) — X(w + tY@)}oms -

As standard reference for results on g(K, S) we use [29] and [36].

The following theorems are of special importance for this work and
are therefore stated explicitly.

Here we use the adjoint representation ad of g(K, S) and the vector
field d e g(K, S), d(z, u) = (2, 3u).

For a Siegel domain D(K,S) and 2¢ R we denote by g(K, S) the
eigenspace of ad d in g(K, S).
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TueoreEM 1.3 ([29]). a) g(K, S) consists of polynomials.
b) g(K, S) is the sum of the subspaces g(K, S), A= —1, —4,0,%, 1.
o [8(K, S), guK, S)] C g (K, S).

The spaces g, = g{K, S) can be described in more detail. To do this
we denote by p,, (resp. qx,) polynomials in (2, u) which are homogeneous
of degree k in z and of degree r in w.

THEOREM 1.4 ([29]). a) g., = {(z,u) ~ (a,0); ac V},
b) ¢ = {(z v~ (2iS(y, d), d); de U},

¢) ¢, = Lie Gl D(K, S),

d) g; C {(z, w) = (pu(2, ), qu(2, u) + qu(z, W)},

e) 6 C {(z w)— (P2, 1), qu(z, W)}

Obviously, g, is contained in the vector space d, of all polynomials
of type (p.;, g + gw) and g, is contained in the vector space §, of all
polynomials of type (P, ;). For a description of g, and g, it therefore
suffices to find conditions which single out the elements of g, (resp. g)
within §, (resp. d,).

THEOREM 1.5 ([37]). a) g¢; consists of all polynomials Xe§, which
satisfy

(1.22) [X,g4 0 Cg.

b) g, consists of all polynomials X = (py, qu) € §; which satisfy

(1'23) [X’ g-l] c Qo H
(1.24) [X,g-0Cgs
(1.25) Im (trace (u — ¢, (v, ©))) =0 for all ve V.

Remark. For a tube domain we obviously have g, =g, = 0. The
space g, has been described in [18] for this case (see also Theorem 2.8).
Finally, we consider the radical of g(K, S).

THEOREM 1.6 ([29]). Let v be the radical of g = g(K, S).
a) W=w,+ W+, W,=mNg,
b) dimgg, = dimgg_; — dimp vy,

dimg g, = dimgg., — dimg fv_, .

In §7 the radical w of g will be described more precisely.
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§2. A new description of homogeneous Siegel domains

In this section, D(K, S) denotes a homogeneous Siegel domain in
Vex U

1. It is known that for Siegel domains the Hilbert space of square
integrable holomorphic functions has a reproducing kernel, the Bergmann
kernel [1].

By [19; Proposition 5.1] we have

TrEOREM 2.1. Let B(v, u,; v, w,), (vy, ux) € D(K, S), k = 1, 2, denote the
Bergmann kernel for D(K, S), then there exists a map 7ygs: K— R* such
that

a) 7xs can be extended holomorphically to K 4+ iV,

b) B, uy; Uy, U) = 155((20) (v, — ) — S(w, ).

Where no confusion is possible we write 7 instead of ygs.

In what follows we denote by 4% the directional derivation operator
at x in direction v.

A map y: K— R is called homogeneous (of degree k), if y(ax) = a*y(x)
for all @ > 0 and all xe K.
The following result says that (K, 7, e), for arbitrary ec K, is a triple of
Z in the sense of [14; §1,1].

LemMA 2.2. a) 9 is real analytic and homogeneous.

b) 4:4%logn(x) > 0 for all xe K, ve V, v=+0.

c) z(x) converges to oo, when x converges to a point of the (finite)
boundary of K.

d) The group Aut (K,7) :={We Aut K; y(Wx) = a(W)y(x) for appro-
priate (W) > 0 and all xe K} acts transitively on K.

Proof. a) is obvious. To prove b), denote by g . the Bergmann
metric at the point (2, uw)e DK, S). It is easy to show gy, q(v, V) =
4242 log n(x) for xe K, ve V. This implies b). Part c¢) follows from [30;
Proposition 5.2] or [69; §2, Proposition 3]. Finally, choose I' C Aut K,
such that (I, S) is admissible. Thus, for We I" there exists a We GlL,U
such that (W, W) e Gl D(K, S). By the properties of the Bergmann kernel
we get p(Wx) = det W-?|det W[" 7(x) for xe K. Hence I' C Aut (X, ) and
(1.18) implies d).

COROLLARY 2.3. There exists a closed subgroup I' C Aut K such that
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a) (', S) is admissible,
b) for all We I there exists a We Gl¢ U such that (W, W) e Gl D(K, S)
and p(Wx) = det W-2|det W |2 ().

We remark that the argument of Lemma 2.2 shows that the first
components of elements of Gl D(K, S) are contained in Aut (X, 7).

2. As remarked above, Lemma 2.2 means that (K, 7, e), ec K, is a
triple of #. In [14] and [17], there have been associated to such a triple
several mathematical objects. As these objects will play an essential part
in this paper we will assemble the most important definitions and some
of the associated results.

We may suppose 7(e) = 1,

2.1) a(v, w) := 4247 log 9(x),-, , v,weV.

2.2) o is extended C-bilinear to V¢.

(2.3) o(h(x), V) := —Mlogn(x), veV, xekK.
(2.4) o(H(x)v, w) := A24¢ logp(x), v,weV, xeK.

Let M be a finite dimensional vector space, r a nondegenerate bilinear
form on M and X an endomorphism of M. Then by X° we denote the
adjoint endomorphism for X with respect to r. Using this notation the
following result follows from Lemma 2.2.

LEMMA 2.4. a) o is a positive definite bilinear form on V.

b) & (resp. H) is real analytic and homogeneous of degree —1 (resp.
—2).

¢) H(e) =Id, H(x) = H(x)’, H(x)v = —42h(x) for xe K.

d) H(x) is positive definite (with respect to o) for xe K.

We use the g-dual cone K’ (see (1.6)) and [17; Lemma 3.8, Theorems
4.2 and 4.4] and get

Lemma 2.5. a) A(K) = K-,
b) h:K— K° is a birational diffeomorphism with the unique fixed
point e.

Further, we recall (see [16; I, § 4]) the definition of the commutative
algebra U = %A(y, e) which is associated to (K, 7, e). This algebra will be
the main tool for the description of g, g; and g.
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We define the product in % implicitly by
(2.5) o(uv, w) := —342424% log n(x)|s-c » u,v,weV,

The left multiplications in ¥ will be denoted by A(v), ve .

The complexification of % will be denoted by UC.

For the left multiplications of U¢ we write A(2), z¢ U°.
We have immediately

LemmA 2.6. a) U is a commutative algebra with unit e.
b) o(uv, w) = o(u, vw) for u,v,we V.
c) A(v) = A() for ve V.

Finally, we recall the definition of the mutation %, of A by x. The
product of %, is given by (u, v) — (ux)v + u(xv) — x(uv). Obviously, %,
is commutative but, in general, will have no unit element.

The importance of mutations for the description of g arises from the fol-
lowing fact [18].

THEOREM 2.7. For a tube domain D(K) the elements of g, are all of
type z— A (2)z with appropriate xe V.

Remark. For an arbitrary triple F = (K, 9z, ery of & we may define
analogously a bilinear form o¢,, mappings hy and H, and an algebra %,
(with unit e;). Moreover, Lemma 2.5 and Lemma 2.6 still hold.

In what follows, however, we mainly deal with the triple (KX, », e>
derived from a homogeneous Siegel domain. At the few places where we
use different triples we will always make this clear by using the triple
indicator as subscript.

3. We will now introduce some further notation which completes
the alternative description of homogeneous Siegel domains.
By a simple argument we get

LemmA 2.8. The map p: U X U— C which is defined by p(u, w) :=
a(S(u, w), e) is a positive definite hermitian form on U.

We define a linear map ¢: V¢ — End, U by
(2.6) plo(X)u, w) := o(S(u, w),x), xeV°®, uwwelU.
Further, we set

@.7) Sym (U, p) := {X e End, U; X* = X},
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(2.8) Pos (U, p) := {X e Sym (U, p); X positive definite with respect to p} .
By a simple computation we prove

LemmA 2.9. a) ¢(v) = ¢(©) for ve V€,

b) o(x) € Sym (U, p) for xe V,

c) o¢(x)ePos (U, p) for xe K-,

d) ¢le) = Id.

e) For WeGl, V and We Gl, U the following are equivalent
(i) WeAutK and o(Wv) = W"go(v)W for ve V¢,

(i) (W, W)e Gl D(K, S).

f) For TeEnd, V and T e End, U the following are equivalent
(i) TelLieAutK and o(T"v) = Tep(v) + o)T for ve V€,

(ii) (T, T)e Lie Gl D(K, S).

4. We want to apply the results of [15] on J-morphisms of homo-
geneous cones (for definitions we refer to [15]). We therefore define a
triple Mg := (F, o, F') where
(29 F:=<(K",d(K’; ), e,

(2.10) F := (Pos (U, o), ¢(Pos U, p); )4 1d), a := }[dim, U] .
As in [15; 4] the “invariants” are normalized as to take the value 1 at
e (resp. Id).

It is easily seen ¢ (Pos (U, p); X)* = |det X |2
Where no confusion is possible we write M instead of Myg.

From Lemma 2.9 we easily derive

LemMma 2.10. M is a J-morphism of homogeneous cones.

By [15; (1.6)] we form the new triple of #

2.11) G(Mys) := (K’  1xs, €
where
(2.12) 7rs(y) 1= (K73 yldet o(M]F, yeK°.

We write 7 instead of y.s where no confusion is possible.

We recall that in [17; §8] to each triple @ of % there was defined
a triple @,. To simplify notation we use @ instead of @,,7 instead of 7,
etc.

Lemma 2.11. a) [f(x)]? = 5(x), x€ K,
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b) 7(x) = [(K; 2))* det p(h(x)), x e K,
¢) 7y is a rational map.

Proof. Set (%) := [7{x)] [ K; x)]* det p(h(x)) where «(K;e) =1 and
choose a subgroup I C Aut K such that (I, S) is admissible. Then it is
easy to verify y(Wx) = y(x) for WeI'. This proves b). For the triple
N :=(K,n,e) we compute N and get N = (K, 1% e) because of 7(y) =
[r(»). Hence, for G = G(Mys) we get gy = g5 = 20, and h3' = hy = h,.
Part a) follows. By Lemma 2.5 and [17; Lemma 3.8] we derive that & and
«(K; ) are rational.

CoROLLARY 2.12. Set N := (K, 3, e) and G := G(Mys) then
a) Uy =W, 0 =0y =204 hy = hg, Hy = H,.
b) Aut (K, ) = Aut ([K;]¢, 7).

Proof. We frequently use the results of [17; §8]. First we have g5 =
g = 305 = %05 = $0. This implies hy = hz by part a) of Lemma 2.11.
Hence H, = H; and U, = s = Y, and a) is proved. Further, we get
[K)'e = (K°)” = K. We apply again Lemma 2.11 to see § = 7j; = 7*. Part
b) follows.

