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HOMOGENEOUS SIEGEL DOMAINS

JOSEF DORFMEISTER

In 1935 E. Cartan classified all symmetric bounded domains [6]. At
that time he proved that a bounded symmetric domain is homogeneous
with respect to its group of holomorphic automorphisms. Thus the more
general problem of investigating homogeneous bounded domains arose. It
was known to E. Cartan that all homogeneous bounded domains of di-
mension <3 are symmetric [6]. For domains of higher dimension little
was known. The first example of a 4-dimensional, homogeneous, non-
symmetric bounded domain was provided by I. Piatetsky-Shapiro [41]. In
several papers he investigated homogeneous bounded domains [20], [21],
[41], [42], [43]. One of the main results is that all such domains have
an unbounded realization of a certain type, as a so-called Siegel domain.
But many questions still remained open. Amongst them the question for
the structure and explicit form of the infinitesimal automorphisms of a
homogeneous Siegel domain.

Important contributions on this problem have been provided by N.
Tanaka [54] and W. Kaup, Y. Matsushima, T. Ochiai [29]. They used
graduations of the Lie algebra q of infinitesimal automorphisms of a Siegel
domain Zλ Starting from these two papers several articles have been
published which dealt with a more precise description of the elements of
9 [37], special cases and examples [49], [50], [51], [56], [57], symmetric sub-
spaces [38], the representation of D as a Siegel domain of type III [39],
as well as other questions.

In this work we present a new method for the description of homo-
geneous Siegel domains. This method entails a classification of the
domains considered and makes it possible to answer several of the open
question. We are able to reproduce the known results and, in some cases,
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get a geometric interpretation.
There are several applications of the results of this paper. We would

like to mention three of them. Using the theory of representations of
Jordan algebras [24] and the theory of Clifford algebras [2], [8] it is pos-
sible to find an explicite description of all quasisymmetric Siegel domains.
This in particular reproduces results of I. Satake [46], [47], [48], and M.
Takeuchi [53]. Moreover, a Cayley transformation for quasisymmetric
Siegel domains and the symmetries of a symmetric Siegel domain can be
stated explicitly. Further, by the results of [10] and of this paper it is
relatively easy to construct all homogeneous Siegel domains of dimension
<10. This has been previously done by S. Kaneyuki and T. Tsuji using
different methods [27], [55], Finally, it is possible to find explicit expres-
sions for the 1-parameter groups of vector fields X e QX. [62]

We note that for simplicity of presentation we shall concentrate on
the investigation of homogeneous Siegel domains, but the method which
we present can be applied as well to non-homogeneous Siegel domains.
In particular this applies to investigations on non-affine infinitesimal
automorphisms.

We briefly review the contents of this article. For ease in reading
this paper most of the definitions and results concerning homogeneous
Siegel domains and their infinitesimal automorphisms will occur in § 1.
In § 2 we provide the tools which are characteristic for our method. In
particular we define—starting from the Bergmann kernel of a Siegel
domain D(K, S) in Vc X U — a commutative algebra 31 and a linear map
<p: SI -> Endc U. In § 2, 6 we establish three different descriptions of homo-
geneous Siegel domains. Using Theorem 2.14 and [15], 8 we thus get an
algebraic classification of all homogeneous Siegel domains. The charac-
terization of these domains by morphisms of homogeneous cones is
especially useful for developping examples.

As remarked above, in § 1 we assemble results on the infinitesimal
automorphisms g = g(i£", S) of D(K, S). We there introduce the graduation
q = g_! + g_£ + Qo + Qi + 9i of 8 Sections 3, 4 and 5 provide an explicit
description of the elements of ql9 λ = 0, \, 1 for arbitrary homogeneous
Siegel domains. To be more precise, in § 3 we use the results of [15] on
J-morphisms of homogeneous cones to explicitly describe g0 and thus to
clarify its structure. We use this result to investigate Ker^ and nonde-
generate Siegel domains. The elements of g4 are characterized in § 4. It
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turns out that there exists a complex vector space P% which parametrizes
g$. In § 5 we investigate g2. We prove that gt is parametrized by a sub-
space Pj of ST. Further, the relations between Pj and P4 are clarified.
We thus find a simple and unifying explanation for several results of the
literature on ĉ  and glβ

We would like to mention that for the case of a symmetric Siegel
domain the infinitesimal automorphisms have been described independently
by I. Satake [48].

In § 6 we collect the identities which arise when we express the ele-
ments of [qλ, gj by the parameters of the elements of QZ and ĝ . The last
section, § 7, is devoted to the investigation of the radical ft) of g and
provides a Levi decomposition g = t + £) + ft ofg. The Lie algebra I of
the semisimple summand I + ζ of this Levi decomposition is the Lie
algebra of infinitesimal automorphisms of a symmetric Siegel domain. The
existence of such a Levi decomposition has been proved in [38]. Here
we choose Γ so that in Pf X P^ we get a canonical realization of the
corresponding symmetric domain D(ΐ).