Remark. By Lemma 2.10 we get a J-morphism M with associated
triple G = (K°, r,e>. We apply the results of [15] and so derive a descrip-
tion of Lie Aut ([K;]°¢, 7;) = Lie Aut (K, ). This will be carried out in
detail in §3.

5. In this paragraph we explain how one can compute 7 = 7s ex-
plicitly. We choose an arbitrary positive definite bilinear form z on V
and extend ¢z to a C-bilinear form on V¢ We choose x,¢ K* and put
£(u, w) 1= =(S(u, w), x;) for u,we U. As in Lemma 2.8 we see that £ is a
positive definite hermitian form on U.

We define a map +: V¢ —End,U as in (2.6) by r((x)u, w)=
(S(u, w), x), x€ V¢, u,we U. As in Lemma 2.9 we get (W) = W‘«p(x)W
for each (W, W)e GLD(K, S). By [17; Theorem 4.2] we know that k., given
by z(h(x), v) = —421log «(K; x), is a diffeomorphism from K onto K* and
for all We Aut K and all xe K the equality 2(Wx) = [W]'h.(x) holds.
We put y(x) := [«(K; x)]* det ¥(h(x)) and get yx(Wx) = |det W det Wl‘zx(x)
for xe K, (W, W)eGLD(K, S). As in Lemma 2.11, we have that x and
nxs coincide (up to a positive constant factor).

6. In this paragraph we present different descriptions for the class
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of homogeneous Siegel domains.

By Si(V, U) we denote the set of triples (K, S, e) associated to homo-
geneous Siegel domains D(K, S) in V¢ x U, eec K.

We write Mo(V, U) for the set of tuples (X, y, e, ¢, p) which satisfy
the following six conditions.

(2.13) K is a regular cone in V and ec K .
(2.14) p is a positive definite hermitian form on U.
(2.15) ¢: V- Sym (U, p) is a linear map satisfying ¢(e) = Id .

(2.16)  The triple N = (K, 3, e) is in & and ¢(x) is positive definite
(with respect to p) on K,z = ay.

(2.17)  There exists a closed subgroup I' € Aut K which operates tran-
sitively on K and which has the property that to each Wel®
there exists a WeGl, U such that the identity o(W°x) =
Wee(x)W holds for all xe V.

(2.18)  Up to a positive constant factor y(x) coincides with
[«(K; x)J* det o(hy(x)) and satisfies y(e) = 1.

Finally, by $%(V, U) we denote the set of pairs (M, p) where p is a
positive definite hermitian form on U and, using the notation of [15; (8.4)],
M is an element of M(V, Sym (U, p), 1), A(A) = % trace A. (Here the product
of the Jordan algebra Sym (U, p) is given by (4, B) — £(AB + BA).)

In the following theorem we prove that the sets Si(V, U), Mo(V, U)
and M(V, U) are essentially the same. Hence, via [15; Theorem 8.5] we
get an algebraic description of all homogeneous Siegel domains. This
algebraic classification of homogeneous Siegel domains contains implicitly
a construction procedure for each homogeneous Siegel domain from lower
dimensional ones. Moreover, the construction from lower dimensional
domains of a domain D(K, S) is uniquely determined by D(K, S).

THEOREM 2.13. There exist canonical bijections between
SV, U), Mo(V,U), T(V,U).

Proof. a) We define f,: Si(V, U)— Mo(V, U) to be the map which
associates to a triple (K, S, e) of Si(V, U) the tuple (K, yxs, €, ¢, p), Where
7xs, @ and p are defined by Theorem 2.1, Lemma 2.8 and (2.6). By the
results of this paragraph we see that f; is well defined.
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b) By g: Mo(V, U)— Si(V, U) we denote the map which associates
to a tuple (K, y, e, ¢, p) of Mo(V, U) the triple (K, S, e), where S is defined
by the equation ¢,(S(u, w), x) = ple(x)u, w), N = (K, y,e>. It is easy to
check that S is a K-hermitian form and D(K, S) is a homogeneous Siegel
domain. This shows that g, is well defined. Further, by definition of ¢
and equation (2.6) we have g,of, = Id.

¢) To prove fieg, = 1d we start with (X, y,e, ¢, p) € Mo(V, U) and
have S defined by o,(S(u, w), x) = plp(x)u, w). We use (2.17) and (2.18) to
verify y = 7xzs. This implies ¢ = g, and the hermitian form p defined by
Lemma 2.8 for (K, S, e) coincides with the given one. By (2.6) it follows
that ¢ is the function defined by means of (K, S,e). Hence f,og, = Id.

d) We define a map f,: Mo(V, U) — M(V, U) by attaching to a tuple
(K, 1, e 0,0) € Mo(V, U) the pair (M,p), M = (F,¢,F) with F (resp. F)
defined by (2.9) (resp. (2.10)) where ¢ = gy. Obviously, M coincides with
M, s for the homogeneous Siegel domain g,(X, x, e, ¢, p). Hence, by Lemma
2.10 we know that M is a J-morphism. The choice of the exponent ¢ in
(2.10) gives (M, p) e M(V, U).

e) Finally, we define a map g,: DUV, U) - Mo(V, U). Let (M, p)e
M(V, U), M = (F, ¢, F). From the definition of M(V, U) we know Me
M(V, Sym (U, p), 2), 2(A) = % trace A, AeSym (U, p). We put R := G(M),
0 =0, K:=(K;), x:=7u e:= e and g(M, p) := (K, 1, €, 0, p). It is clear
that (2.13), (2.14) and (2.15) are satisfied. By [15; Lemma 1.1] we know
that R is a triple of &#. Hence R = (K, y,¢e) is a triple of & and we
have o5 = 0, = ¢ by [17; §8]. From the definition of M we get that ¢(x)
is positive definite for xe K, = K°. This proves (2.16). Condition (2.17)
is easily derived from the definition of a J-morphism. To verify (2.18)
we first note that by the definition of M(V, U) we have F = (K, «(Ky; ), er»
and F = {Pos (U, p), 7', Id) where 7(X) = ¢(Pos (U, p); X)", r = {[dim, U]-".
This implies 7(p(x)) = [det ¢(x)]"* and by the definition of 7, [15; (1.5)]
we get ry(x) = «(Ky; x) [det p(x)] . From [17; Theorem 4.2] we know that
hy is a diffeomorphism from K, onto K. Further, by [17; §8] we have
hg = [he]™. Hence, x(x) = 7u(x = 14(ha(x)) ™' = [dKr; ha(x)]™* [det p(ha(x))].
This proves (2.18).

f) It remains to prove f,og, = Id and g,of, = Id. We show that f,
is injective and that f,o g, = Id holds. Suppose we have f(K, x, e, ¢,p) =
fK', s ¢, o). Then, by definition of f,, we get (F, ¢, F) = (F, ¢, F)
and p = p’. This implies ¢ = ¢/, e = ¢ and K* = K’ where ¢ = gy, N =
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(K,y,e) and ¢ = oy, N' = (K',y,e). We use (2.18) and K° = K’ to
see 7 = 7. This implies ¢ = ¢/, hence K = K’ and h3' = h3. From this
we get y =y’ and f, is injective. Let now (M, p)e UV, U). It is easy
to verify that it suffices to prove K, = (Kj) with ¢ = g5, and ¢ = gy,
N = (K}, 7y, €ry. Because of N = é(\lljl) we have ¢ = . Hence the asser-
tion and the theorem is proved.

§3. Description of g/(X, S)

In this section we give a detailed description of g, = Lie Gl D(K, S)
for homogeneous Siegel domains. We use the notation introduced in the
preceding sections. We mainly draw from [15].

By D(K, S) we always mean a homogeneous Siegel domain in V¢ x U.

1. As remarked before, because of Lemma 2.11 we may apply the
results of [15]. By Corollary 2.13 we thus get a description of m :=
Lie Aut (K, nxs)-

Let & denote the algebra which has been defined from (K, 7xs, €) in
§2.2. Corollary 2.13 shows that we have U = W = Véand-

For idempotents e, - - -, e, of A we set

31 U,:={xe¥U;ex=2a}.
B.2) U, =Y, :={xec¥; ex = 3x, e;,x = 4x}, 1<i<j<gq.
B3 UAY:= P U,.

B4 A¥(x):= A®)|yw .

By Lemma 2.11 we may apply the map #, of [15; (8.6)] to My;. Hence,
from [15; Theorem 8.5] we know that #,(M,,) is the algebraic equivalent
of Mys.

By the definition of #,(Mys) we get

TaEOREM 3.1. There exist uniquely determined q e N and idempotents
ey, -+, ey of A such that
a) A= @Isistq %[u,
b) AU, = 0 if {i,j} N (&, s} =0,
W C Uy if LR,
AUy < Uy + Ay
¢ ¥U,, is a Jordan algebra,
d) A®(x,,) is a derivation of UL if 1< k< s< n<q and %, €YU,

€ss
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In what follows, where we use e, or ¥,; we tacitly refer to Theo-
rem 3.1.
We are going to describe m. We put

(3.5) my = {4, (x)); %, €U} fl1<i<j<yg.
(3.6) m,; := the Lie algebra generated by {A(x.); x.. € U} .
3.7 a := {D; D derivation of %, DY, = 0 for all i}.

As in [15; 7] we split the reductive Lie algebra a (resp. m,, into the direct
sum of its center and a semisimple summand

(3-8) My = 3y + Bt s

3.9 a=a,+ a.

Further, we set

(3.10) n:i= @ my.
1Li<j<q

From [15; Theorem 7.3] we conclude

THEOREM 3.2. a) Lie Aut (K, pxs) = n + a+ @i, m, (direct sum of
vector spaces).

b) a,® DL, 3. is an abelian algebraic Lie algebra consisting of semi-
simple endomorphisms (direct sum of Lie algebras).

c) a,®DL,Y,; is a maximal semisimple subalgebra of LieAut (K, 7xs)
(direct sum of Lie algebras).

d) n+4a, + DLy 3, is the radical of Lie Aut (K, 7xs) (direct sum of
vector spaces).

e) n is the maximal ideal of Lie Aut (K, yxs) consisting of nilpotent
endomorphisms.

Next we characterize the spaces ¥,, and X := @4, ¥,;. From [15;
Lemma 6.1, Theorems 6.3 and 7.3] we get

THEOREM 3.3. a) X = DL, U, = {xe¥; A(x) e Lie Aut (KX, 7xs)},
b) U = {ac¥U®; A (v)ecLie Aut (K, xs) for all ve AP}

2. Sometimes it is convenient to use a coarser splitting of %. We

set

(8.11) A=A,

(8.12) A= O Uy,
1<k<q
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(3.13) U= @ U, .

2<i<j<q

Further, to simplify notation we put
3.14) c:=c¢:=e¢, and ¢:=¢e—g¢.
(3.15) Ay(x,) = A(xi)]% , x, e, i=0,1.
We use [14; Corollary 7.6] and get

TueorEM 3.4. a) A;: % — End; ¥, is injective,
b) A, is generated (as a vector space) by {c,(x3}); x; € Uy}

3. Up to now we have drawn from properties of o#,(M,s) which are
related to V. For the description of g, = Lie Gl D(K, S) we need precise
information on how ¢ “behaves” with respect to the spaces U,;.

We first note an easy consequence of (2.10).

LemMmA 3.5. Let Mys = (F, ¢, F) and 9 = %
a) The product in % = Sym (U, p) is given by (X, Y) — XY + ¥X),
b) (X, Y):=0sX,Y) = } trace XY.

In this paper we always provide Sym (U, p) with the product of Lemma 3.5.
We use Lemma 3.5 and derive from [15; Theorem 5.5]

LeMMA 3.6. For all xeX and all ve¥ we have

p(xv) = He(X)p() + e(V)p(x)) -

Let d,---,d, be a complete system of orthogonal idempotents of U
which are contained in X (we abbreviate this by CSI). Consider the Peirce
decomposition A = @,.;;<, A;; of A with respect to the CSI d,, ---,d,.
(For definition and properties of a Peirce decomposition we refer to [18].)

LemMA 3.7. Let d,, ---,d, be a CSI and U = ®,_;c;<, U;; the Peirce
decomposition of % with respect to d,, ---,d,. Then for 1< i, j<n and
x;; €%, we have

(d)p(x;;) = o(x;)p(ds) = 8.50(;5)
Proof. From Lemma 3.6 we get 20,0(x;) = o(d)o(x;,) + o(x;)e(d.).
In particular ¢(d;) = ¢(d;)* holds. By XoY we denote the product in
Sym (U, p) and verify o(d)o(x;)e(ds) = 20(d,) o (p(d.) o (7)) — @(dy) o p(2;,)
= 0,0(x;). The equality &,0(x;;) = 20(d)3{p(x;)e(d) + ¢(d)o(x;)} —
p(d)e(d)o(x;,) = (25,; — Do(d)e(x;;). Hence o(d)p(x;;) = d:0(x;;). The
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assertion follows as ¢(x;;) is selfadjoint with respect to p by Lemma 2.10.

CoroLLARY 3.8. With the notation of Lemma 3.7 and 1 < i, j < n we get
a) o¢(d,) is an orthogonal projection (with respect to p),

b)  o(d)e(d)) = 8,0(d), 2i-1 9(dy) = Id.

©)  ox)p(x;;) =0 for x,e Wy, x,,€ A,y if T

Proof. We only have to prove c¢). But o(x,)e(x;;) = o(x)o(d)e(x;,)
= 0 by Lemma 3.7.

Levmma 3.9. Let d,, ---,d, and ¥,; as in Lemma 3.7. We set U, :=
o(d)U. Then we have

a) U=®LU,

b o )U, C 0,U, + 6,U, for 1< i, j, k< n, x, ¢,

c) S(U,U)cC U, for 1<, j<n.

Proof. a) is clear by Corollary 3.8. To prove b) we first note that
the case i = j follows from Lemma 3.7. In the case i #* j we may assume
i # k. Hence o(x) U, = 20(dix;) Up = 0(d)o(x:) U + ()0 (@) U, =
o(d)o(x;)U, and o(x;)U, C U,. If, additionally, j + k then o(x,)U, C U,
N U, = 0. b) follows. Finally, from Lemma 2.10 and Lemma 3.6 we get
(A(d), 3¢(d) € Lie G1 D(K, S). This implies d,S(u,, u,) = $S(p(d)u,, u;) +
1S(u,, (d)u;). We put x := S(u;, u;) and get dx = ix, dyx = 4x if { £
and d;x = x if i = j. This proves c).

4, In this paragraph we exploit another property of ¢ and derive a
description of g,
From [15; Lemma 8.1] we know that

(3-16) gb(Aess(xsf)) = Asa(ess)(so(xxj)) ’ 1 é.’ g s g q ’ xsj € %[sj

defines a homomorphism from the Lie algebra m§ := {T°; Temy}, m, :=
@1<icjcq My, into the Lie algebra Lie Str 9, the structure group of 9 (for
definition see [5; IX, §5)).

Iet 1<j<s<q and x,e%,,; then we use Lemma 3.3 and (3.16)
and get by a straightforward computation

@17 P([Ae;(x5:)10) = [Fole.Jo(x)]P0) + pO)ple,)o(x;)] «
On the other hand we know that the map

g:(Endy U)- —> LieStr 9,  &D)X):= —T*X — XT
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is an isomorphism of Lie algebras (where (End; U)- denotes the usual Lie
algebra on End, U).

We define a map +: m, — (End; U)~ by

(3.18) W) 1= £H(=T")) .
It is clear that + is a homomorphism of Lie algebras. Further, we have
(3.19) o(T°x) = V(Tyo(x) + o(x)9y(T)  for xe V, Tem,.

This follows from o(7T7x) = ¢(T")p(x) = R°ep(x) + ¢(x)R because
R = —&Y(a(T?) = vw(T) for Tem,.

We are now in the position to describe the essential part of g,. For
simplicity we write (7, T instead of (z, u) = (Tz, Tu) for the elements of g,.

LemmA 3.10. The Lie algebra m4 := {(T, v(T)); T € my} is a subalgebra
of g, and m% is the direct sum of the subspaces

(8.20)  my; = {(A..(x), Foles)p(x,)); x5 €Uy} for1<i<j<gq.

(3.21) my := the Lie algebra generated by {(A(x), 3¢p(x.)); %€ U..};
1<i<gq.

Proof. A comparison with Lemma 2.10 shows m% C g,. Further, it is
clear that m¢ is the direct sum of the subspaces m¢; := {(T, v(T)); T e m,;}.
From (3.17) we get (3.20) and that my;, is generated by {(A(x.,), 3p(e.)p(x..);
x,;€%,;}. Lemma 3.7 now proves the assertion.

CoroLLARY 3.11. Let i < j, xe U, and ye¥U,,. Then

(A.(3), $e(y)e(x)) € g, -

Proof. From the lemma we know that
(A(x)a %So(x)) and (Aeu(y)’ %90(371)90(3’))

are elements of g, This implies that (7, 7):= (A, (xy), 3o(e; Dp(xy)) +
([A...(3), A®)], [3e(e;)o(y), +o(x)]) also lies in g, We use the “Grundformel”
[33; Theorem 1.2] (see also [14; Theorem 1.2]) and get T = A,(y). It
obviously suffices to prove ¢(e;)p(xy) + do(e;)e(Me(x) — dp(x)ple;)e(y) =
30(y)p(x). On U, and on U, this identity is easily verified; by Lemma 3.9

the assertion follows. To finish the preparations for the description of g,
we set
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(3.22) af:={(T,T); Tea, TS(u, w) = S(Tu, w) + S(u, Tw) for u,we U} .
Obviously a? C g,

THEOREM 3.12. a) @, = @icicjc, MY + ¢ (direct sum of vector spaces).

b) The Lie algebras m%, and a¢ are selfadjoint with respect to ¢ @ p,
hence they are reductive.

c) Split @, m4 =3 + b, a* = 3, + b, into center 3, and semisimple
part 9, and set n* := @, ;<. ME;, then

(1) 3 -+ 3 is an abelian algebraic Lie algebra consisting of semisimple
endomorphisms (direct sum of Lie algebras).

@) 5 + Y% is @« maximal semisimple subalgebra of g, (direct sum of
Lie algebras).

() 3 + 3 + n® is the radical of g,

(4) w* is the maximal ideal of g, consisting of nilpotent endomorphisms.

Proof. a) Let (T, T) e g,, then we know Te Lie Aut (K, 7.s). There-
fore, by Theorem 3.1, there exist T\, em, and T,ca such that T'= T, +
T, From Lemma 3.10 we get mf; C g,; hence it exists a TmeEndc U
satisfying (T,, T.) ¢ g.. This proves that g, is contained in the space at
the right hand side of the formula. The converse inclusion has been
proved above. It remains to show that the sum is direct. But 0 = X, +
X, e m% + a* implies that the first components of X, and X, are equal to
0. Lemma 3.10 shows X, = 0.

b) Clearly, (A(x,,), $¢(x,;) is selfadjoint with respect to ¢ @ p. Hence
(me)® < mg,. For (T,T)ea* we have Te= 0. By [17; (6.11)] we get
T+ T = 24(Te) = 0. From 0 = o(T7¢) = T° + T we derive that (T, T) is
skewadjoint with respect to ¢ @ p. Hence the assertion.

c) In b) we proved that all elements of a* are skewadjoint with
respect to o0 ®p. Hence, for (T, T)ev® we have [p(x.,), T = go(x“)f' 4
’f’"go(xii) = —¢(Tx,)) = 0 and [A(x,), T] = A(Tx,) = 0. This implies [mg, a*]
= 0. As a result we get (1) and [§,5,] = 0. By a similar computation
we see [n?, a’] C n*. It now suffices to prove that n* is an ideal of g;
for, n* consists of nilpotent endomorphisms and n* 4 3, + g is contained
in the radical of g,; using this and a) we easily prove the assertion. It
remains to show that n* is an ideal of g, By the above remarks it suffices

to verify [m¢, n°] € n*. But by [15; Theorem 7.3] we know that n =
Dicicjce My; is an ideal of m. Hence Lemma 3.10 implies the assertion.

Remark 3.13. a) Theorems 3.1 and 3.12 clarify the structure of homo-
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geneous Siegel domains. Our approach to the description of homogeneous
Siegel domains uses larger “building blocks” than the approaches by j-
algebras [43] or S-algebras [562]. This appears to have advantages for the
description of the (infinitesimal) automorphisms. We get the building
blocks of S-algebras when we form the Peirce decomposition with respect
to a CSI d,, - - -, d,—hence replacing e, ---,e,, by d,, -, d,—which ad-
ditionally satisfies Rd;, = {xe¥U;dx = x}, 1 <i< n.

b) Examples show that the algebra a* can be rather large. It is
clear that a* is contained in the Lie algebra of the isotropy group of the
point ie.

For later use we mention some properties of af.

LevMmAa 3.14. a) a* is the Lie algebra of a compact subgroup of
Gl D(K, S); hence a* is reductive.

b) The elements of a* are skewadjoint with respect to ¢ ® p.

c) «a* annihilates Y;; and commutes with m%;, 1 <j<gq.

d) a* leaves invariant each of the spaces %, 1< i, j < q.

e) For each idempotent b of X = @?_,¥,; the space o(b)U is left in-
variant by a*.

Proof. a) To prove the first part of the assertion suffices to note
that the isotropy subgroups of Aut D(K, S) are compact and that Gl D(K, S)
is closed in Aut D(K, S). The second part now follows (see e.g. [9; IV,
8§ 4, Proposition 5]).

b) This has been shown in the proof of b) of Theorem 3.12.

c) By definition, a* annihilates the spaces ¥;;. The assertion follows
from b) and Lemma 2.10.

d) Let (T,T)ca. Then T is a derivation of % which annihilates
all e;;, Hence, T commutes with all A(e;;). From (3.1) and (3.2) the as-
sertion now easily follows.

e) Follows from b) and Lemma 2.10.

To finish this paragraph we consider the set
(3.23) a = {0, T)eas} .

LemMA 3.15. a) af is an ideal of g,
b)) ap= {0, T); T = —T, To(x) = p(x)T for all xeU}.

Proof. Part a) is obvious. To prove part b) we note that 0 = S(Tu, w)
+ S(u, Tw), w, we U, is equivalent to 0 = a(x, S(Tu, w) + o(x, Su, Tw)),
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xeV, u,we U. Using (2.7 we see that this is equivalent to 0 = f"’go(x)

3

+ ga(ac)f1 xe V. The assertion follows.

b

5. In this paragraph we consider a special infinitesimal automorphism
of K. We use the decomposition A = U, + A, + A, of A which has been
introduced in 2. It is clear that this decomposition is a Peirce decompo-
sition %; = %y, Uy = Ay, Uy = Ay, of A with respect to d, :=¢, = ¢, d, :=
¢, Hence we may apply the results of the preceding sections.

The space ¢(c)U will be denoted by U, instead of U..

LeEmMMA 3.16. The endomorphism v — Re (S(p(v)u, w)) of V is an element
of Lie Aut (K, nys) for ue U, and all we U.

Proof. Because of Lemma 2.2 we may apply [16; Theorems 1.7 and
3.3]. Hence it suffices to prove that q(v, u, w) := a(A(v), Re (S(p(v)u, w))),
ve K, does not depend on v. From [14; Theorem 1.8] we know that v
can be represented in the form v = exp A.(v)(v; + v)) with v, e ¥, and v,
e K, i= 1,0, appropriately chosen (for results on the projections K, of
K on ¥, we refer to [14].). From Lemma 3.10 we know (A.(v}), 3¢(co)e(v,))
e€g,. Hence, for W:= exp A, (v;) and W= exp 3p(c)p(v;) we have the
identities A(W(v; + vy)) = W 'h(v, + v,) and W-'S(y, 2) = S(W"‘y, W’lz) for
all y,zeU. Tt follows q(u, u, w) = gq(W(v, + vy), u, w) = a(h(v, + vy), W-!
Re (S(e)u, w))) = a(h(v, + v)), Re (S(W-'o(W(v, + v))u, W'w))). From
W(v, + vy) = v, + v, + vvy + $c(vvy-v;) we get by Lemma 3.9 the equality
o(W(v, + v))u = (v, + vivy)u. We use again Lemma 3.9 and get Wt =
exp —p(c)p(vy) = Id —30(c)(v;). Putting this together we have q(v, u, w)
= o(h(v, + vy), Re (S(a, b))) with a := ¢(v, + v,v)u — Fo(c)e(V)e(v, + vvu
and b := w — $p(c)p(vy)w. From Corollary 3.8 and Lemma 3.9 we derive
o(cap(e(vvpu = 0, plcp(vy)w, = 0, where w =: w, + w, with w; e U;, and
a = o(vu + o(vvu — 3o(e(v)u and b= w, + w, — p(vy)w,. But by
Lemma 3.6 and Lemma 3.9 we have o(v,v,)u — $o(v)o(v)u = 0 for ue U.
Hence ¢ = ¢p(v)u e U,. Now we split b = b, + b, with b, := w, and b, :=
w, — 3p(vyw,. It follows q(v, u, w) = a(h(v, + v,), Re (S(a, b,) + S(a, by))) =
q(v; + vy, u, wy) + a(h(v, + v,), Re (S(a, by)). We know h(v, + v)e ¥, + ¥,
and Re (S(a, b,)) € ¥;; Hence q(v, u, w) = q(v, + v, u, w,). From [14; Lemma
2.2] we know A(v, + v) = h,(v) + h(v,) where h;(v)e¥, j=01 We
therefore get q(v, u, w) = q(v,, u, w) = Fp(p(h,(V))p(V)u, wy) + Fop(h(v))w;,
o(v)u) = Re (a(p(h,(v))p(v)u, wy)). It obviously suffices to prove o(h,(v,))p(v,)
= ¢(c). But, by Lemma 3.6, the restriction of ¢ to ¥, is a homomorphism
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of Jordan algebras and Ah,(v,) is the inverse of v, in the Jordan algebra
A, by [14; Corollary 2.5]. Hence the assertion.

Remark 3.17. a) If w= w,e U, then it is easy to verify directly
Re (S(p(v)u, wy)) = A, (Re (S(u, wy))v. If w = w, e U, a similar representa-
tion is not known.

b) A statement which is weaker than that of Lemma 3.16 has been .
proved in [45].

6. We end this section with some remarks on nondegenerate Siegel
domains. As usual a Siegel domain D(K, S) is called nondegenerate if the
set {S(u, w); u, w e U} generates the vector space V°.

It is easy to see that D(K, S) is nondegenerate if and only if the map
¢: A — Sym (U, p) is injective.

For the description of Ker¢ we represent the Jordan algebra X =
{xe V; A(x) € Lie Aut (K, 7x5)} as the sum of its simple ideals X, X =

m.%,. By d, we denote the unit of X, and form the Peirce decomposi-
tion A = @i_ic;en Ay of A with respect to d,, - - -, d,.

In what follows we use without mentioning the following identity

which was proved in Lemma 2.10:

o(Tex) = Tro(x) + o(x)T  for xe V and (T, T)eg, .
We obviously have
Lemma 3.18. T° Ker o C Ker¢ for all (T, f’) € g,
As a consequence of this fundamental property of Ker ¢ we get

CoroLLARY 3.19. a) Kero = @ ;. Ay N Ker o).
b) Ifi<jand U, C Kero then U, C Kerg.
c) If %A, c Kerop then A, C Kerop for all 1< j< m.

Proof. From (A(d)), 3¢(d))) € g, we conclude that A(d,) leaves invariant
Kerg for all 1 <i< m. This implies a) and c). To verify b) we use
(A (xy), 30(x:)p(d)) € g and [Ay(x;)]° = A, (x,;) for xe %A,; and easily get
the assertion.

Finally, we use again %, = %,(c) = %, and get

CoroLLARY 3.20. Kerop N ¥, (resp. Ker ¢ N X) is an ideal of U, (resp.
X) and Ker ¢ = 0 implies Kerop N X + 0.
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§4. Description of g,(K, S)

In this section we denote by D(K, S) a homogeneous Siegel domain
in V¢ x U.

We retain the notation of the preceding paragraphs.

By P, we denote the set of we U which satisfy

4.1) plw=w,
“4.2) S(e(S(u, w)u, d) = S(u, (S(d, w))w) for all u,deU.
THEOREM 4.1. g; = {(z, w) — (2S(u, p(R)w), ip(2)w + 20(S(u, wW))u); w € P,}.

Proof. From Theorem 1.5 we derive that it suffices to show that a
polynomial X(z, u) = (p.(2, ©), q.(2, u) + q.(2, v)) can be represented as in
the assertion if and only if it satisfies [X,g_,] C g-; and [X, g_;] C g

To simplify notation we write ¢,(2) = qi(2, ©) and gu(w) = qu(z, V).

As in [48] we first prove that Xeg, is equivalent to

(D) pulz, w) = 2iS(u, q.(2)),

(2 28(u, (S, w))) + iS(qu(u), d) = 0,

3) (v Im(S(g,(v), @) € Lie Aut (K, yxs) for all ze V¢, u,de Uyve V.
A computation shows that [X,g_,] C g, is equivalent to (1). The condi-
tion [X, g_;] C g, precisely means that R := (2iS(q(?) + 9n(w), d) —
Pu(2iS(u, d), u) — pu(z, d), —q,:(2iS(u, d)) + gu(u; d)) is an element of g;
here we put q,(u; d) := 4q.(w). Obviously, Reg, is equivalent to

(@) 2iS(qu(w), d) — 2ip,(S(y, d), u) = 0,

(®) (=, u)— (2iS(qu(2), d) — 2i8(d, q:(2)), —2iqu(S(t, @) + qu(u; @))) € Go.
Clearly, (a) is equivalent to (2) whereas (b) is equivalent to two condi-
tions: (3) and

(© 2iS(qi(S(u, w)), d) — 2i8(d, ¢:(S(w, w))) = S(—2ig:(S(y, d)) +
qe(u; d), w) + S(u, —2iqi(S(w, d) + gu(w; d)).

We prove that (¢) is a consequence of (2). We apply the operator 4%
and get

(@) 2S(w, q:(S(d, w))) + 28(u, q,(S(d, w))) + iS(qe(u; w), d) = 0.
In this formula we replace the triple (w,d, u)e U X U X U by (d, w, iu).
It yields

(&) 2iS(d, q:(S(w, w))) + 2iS(u, q:(S(w, @))) — S(gu(u; d), w) = 0.
Now, we conjugate (d), replace (w, d, u) by (d, —iu, w) and get

) —2iS(q:(S(w, w)), d) — 2iS(q:(S(w, d)), w) — S(u, gu(w; d)) = 0.
Adding (e) and (f) gives (c). This finishes the proof that Xeg; is equiv-
alent to (1), (2) and (3).
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Next we exploit (3). By [16; Theorems 1.7 and 38.3] we know that a
linear map 7: V— V is an element of Lie Aut (K, 7.5 if and only if
a(h(v), Tv), ve K, does not depend on v. Hence (3) is equivalent to

(3.2) a(h(v), S(q.(v), d)) = a(e, S(q.e), d)) for ve K.

We set w:= w, + w, := q,(e), w, € U,, use the definition of p, Lemma 2.9,
and see that (3.a) is equivalent to

3.b)  p(A(V)g(v) = w for all ve K.

From Lemma 2.6 we know A(v)e K’ for ve K; hence, by Lemma 2.10,
o(h(v)) is invertible. This implies
B.c) q(v) = p(A(v))'w for ve K.
We differentiate this identity twice at v = e and get
@) qu®) = e(x)w, xe 'V,
(B elxw = He(®)e(y) + e(Mpl)hw, x,ye V.
We use (4) to compute g, from (2) explicitly.

—ip(gu(w), d) = a(e, —iS(gu(w), d)) = 20(e, S(u, p(S(d, W))w))
= 20(u, o(S(d, W)w) = 2op(p(S(u, d))u, w)
= 20(S(u, d), S(u, w)) = 20(p(S(u, w))u, d) .

This implies

6)  gu(w) = 2ip(S(u, w))u.
Using (4) and (6) it is easy to verify that g, consists exactly of those
polynomials (z, u) — (2iS(u, (Z)w), (2w + 2ip(S(u, w))u) where w satisfies
(4.2) and

(3.d) (v~ Im (Slp(v)w, d))) € Lie Aut (K, 9xs).
Here we replace w by w, + w,. Then, by Lemma 3.16, we see that (3.d)
is equivalent to T e Lie Aut (K, 5;s) where T is defined by

Tv := Im (S(p(v)w,, d)) .

Because of Theorem 3.3 we may apply [14; Theorem 3.3] and thus get x,
e, x,e¥, and a derivation D of the algebra U, which satisfies Dc = 0,
such that T'= A.(x,) + A.x;) + D. From the definition of T' we imme-
diately derive 7%, = 0. Hence x, = 0 and x; = 0. This means that T is
a derivation of ¥, which leaves invariant the spaces %,. But from the
definition of T we get T%, C %A, and TU, C ¥;. Hence T'=0. This
especially implies ¢o(v))w, = 0. We use (5) and get o(cv))w, = 0 for all
v €¥;. Theorem 3.4 now shows w, = 0. The theorem is proved.

CoroLLARY 4.2. Each Xe g, is uniquely determined by its value at ie.
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COROLLARY 4.3. For we U, the following are equivalent

(1) wepy,

2 S(e(S(u, whu, d) = S(u, p(S(d, W)w) for all u,de U,

(3 The map (z, u) — (Se(@w, d) + S@, p(Ew), —e(S(u, d)w +
o(S(u, w)d + ¢(S(d, w)u) is for all de U an element of g,.

Proof. (1) & (2): clear by definition of Pj.

(2) = (3): insert ¢y(2) = ip(2)w and gu(w) = 20(S(u, w))u in the state-
ment (b) of the proof of Theorem 4.1.

3 = (2): by assumption we have S(p(S(a, b))w, d) + S(d, ¢(S(b, a))w)
= 8(~¢(S(a, A)Nw + ¢(S(a, w)d + ¢(S(d, w)a, b) + S(a, —p(S(Ob, d)w +
o(S(b, w))d + o(S(d, w))b) for all a, b,dec U.
We replace the tuple (a, w, d, b) by (u, w, u, d) and get

(@) Sle(S(u, d)w, u) + S(u, p(S(@, uPw) = S(—e(S(u, W)w, d) +
Sp(S(u, w)u, @) + S(e(S(w, wu, d) + S, —e(S(d, w)w) +
S(u, o(S(d, w)w) + S(u, (S(u, w))d) for u,de U.
Now we replace (a, w, d, b) by (u, w, d, u). It results

(d)  Slp(S(u, whw, d) 4+ S(d, p(S(u, W)w) = —Sle(S(w, d)Hw, uv) +
Ste(S(w, w)d, w) -+ Se(S(d, W, 1) — S(u, (S, AYw) + S(u, p(S(, W)A) +
S(u, o(S(d, w))u) for u,de U.
From (b) we derive

(©) Re (S(e(S(u, u)w, d)) = ~Re (Se(S(u, d)w, u)) +
Re (S(u, ¢(S(u, w))d)) + Re (S(u, ¢(S(d, w)u)) for all u,de U.
This implies

@  SeS(u, Ww, d) = —S(e(S(, dw, u) + S(u, p(S(u, w))d) +
S(u, (S(d, w)u) for all u,de U.
A comparison of (a) with (d) gives (2).

Remark 4.4. a) In [48] Theorem 4.1 has been proven under the ad-
ditional assumption that D(K, S) is symmetric.

b) For symmetric Siegel domains we always have %, = 0 and %, =
0. With this additional assumption the proof of Theorem 4.1 simplifies
considerably.

c) P, is a vector space over C but g, is only a vector space over R.

d) Corollary 4.3 has been proved in [48] for symmetric Siegel domains.
Finally, we expand (4.2) in terms of U, and Ui,.

LEmMA 4.5. Let w, e U,; then (4.2) is equivalent to the following set
of equations (where u,, d, e U, and u,, d,c U, are arbitrary
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a)  Sp(S(uy, whu, d) = S(u, (S(d,, u)w,),

b) 0 = ¢(S(u,, w))uy,

c)  Sle(S(uy, w)uy, dy) = S(u,, p(S(d,, u)w,),

d) 0= S(u, o(S(d;, uw,) + S(w;, o(S(w;, w,))d,).

Proof. In (4.2) we replace u by u;, + u, and d by d, + d,. Then we
expand (4.2) and compare in %, + i%,, £ = 1,%,0. This yields three equa-
tions. We use the fact that u; and d; can be chosen arbitrary and get
the following set of equations which is equivalent to (4.2).

@ S(go(S(u,, w))u,, d,) = S(u,, §0<S(d1: u))w,),

(2 S(§0(S(uo, w))u,, dy) = 0,

(3 S(p(S(uo, wu,, dy) = S(wy, p(S(dy, u))wy) + S(uo, p(S(ds, w))wy),

@ S(e(S(uy, w)u,, do) = S(uy, p(S(dy, u))ws),

6)) S(e(S(u,, w,))u,, dy) = 0,

(6)  S(p(S(uo, w)ws, do) = S(uo, p(S(ds, u)w1),

(N Suo, o(S(d,, uw,) = 0.

Clearly, (1) and a) coincide as do (4) and c). It is easy to verify that (2)
and (5) together are equivalent to b). Hence it remains to investigate
(3), (6) and (7). Here we use that (A.x;), 3p(c)e(x;) and (A(x,), $e(xy)
are elements of g, for all x, e ¥, x; e, i.e. we have the following identi-
ties at our disposal

( * ) 2Ac(x£)s(a9 b) = S(¢(00)¢(x§)a> b) + S(a9 SD(CO)SD(xi)b) ’

(+%) 2A(x))S(a, b) = S(p(x))a, b) + S(a, ¢(x,)b)
for all x,e¥,, k=1,% and all ¢, b U.

By (x) and (xx) we get from (3) equivalently

S(SD(S(UO: wy))u,, dy) — S(uu SD(S(du u)w,) = S(uy, SO(S(du u))w,)
= 2A(S(w,, d)))S(u,, w,) = 2A.(S(u,, w)S(wy, d,)
= S(p(S(u,, w)u,, d,) + S(u,, o(S(w;, u,))d;) hence d) .

In (x) we put x; := S(u,, w,); then (6) easily follows. It remains to
show that (7) is a consequence of a) to d). To prove (7) it suffices to
show that the left hand side of (7) is orthogonal to all ¥, 2 <i<j < q.
Thus let x,; e %,;, and (T, f’)e m¢;, 2 <i<j<q, such that T7e = Te = x,;
holds. Then T[L =0 and T is a derivation of the algebra %, [14; §3].
We use this, (x) and b) and get
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o(S(uo, p(S(d,, u)w,), x,5) = 20(TA(S(uo, d.))S(, w)), €)
= o(S(Tuy, d)) + S(uo, Tdy), S(uo, w.)) + a(Suto, dy), S(Tts, wy)
+ S(ue, Twy)) = o(S(Tutey d.), S(tto, wy)) + 0(S(oy d.), S(Ttto, W)
= 0(p(S(a, w)) Tty + (S(Ttto, Wi, ) = 0 .

This finishes the proof.

§5. Description of g,(K, S)

In this section we finish the description of Lie Aut D(K, S). By
D(K, S) we denote a homogeneous Siegel domain in V¢ x U. We use
again the decomposition A = A, + A, + U, of A which has been introduced
in §3,2. The unit of ¥, is denoted by ¢ = ¢, = ¢,, and we set U, = ¢(c)U
and U, = ¢(c,)U where ¢, = e — c. We then have U= U, + U,

Finally, we mention that in this section we frequently use mutations
of A which have been introduced in §2, 2.

We set

P, := {xe¥,; it exists Be End; U such that (z, ©) — (4.(2)z, ¢(2)Buw)
is an element of g} .
Lemma 5.1. Let (T, T)e 8o; then
T°P,C P, and T°P,C P,.

6.1)

Proof. Let xe P, and X the associated element of g, We form the
commutator of X and (7, T) and get TA,(z)z — 2A,(2)Tz as first component.
The “Grundformel” [33; Theorem 1.2] implies that this expression equals
—A,0,(2)z. Because of [X, (T, f')] € g, the first assertion follows. To prove
the second one we choose we P, and denote by Y the associated element
of g;. Then the linear part of the second component of [Y, (7, )] equals
Tip(v)w — ip(Tv)w. From this we derive that [Y, (T, ff’)] € g; is parametrized
by Tip(e)w — ip(Te)w = —iT*w where we have used Lemma 2.10.

We specialize (T, T) := (A(y), 30(»)), y € ¥, and get

CoROLLARY 5.2. P, is an ideal of U,.

By the corollary, we know in particular that P, is a subalgebra of the
formally real Jordan algebra ¥, and hence has a unit which we denote
by p or p,. We sometimes abbreviate p, := e — p.

COROLLARY 5.3. Let X be the element of g, which is associated to p €
P,. Then we have (ad X)’g_, = g, and (ad X)g, = g..
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Proof. By a straightforward computation we see that the first com-
ponent of (ad X)*'Y, Y:=(a,0)eg.,, equals r(z):= —24,(a@)A4,(R)z +
4A,(A,(a)z)z. Because of A,(v) € Lie Aut (K, 7xs) for ve V, the “Grund-
formel” [33; Theorem 1.2] implies r(z) = A,(z)z where b = 2[A(a)]’e =
A(pa)'e = pa. The first assertion follows. The second one is proved in
an analogous way.

The first part of the last corollary has also been proved in [45].

THEOREM 5.4. P, = {xe¥,; (2, u) — (A.(2)z, p(2)p(x)u) € g,}.
g = {(z, u) = (A,(2)z, p(2)p(x)u); xc P} .

Proof. By Theorem 1.5 we know that each X e g, can be represented
in the form X(z, u) = (p(2), ¢..(2, v)). We prove

1) X(z, u) = (A(2)z, ¢(z)Bu) where xe U, and Be End; U. We men-
tion that the polynomial p,, is contained in the Lie algebra g(K) of the
group of automorphisms of the tube domain V 4 iK by [29; Theorem 4].
Let % denote the algebra which is constructed for D(K) = V + iK and
ec K according to §2,2. The left multiplications of this algebra are
denoted by A(v), ve V. From Theorem 2.8 we know p,(2) = A, (2)z for
all ze V¢ and ae appropriate. Now, we represent g, in the form
qu(2, ©) = B(z)u where B is a C-linear map from V¢ into End, U. From
[X, g-.] C g, we conclude (4,(v), %E(v)) eg, for all ve V. We apply Theo-
rem 3.3 and [33; Theorem 5.10] to get an xec ¥, such that A,(v) = A,(v)
holds for all ve V. Finally, we choose Y(z, u) = (2iS(x, d), d)eg_; and
compute [X, Y]eg;. The linear term of the second component of [X, Y]
turns out to be B(z)d. Whence, by Theorem 4.1 we get a we P, such
that B(z)d = ip(z)w holds for all ze V¢, We set B := B(e) and it results
B(z)d = ¢(2)Bd for all ze V¢ This proves (1). Next we claim

(2) A polynomial X(z, u) = (4,(2)z, ¢(2)Bu), xc ¥, Be End, U, is an
element of g, if and only if

(2.2) (A.(a), 3¢p(@)B) e g, for all ae V,

(2.b) Im (trace p(a)B) = 0 for all ac V,

(2.c) BUC P,

2.d) ¢(S(u, d)Bu = ¢(S(u, Bd))u for all u,de U.
We apply part b) of Theorem 1.5. Clearly, (1.23) is equivalent to (2.a)
and (1.25) is equivalent to (2.b). Finally, choose Yeg., Y(z, u)=
2iS(u, d), d) and compute

[X, Y] = (2iS(¢p(2)Bu, d) — 4iA.(2)S(u, d), —2ip(S(u, d))Bu — ¢(2)Bd) .
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We use (2.a) and see that the first component of this expression equals
—2iS(u, 9(Z)Bd). Because of [X, Y]eg, we get from Theorem 4.1 that
w := iBd is an element of P,. Comparing the expression for [X, Y] which
we have computed above with the expression for the element of g, which
is associated to w it is easy to verify that (1.24) and (2.a) are equivalent
to (2.a), (2.c) and (2.d). This proves (2). In the next step of the proof
we compute [g;, g;].

(3) Let w,w eP; and Y, Y’ the corresponding elements of g;. Set
y 1= —4Im (S(w, w)); then [Y, Y'(z, ) = (4,(2)z, p(2)p(y)u) for all (z, u) e
Ve x U
Because of [Y, Y]1e g, we know from (1) that there exists a ye ¥, and a
BeEnd, U such that [Y, Yz, v) = (A,(2)z, o(2)Bu) holds. A straight-
forward computation of [Y, Y’] produces

(8.2) A 2)z = 28(ip(2)w, p(R)w’) — 28Gp(2)w’, p(2)w),

(8.b) ¢@(2)Bu = ip(2S(u, p(R)w)hw’ + 20(S(ip(2)w, w))u +
20(S(u, wW))ig(2)w — ip(2S(u, pE)w))w — 20(SEp(2)w’, w))u —
20(S(u, w))ip(x)w'.
From these two equations we obviously get y = —4Im (S(w, w’)) and
B = ¢(y).

(@) yeP, (0P, =0=0(y) = 0.
Consider the map x: %, — Sym (P}, 0), ¥ = ¢()|r,- It is well defined because
of Lemma 5.1 and it is a homomorphism of Jordan algebras because of
Lemma 3.6. Hence, Ker« is an ideal of %,. By Corollary 5.2 also Ker«
N P, is an ideal of the formally real Jordan algebra %,. This implies
that Kerx N P, has a unit; we denote it by r. Let Ye g, such that Y(z, u)
= (A(2)z, p(2)Bu) holds. From (2.2) and Corollary 3.11 we derive that it
exists Ce Endy U which satisfies B = ¢(r) + C and (0, p(a)C) € g, for all
aeV. Put a:=e then Lemma 2.10 implies C* = —C and [p(v), C] =0
for all ve V. Consequently [¢(r), B] = 0 and by (2.c) we get 0 = o(r)BU
= Bp(r)U. From p(Bre(r)u, w) = p(u, (r)Bw) = p(u, Be(r)w) = 0, u,we U,
we conclude that the restrictions of B and B’ vanish on ¢(r)U. Then
also B + B = ¢(r) vanishes on ¢(r)U. Whence ¢(r) = 0. Let yeKerx
N P, be arbitrary; then o(y) = o(ry) = He(r)e(y) + ¢(»)e(r)} = 0. This
proves (4).

Set P := Ker¢p N P,. As in the proof of (4) we see that P is an
ideal of the formally real Jordan algebra P,. Hence there exists an ideal
P® of P, such that P, = P® @ P® holds.
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(5) {S(w, w); we P,} generates the vector space P®.

From (3) we know S(P,, P,) C P, + iP,. Denote by r the unit element
of P. Then (A(r), 0)eg, whence rS(w,w’) =0 for all w,uw e P,. This
implies S(Py, P,) C P 4+ iP{®. On the other hand let xe P® such that
a(x, S(w, w)) = 0 for all we P,. Consequently p(p(x)w, w) = 0; so we get
o(x)w = 0 for all we P,. From (4) it follows xe Kerop N P® = 0.

(6) The polynomial (z, u) — (A,(2)z, p(p(x)u) is for all xe P, an ele-
ment of g,.

Let xe P®; we have to prove that the map (z, u) — (A.(2), 0) is an element
of g,. From (2) we derive that only (A.(a), 0) € g, must be checked. But
this is a consequence of Corollary 3.11.

Let xe P®; then the assertion follows from (3) and (5). This finishes
the proof of (6).

To prove the theorem it now obviously suffices to show that g, con-
tains no nontrivial map of the form (z, u) ~ (0, B(2)u). If such a map is
contained in g, then (0, B(a)) € g, for all ae V. This implies B(a)* = — B(a).
On the other hand we have 0 = [g,, [g,, ¥_;]]; by a computation we derive
from this B(z)? = 0. Consequently B(z) = 0 for all ze V¢, The theorem
is proved.

CoroLLARY 5.5. Kerop N U, C P,. For tube domains U, = P, holds.

Proof. We use (2) from the proof of Theorem 5.4 and see that we
only have to check (A,(a),0)eg, for all xe Kerp N U, and allae V. But
this is clear by Corollary 3.11.

More precisely we have

CoROLLARY 5.6. The vector space P& which is spanned by {S(w, w);
we Py} is an ideal of P, and we have

P, =Kerp NU)DPY.

Proof. Clear from Corollary 5.5 and (5) from the proof of Theorem 5.4.
The last result implies

CoroLLARY 5.7. a) If P, ¢ Kero then g, + 0.
b) If g, = 0 then g, + 0.

The next result characterizes P, without recourse to g,.

CoroLLARY 5.8. For xe ¥, the following are equivalent
(1) xzeP,
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@ ex)UC P,
@) Slp(S(u, p(xyw)u, d) = S(u, p(S(d, w)p(x)w) for all d, u, we U.

Proof. Because of xe ¥, and (4.2) it is clear that (2) is equivalent
to (8). To prove (1) = (2) we start with x ¢ P,; then, by Theorem 5.4, the
map (2, u) — (A,(2)z, p(2)p(x)u) is an element of g,. Hence we may apply
(2.c) from the proof of Theorem 5.4 and get (2). Assume now that (2)
holds. By Corollary 5.2 we know that P, is an ideal of the formally real
Jordan algebra %,. Hence there exists an ideal P, of ¥, satisfying %, =
P,®P,. The unit of P, is denoted by g. To prove (1) it clearly suffices
to show gx = 0. To verify this we first mention that by (2) and Lemma
5.1 we have ¢(gx)U = }Ho(g)p(x) + o()p(2)}U C o(2p(x)U + o()U C ¢(g)P;
+ P, C P;. By (3) from the proof of Theorem 5.4 we get y := S(p(gx)u,
p(gx)u) = —Im (S(p(gx)u, p(gx)iuv)) € P,. Because of ¢p(p)p(gx) = 0 we have
py=0. ButyeP, whence y =0. From (1.12) we get ¢(gx)u = 0 for all
ueU. Therefore, gxe Kerp N ¥U,. Corollary 5.5 now implies gxe P,.
Hence gx = 0. The corollary is proved.

CoroLLARY 5.9. o(p)U = P,.

Proof. Because of (2) of Corollary 5.8 we only have to prove P; C
e(p)U. Let weP,; as ¢o(p)UC P, we may assume ¢(p)w=0. From
Corollary 56 we know S(w,w)eP,, whence Sw,w) = pSw,w)=
$S(e(p)w, w) + +S(w, p(p)w) = 0. This implies w = 0 and the assertion
is proved.

As a trivial consequence of the last result we get

CoroLLARY 5.10. Let X denote the element of g, which is associated to
peP,. Then (ad X)g_; = g;.

A similar result has been directly proved in [45]. We are now able
to simplify the conditions of Theorem 1.5.

CoroLLARY 5.11. For Xe §, the following are equivalent
(1) Xeg,
2 [X,g-]C g and [X,g-4] C g,

Proof. Obviously, we only have to prove (2) = (1). Let Xe §, satisfy
the conditions of (2). From [X, g_,] C g, we conclude that the first com-
ponent of X lies in ¢,(K) C Lie Aut D(K). As in (1) from the proof of
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Theorem 5.4 we show X(z, u) = (A.(2)z, q..(2, v)). We also derive g, (2, v)
= ¢(2)Bu from [X,g_;] C g;. Checking the proof of (2) from the proof of
Theorem 5.4 we see that the conditions [X,g_,] C g, and [X,g_;] C g; are
equivalent to (2.a), (2.c) and (2.d). It now suffices to note that the con-
dition Im (trace p(a)B) = 0 for ae V was not used in the proof of Theo-
rem 5.4.

From Theorem 5.4 we get further

COROLLARY 5.12. The elements of g, are uniquely determined by their
value at ie.

CoroLLARY 5.13. For xe ¥, the following are equivalent

@D o(S(u, wHe(X)u = e(S(u, p(x)w))u for all u,we U,

2 o(x)p(S(k, w)Hu = e(S(p(x)u, w))u for all u, we U.
For x¢c P, the conditions (1) and (2) are satisfied.

Proof. The first assertion follows from

o(S(u, w)p(x)u — (S(u, p(R)w))u = 2p(xS(u, w))u — e(x)p(S(u, w))u
— o(S(u, p(x)w)u = e(S(p(x)u, w)u — e(x)p(S(u, w)u .

The second assertion follows from (2.d) from the proof of Theorem 5.4.

Remark 5.14. Theorem 5.4 has been proved for symmetric Siegel
domains in [48]. The proofs are different.

We finish this section with a detailed description of P, and P;. Let
A =UP D - .- DU® be a decomposition of U, as sum of ideals. We denote
the unit of A by c¢’. Then, by Lemma 3.9, U, is the orthogonal sum
of the spaces U := ¢o(c?”)U,. Let 9,; denote the Peirce spaces of the
Peirce decomposition of % with respect to the CSI f, :=c®, .-+, f, := ¢,
forr =10 then U = @0, Ay, Ay =D, U =Dy, Uypyy and Uy =
Ay,16.1- The choice of ¢ implies that A(c”’) has only the eigenvalues
0 and 1 on ¥, whence %,; =0 for 1<i,j<s,i+j Forsuchiandjwe
have ¥, ,,,%, ., C %;; = 0. Further, from Lemma 3.9 we get S(U®, UP)
c %, =0.

The following result is a very useful detailed description of P, and P;.

LemMma 5.15. Assume that %" is simple for all j. Then
a) P, = ®j.. (P, N UY),
b) P1 = @jex (Pl N ?Ifj)),
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¢) If P,N UP 0 then P, N UP = UP and P, N AP = AP,
d) If P,NUP ~0 then P, N AP =AY and P, N UL = UW.

Proof. By Corollary 5.2, P, is an ideal of %, hence sum of some A{".
‘We may assume P, = AP D - .- @ AP. From Corollary 5.7 we get @%_, UY
= P;. Hence a), b) and the first parts of c¢) and d) are proved. To prove
the second part of c) we choose ye P, N U, y  0; then S(y,y)e P,
From y + 0 we get S(y,y) # 0; hence P, N A £ 0. By assumption, AP
is simple, whence P, N U = A, Finally, the assumption of d) implies
o(c"U = UV C P;, whence the assertion.

Remark 5.16. Let K denote the projection of K onto U{” and define
8;: U x UP - UP + AP by Su, w) := S(u, w). Assume further that
AP is simple. Then it can be shown that D(K{?, S,) is symmetric if and
only if P, N AP £ 0.

§6. Commutators in g(KX, S)

In this section we express the commutators in g(K, S) by parameters.

By D(K, S) we denote a homogeneous Siegel domain in V¢ x U. We
first fix some notation.

(6.1) P,:=V, P_,}::U, Py:=g,.

By Theorem 1.4 we know that P_, is a domain of parameters of g_, and
that U is a domain of parameters for g_;.

We recall that P, and P, have been defined in the preceding sections
as the respective domain of parameters for g, and g,.. It is clear that all
P, are vector spaces over R. P_, and P, are vector spaces over C.

Let 2+ 0 and we P,; then by X,[w] we denote the element of g, which
is characterized by w (see Theorems 1.4, 4.1 and 5.4). To unify notation
we also put X[T, T] = (T, ’j’) for (T, Te Go-

For the description of all commutators it clearly suffices to consider
the commmutators in [g,, g,] < g;.,. Here we proceed as follows. At one
hand we directly compute L(w, w’) := [X,[w], X,[w']]; on the other hand
we know L(w, w') € g,.,. Hence L(w, w) =0if 2+ pe{—1, —4,0,%,1} and
there exists an element f(w, w’) € P,,, such that

L(w, w') = X, [f(w, w)] holds if 2 4 pe{—1, —4,0,%,1}.

In what follows we evaluate this equation case by case. More precisely,
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we compute f(w, w’) in all cases and derive several identities which turn
out to be helpful in concrete computations.

All parameters appearing are chosen arbitrarily. The proofs, being
easy, are omitted.

62  [X.[w], X [w]]=0.

6.3)  [X_[w], X_,[w]]=0.

6.4  [X.[w], X[T, T = X_,[Tw] .

6.5)  [X_[w], X,[w]] = X_,lipw)w] .

(6.6) [X_i[w], Xi[w]1] = X[24..(w), p(w)p(w)] .

(6.7) [X_3{w], X 4[w]] = X i [—4Im (S(w, w))] .

6.8)  [X_[w], X,[T, T1] = X_,[Tw] .

(X, [w], X[z, u) = 25w, o@w) + SeEw’, w),
—o(S(u, wHw' + o(S(w, w))u+e(S(u, w)Hw) .

(6.10)  [X_;[wl], X.[w]] = X,[—ip(w)w] .

(6.10.2) o(S(u, w)e(wHu = o(S(u, p(wHw))u for uy,we U, webP.

611)  [X[T, T1, X,[T", 71 = X[-[T, T, — [T, "] .

6.12)  [X[T, T1, X,[w]] = X,[T*w] .

(6.9)

The following three identities are valid for all ze V¢, ue U, we P,, (T, f’)
€ g,
(6.12.2) o(T2)w — Tgo(z)w = go(z)f’*’w R
(6.12.b) S(u, o(T2)w) — S(u, ToE)w) = S(u, pZ)Tew) ,
6.12.c) o(S(Tu, w)u + o(Su, w)Tu — Te(Su, W)u = o(Su, Trw)u .
6.13)  [X[T, T1, X\[w]] = X.[T°w] .
W(T2)pw) + p@ew)T — To(2)pw) = ¢(R)p(T w) )
for all ze V¢, we P, (T, T)eg,.
6.149) [X[w], X, [w]] = X,[—4 Im (S(w, w))] .

(6.13.a)

The next four identities hold for all ue U, ze V¢, w, w € P,.
S(u, p(S(p@)w, w)w') + Sp(S(u, w))u, p(Z)w’)

= S(u, o(S(e@E)w’, w)w) + S(p(S(u, w))u, p(Fw) ,
(6.14.b) o(S(u, wW))e(S(u, w)u = e(S(u, w)e(S(u, w))u ,

(6.14.2)
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(6.14.c) —2A15wwn(2)2 = iS(p(Dw, p(R)w’) — iSp(RDw', pF)w) ,
—2¢(2)p (Im (S(w, w))u = ip(S(u, )W)’ + iv(S(pR)w, w))u
(6.14.d) + ip(S(u, weR)w — ip(S(u, pEw)w — ip(Sp(x)w’, w))u
— ip(S(u, w)p(2)w' .
6.15)  [X;[w], X[w]] = 0.
The following three identities hold for all we Py, w' e P, ue U, ze V°.

(6.15.a) 2A,.(2)S(u, p(Z)w) = S(p()p(W)u, pE)w) + S(u, (A, (2)Z2)w) .
P(S(u, pE)w)p(wu + p(2)p(w)p(S(u, w)u
= o(S(p(2)p(w)u, w)u + o(S(u, w)p(2)p(w)u .
(6.15.c) (A, (2)2w = p(2)e(W)p()w .
(6.16) [X[w], Xi([w]]=0.

(6.15.h)

The last two identities are valid for all w,w' e P,, ue U, ze V€.
(6.16.a) A, (2A,(2)z= A, (2)A,(2)z.

P(2)p(Wp(2)p(w)u + (A (2)2)p(w)u

6.16.b
(6165 = p(2)p(w)p(2)p(w)u + p(A, (2)2)p(w)u .

§7. The radical and a Levi decomposition of g(X, S)

Let D(K, S) denote a homogeneous Siegel domain in V¢ x U. We
use the results of the preceding sections to describe the radical and a
Levi decomposition of g(K, S). Finally, we associate to D(K,S) in a
canonical way a symmetric Siegel domain which turns out to be a con-
crete realization of a symmetric domain which has been abstractly con-
structed by K. Nakajima in [38].

1. To describe the radical v = w(K, S) of g = g(K, S) we use Theorem
1.6. But first we have to fix some notation.

(7.1) Pr:={xeV; X |[x]lew_},
(7.2) Pr,:={deU; X ,ldlew_;},
(7.3) Pl :={xe V;a(x,y) = 0 for all ye P},
(7.4) Pl :={deU;p(d, u) =0 for all uePy}.
TueoreM 7.1. a) P, = P{,
b) Pr, = P}
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Proof. By a dimension argument we derive from Theorem 1.6 that
it suffices to prove PI, C Pi- and P, C P}. Let ye PI,;; then X_.i[ylemw_,
and for all X [w']eg, we get [X_,[y], Xi[w1lew N g, C w,, We know v N
g, = 0; hence [[X_,[y], X,[w']], X,[w']] = 0. Now we use (6.6) and (6.13) and
get 0 =[A,(W)]'w = A, (Yw for all w'eP, ye P, We insert for w
the unit p of the ideal P, of A,. We thus get 0 = A (y)p = py. This
implies y € P+ and a) is proved. Now, let de P7,;, then we have [X_,[d],
X [wllewnNg.,=1tw._, for all weU,dePr,. Applying (6.7) and a) we
get Im (S(d, w’)) e PL. We specialize w’ := id; hence S(d, d) ¢ Pi+. By (6.8)
we may replace d by ¢(p)d; in this case we have 0 = a(p, S(p(p)d, o(p)d))
= p(e(p)d, p(p)d), whence 0 = ¢(p)d. But this means de P}. The theorem
is proved.

Now we characterize fv,.

THEOREM 7.2. Let X = (T, T)e 8. Then the following are equivalent.

1) Xe,

(2) Xeradg, [X,g-]C ni—n [X, Q—%] C Dy,

3 Xeradg, T°P,=0, T°P, = 0.

Proof. Let 1, denote the set of X’s which satisfy (2) and v, the set
of X’s which satisfy (3). We obviously have mw, C ,, To prove b, = o,
let X = (T, T) eradg,; then Xe o, is equivalent to TV C P+ and TU
P; because of (6.4) and (6.8). Hence Xe v, if and only if T°P, =0 and
T"P% = 0. This proves b, = fv,, To prove the theorem it suffices to show
that ¢ :=w_, + tv_; + @, is a solvable ideal of g. We first note

(@ [Lalce [yl Co
for [c,g_,] C [0y, g..] € w_, by (6.2) and (6.3).

®) [alce [eglce
By the properties of g it is clear that [c, g] < w, + [0, ] holds. It ob-
viously suffices to prove [fd,, g;] = 0. But this follows from (6.13) and 7" P,
= 0 for (7, f’) C f,. The second assertion is proved along the same lines
using [c, g;] C w_; + W, + [0, g;] and (6.12). Next we verify

(© [c gl C 1o,
Because of [¢, g)] € w_, 4 w_; + [0, g,] it suffices to show [iv,, g,] < ,. By
(2) this means [, g,] C rad g, [[Dy, g, g-.] C to_, and [[fo,, g, g-3] C w_;.
Here the first inclusion is clear. Let Xef, Yeg,and Z,€g,,v = —1, —1.
We then have [[X, Y], Z] = [X, Y, Z]] + Y, [Z, X]], and by definition of
0, [Z,, X] is contained in v,. Hence [Y, [Z,, X]]ew, C ¢, v = —1, —3. On
the other hand [Y, Z] C g,; whence [X,[Y, Z]letv, C¢c. It now remains
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to prove that c¢ is solvable. Here we use [c, ] C [w_,, D] + [I0_y, 0_;] +
[fo_y, o] + [0y, 0] C 0, + Ww_; + [, ). Hence, for the k-th derived ¢®
we get ¢<® Cw_, + w_; + m{. But v, is solvable, whence there exists
ne N such that D = 0. Then ¢**» = 0. This finishes the proof of the
theorem.

By [28], [25; Theorem 4.1] we know that adg is an algebraic Lie
algebra. We use the notation of Theorem 3.12 and [9; V, § 4, Proposition
6] to get

CorROLLARY 7.3. a) =[G, + 3) N W]+ n* 4+ w_, + v_y,
b) (G, + 3) N W is abelian and for Xe 3, + 3) N v is ad X semisimple,
c) n’+ w_, + ww_; is the largest nilpotent ideal of g.

2. This paragraph is devoted to the construction of a Levi decom-
position of g. We set [_, :={X ,[J[ul;we P}, [_; = {X[w];we P}, [; :=
{X,[w]; we Py} and [, := {X|[w]; we P}.

We are looking for some space [, such that the sum of the !,’s is an
semisimple Lie algebra. We are going to describe [, quite explicitly. We
use the Peirce decomposition U = @, ;.,;.,¥,; and the spaces m,;, my,a
and a* which have been introduced in §3. We decompose ¥, = %, into
the direct sum of its simple ideals A, =AY P ... PU® and get a corre-
sponding decomposition of m,; and m{,m; =mPD- .. B mY and my
=mP @ ... ®mi®. Without restriction we may assume P, =" @ ...
@ AM»,

With this notation we put [y, := m{® @D - - - D m{®.

Lemma 74. [[_;, 5] C L, + a*

Proof. Let X := X ,;[w] and Y := X,[w'] and (T, T) := }[X, Y]. Then,
by (6.9, we know 7Tv = 2Re (S(p)w’,w)) and Tu= —o(Su, w)w +
o(S(w, w)u + o(S(u, w))w. From the definition of T, Lemma 5.1 and
Corollary 5.6 we derive T, C P;; further, T%, = 0 is immediate. On the
other hand we may apply Theorem 3.12; hence there exist (T}, Tl)e my,
x,e %y and (Ty, To) € Pocicje mt; + a¢ such that (T, T) = (T, T\) + (Adxy),
$o(x)p(c)) + (T, T) holds. The properties of 7 mentioned above imme-
diately imply (7, T)el,, and x; = 0. Hence also T)%, = 0. Whence T,
eb and (T, To) € a?. The lemma is proved.

Denote by [, the projection of [[_;, [;] into a®. We set [ := [, + g,

In the proof of the following theorem we use the properties of a*
which we have listed in Lemma 3.14. We add that a*-annihilates P, and,
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by Corollary 5.9, leaves invariant P,.
As usual, by p we denote the unit element of P,.

THEOREM 7.5. a) (=01, 4+ 1+ L+ + 1, is a semisimple sub-
algebra of Lie Aut D(K, S).

b) 1, is an ideatl of a*.

c) The elements of | leave invariant the vector space Pf X P;.

d) If Xe! annihilates P X P; then X = 0.

Proof. 1) In the definition of [ we replace [, by {; := {,, -+ a*. The
vector space thus constructed will be denoted by !/, its summands by [}
We claim that [ is a subalgebra of g = Lie Aut D(K, S) which leaves in-
variant Pf X P;. The second assertion is easily verified using the explicit
expressions for the elements of [}, To prove the first assertion it suffices
to show [l /] C 1}, for 2, pe{—1, —%,0,%,1}. There is nothing to be
proved for the pairs (1, ) e {(—1, —1),(—1, —3%), G, 1), (1, 1)}. Next we use
(1)@ =1, the results of §6 and Lemma 5.1 and immediately get the as-
sertion for the pairs (1, e {(—1,0),(—1,1),(-1,1),(—%0),(—% 1), (O, D),
(0,1)}. To settle the cases (1, p) € {(—%, —3), (3, 3)} we use (6.7), (6.14) and
Corollary 5.6. We are left with the cases [[, [{] C (5 and [[Z;, [;] C [;. The
first one is clear because [, and a* commute by Lemma 3.14. The second
one coincides with the assertion of Lemma 7.4.

2) We claim that [ is an ideal of I’. We only have to prove [{_,, [}]
Clyfor 2=0,%41 and [[,a*] €. The case 21 =1 is a consequence of
(6.6) and the case 2 = % follows from the definition of [, Let 2 = 0; then
it obviously suffices to prove [{,, a*] C [,,. But this follows from the de-
finition of [,, the fact that a® leaves invariant [_, and [, and that [,
commutes with a?. From these remarks we also get [[_; + [, + [;,a?] C L.
Finally, (6.4) and (6.13) imply [{_; + [,, a*] = 0 and the assertion is proved.

3) The radical v’ of I’ is contained in the set q of X ¢l which an-

nihilate Pf X P;.
To prove this claim we first mention that the map > X, > 21X, is a
derivation of [’; therefore v’ is the sum of the vector spaces ] := v’ N [}
The proof for the fact iv; = 0 and w; = 0 can be taken almost unchanged
from [29; Lemma 4.2]. Hence [ivg, [, 4+ [;] = 0. We now consider the vector
field X(z, u) = (A,(2)z, ¢(2)p(p)u) which is contained in !j. As a conse-
quence we get (ad X)w’, = 0 and (ad X)*v”, = 0. We use (6.4), (6.6), (6.10)
and Corollary 5.9 to get w’; = 0 and w’, = 0. This implies [ty [7; + (7]
= 0. By (6.4) and (6.8) the assertion follows.
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4) The Lie algebra [ is reductive.

From the definition of q we easily derive q C a*. We know that a® is
reductive (see Lemma 3.14) and that iv, is a solvable ideal of a*. Hence,
tv; is contained in the center of a*. This implies [}, [;] = 0 and tv; equals
the center of ['. Hence, the radical rad! of the ideal ! of [’ coincides
with the center of ! and the assertion follows (see [4; §§5, 6]).

5 < [,1]

To prove this claim we put E := (A(p), 3¢(p)) and get [E, ;] = [, for 2 = 0.
From (6.6) we derive {(A(x), 3¢(x)); x€ P} C [[,I]. Whence [, C [[,]. By
definition of [,, we know [, C [[_;, ;] + V. Hence [, = [, + L < [1, 1.
This proves the assertion.

We are now in the position to prove the theorem. Part a) follows
from 4) and 5). Part b) is contained in 2) and c) is contained in 1). It
therefore suffices to prove d). Choose Xe! which annihilates Pf X P,.
Write X = > X, where X,e{,, Now, the first components of the X,’s are
polynomials of different type; hence the first component of each X, an-
nihilates Pf X P;. This implies X_; =0, X_; = 0 and X, = 0. Comparing
the second components of the remaining X;’s we get along the same lines
X, = 0. This means that the set ¢ of Xe! which annihilate Pf X P; is
contained in [,,. By the results of §6 we see that y commutes with [_,
+ 03+ 0+ . We also have [z, [,,] = 0 because of y C [,. Further, g
is an ideal of a*. Putting all together, we have shown that g is an ideal
of I. We have proved above that [ is semisimple; hence [ = 3 ® { where
the ideal T of ! equals the orthogonal complement of r in [ with respect
to the Killing form. Finally, we consider E := (A(p), 3¢(p))e!l. From
the definitions of E and r we easily derive [E,t] = 0. Whence Ec{ and
[E,f] c 1. In 5) we have shown that [E,[] =1_, + [_, + [, + |, generates
the Lie algebra [. This implies ¢ = 0 and the theorem is proved.

CoroLLARY 7.6. a) [, is generated by [[_;,[_;]1 + [[_,, [,].
b) Let (T, TYel, and ve V satisfying pv = 0, then Tv = 0.

Proof. a) is a consequence of 5) from the proof of Theorem 7.5 and
b) is contained in the proof of Lemma 7.4.

Next we describe a®* more precisely. We set {, := {X e a?; X(Pf X P,)
= 0}. From d) of Theorem 7.5 we get t, N [, = 0.

COROLLARY 7.7. The Lie algebra of is the direct sum of its ideals t,
and Yy, o =1, D (.
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The Lie algebra 1, is reductive and its center is contained in the radical
of g(K, S), t, = [L., t] D v, N a*.

Proof. It is clear that t, is an ideal of a* and, as carried out in the
proof of Theorem 7.5, [ is an ideal of the Lie algebra [ -+ a¢. Hence,
ad X is a derivation of the semisimple Lie algebra ! for all Xea?. The-
refore, there exists Yel such that ad (X — Y){ = 0 holds. We apply
ad (X — Y) to (A(p), 3¢(p) el and get Yel,, We know that Y=Y, + Y,
where Y, e, and Y, e[, and derive from ad (X — Y)l = 0 easily Y = Y,.
Hence X — Yea*. Finally, ad (X — Y)[_; = 0 shows that X — Y annihi-
lates Pf X P, and thus proves the first assertion. Let now X lie in the
center 0 of t,. Then X is contained in the center of a*. By Theorem 3.12
we thus get Xeradg, But, by definition of {,, we also have T°P, =0
and T"Pi, = 0 where X = (T, T); hence, by Theorem 7.2, we get Xe in,.
Finally, the ideal t, of the reductive algebra a’ is reductive again, whence
t, = [t, t.] + 5. But we have shown above o C tv, N {, and the assertion
follows.

We are now in the position to provide a Levi decomposition where
the semisimple summand has especially nice properties. Let §,, (resp. h’
resp. f),) denote the semisimple part of the reductive Lie algebra m¢; (resp.
mi" resp. t,)

We set §: = @) ;.. 57 + DI, b, + b

THEOREM 7.8. a) The sum | 4+ Y of Lie algebras is direct.
b) [+ Y is ¢ maximal semisimple subalgebra of g(K, S).

Proof. It is clear that the sum of the vector spaces ! and § is direct.
The Lie algebras m;, and m,, commute as do m{¥ and m” if j+#r.
Further, [m?,,a?] =0 for 1 <r< q and [{,, {,] =0. To finish the proof
of a) it now suffices to note that, by the results of §6, we have [§,{_, +
[, + 10, +1]=0. To prove b) it is enough to show g=g(K,S)=0+}
4+ tn. We use the definition of [ and Theorem 7.1 and see that we only
have to prove g, C [, + § + tv,, We apply Theorem 7.2 and get that the
centers of m{{”, r > k, and m¢,, j > 2, are contained in w, Hence,—see
Theorem 3.12—it suffices to show a* C {,, + §, + 0, N a*. But, by Corollary
7.7, we know [, + v, N a* = t,. The theorem is proved.

3. In [38] it was shown that g = g(K, S) contains a (possibly trivial)
semisimple subalgebra which is canonically isomorphic to the Lie algebra
of infinitesimal automorphisms of a symmetric Siegel domain. In this
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paragraph we construct a symmetric Siegel domain D(K’, §’) C D(K, S)
and prove that the restriction of the Lie algebra [ (which has been con-
structed in the last section) to D(K’, S’) coincides with Lie Aut D(K’, S’).
This makes concrete the rather abstract construction of [38].

We recall that a Siegel domain is called symmetric if its Lie algebra
of infinitesimal automorphisms is semisimple [58], [60], [61].

We define V' := P, U’ := P, and S’ := S|y.xy.. Further, by K’ we
denote the projection of K into V’. Then, by Corollary 6.6, S’ is a K’-
hermitian form. We therefore may consider the Siegel domain D(K’, S’).

THEOREM 7.9. The Siegel domain D(K’, S’) is homogeneous and | is
canonically isomorphic to Lie Aut D(K’, S’). The Siegel domain D(K’, S’)
is symmetric.

Proof. 1) We identify [ with its restriction to P X P,. This can
be done because of part d) of Theorem 7.5. If P, decomposes into the
sum P, =" @ ... D UAP, then also [ decomposes. We therefore may
assume that P, is simple.

2) We compute 7.5, 0/, ¢ for D(K’, S"). Put

7'(%) 1= [tx ()] [det p(x)[,],  xeK',
and W := exp tA(y), W := exp to(y), y e Py; then

7(Wx) = [det W]-* [det W]-%/(x)

follows. Hence, 5z.¢ and % only differ by a positive constant factor.
Further, it is clear that w(x) := det ¢(x)|, is a “multiplicative polynomial”
in the sense of [56; II, § 3] and therefore, by [5; III, § 6] a power of ¢x.(x).
This implies that there exist a > 0, 8 > 0 such that 7g.s(x) = e[ (%))
holds for all xe K’. We now apply the results of [31; VI] on domains of
positivity and formally real Jordan algebras and see that the algebra which
is defined for 7.5 and the unit p of P, according § 3 coincides with the
ideal P, of ¥,. From this and the fact that P, is simple we get that the
bilinear form ¢’ which is defined for 74 and p and the bilinear form
0lp,xr, Only differ by some positive factor § because both bilinear forms
are associative. We use the definition of p’ and see p’ = Jp|p,xr; Whence
¢'(x) = ¢(x)|p, for all xe P,

3) Wesetq :=LieAut D(K', S), ¢’ =g~ + ¢~ + g + g; + g.. From
2) and Theorems 4.1 and 54 we get [, =¢",, [, =¢/;, [, =gq; and [, =
g;. By Theorem 1.6 we thus have w’, =0 and ’, = 0. But now (6.4)
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and (6.8) imply fv; = 0 whence g’ is semisimple. We therefore only have
to prove [, = g;,. We now apply Corollary 7.6 to [ and to ¢’. But [, = gj
for 2+ 0 and |, = g; follows. The theorem is proved.

Remark 7.10. Put E, := (A(p), $¢(p)); then, by the results of this
paper, most of the results of [38; §§2, 3] are immediate consequences.
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