Part of this work has been done during a stay at the Institute for
Advanced Study, Princeton, N. J. I would like to express my thanks to
A. Borel for giving me the opportunity to work at the Institute. Special
thanks are due to M. Koecher who supported the author in all regards.

§ 1. Definitions and fundamental results

1. Let V be a finite dimensional vector space over the reals R. We
provide V with the canonical topology. By Vc we denote the complexifi-
cation of V; the elements of Vc will be written z = x + iy, x, y e V. Real
part Re (z), imaginary part Im (z) and conjugation z »-> z (of Vc with respect
to V) are defined as usual.

A subset K of V is called a regular cone (in V) provided

(1.1) K is open and not empty ,

(1.2) x e K, a > 0 implies ax e K ,

(1.3) x, y e K implies x + y e K ,

(1.4) K does not contain any straight line .

We set

https://doi.org/10.1017/S0027763000019796 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019796
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(1.5) Aut K = {We G1Λ V; WK = K) .

Further, for a positive definite symmetric bilinear form τ on V we

define the τ-dual cone KT by

(1.6) K* = {ye V; τ(x, y)>0 for all x Φ 0 in the closure of if in V} .

Finally, for K and r as above we set

(1.7) c(K; x) = f β-'<Λ v ) φ , x e K,
JϋΓr

where dy denotes Lebesgue measure on V.

The function c(K; ) on K is called the invariant (of if). It satisfies the

transformation formula

(1.8) c(K;Wx) = \άetW\-1c(K;x), xeK9 WeAutK.

For a more detailed description of regular cones and their respective in-

variants we refer the reader to [17].

2. Let K be a regular cone in V and U a finite dimensional vector

space over C.

A map S: U X C7-> Vc is called a K-hermίtίan form, if

(1.9) S is C-linear in the first argument ,

(1.10) S ( u , w) = S(w, u) f o r a l l u,weU,

(1.11) S(u, u) lies in the closure of K (in V) ,

(1.12) S(w, u) = 0 if and only if M = 0 .

For a regular cone if and a if-hermitian map S we define

(1.13) D(K, S) = {(z, u)eVcX U; Im (z) - S(u, u)eK) .

It is easily seen that D(K, S) is a domain in Vc X U.

A domain of this type is called a Siegel domain.

If U = 0 then Z)(if, S) only depends on K. Such a domain is called a

domain and is denoted by D(K),

(1.14)

It is immediate that D(K) C D(if, S).

3. For a Siegel domain D(K, S) in Vc X U we set
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(1.15) Aut D(K, S) = {/: D(K, S) -> D(K, S) biholomorph} .

(1.16) Aff D(K, S) = {fe Aut D(K, S), f affine transformation of Vc X U} .

(1.17) Gl D(K, S) = Aut £>(#, S) Π (Gl* V X GLC U) .

A Siegel domain D(K, S) is homogeneous, if Aut D(if, S) operates transi-
tively on D(K, S).
It is known [29] that Aut D(K, S) operates transitively on D(K, S) if and
only if Aff D(K, S) operates transitively on D(K, S).

As standard references for results on the Lie groups Aut D(K, S),
Af£D(K, S) and Gl D(K, S) we refer to [26] and [36].

4. Let D(K, S) be a Siegel domain and Γ c Aut K a closed subgroup
of Aut K. We call (Γ, S) admissible, if

(1.18) Γ operates transitively on K,

For all WeΓ there exists a WeG\cU such that

(W, W) e Gl D(K, S) .

The following lemma shows that the assumption that Γ is closed is ines-
sential.

LEMMA 1.1. Let D(K, S) be a Siegel domain.
a) If ω:= ((Wn, Wn); neN) is a sequence in Gl D(K, S) such that the

sequence (Wn;neN) converges to a We Aut if, then ω contains a sub-
sequence which converges in Gl D(K, S).

b) Let Γ a (not necessarily closed) subgroup of Aut K which satisfies
(1.19). Then the closure Γ of Γ in AutK also satisfies (1.19).

Proof, a) We choose a norm | | on U and a norm || || on V. The
norm induced on Endc U (resp. Endβ V) will be denoted by the same letter.
We prove that the sequence (Wn; neN) is bounded in the norm | | of
Endc U. Suppose the contrary, then we may assume that there exists a
sequence (xn; neN) in U with \xn\ = 1, neN, but |W^Λ;J-> OO. We put
yn : = \WnXn\~1 Wnxn and consider the function u •-> \\S(u, u)\\ on the unit
ball of U. Because of (1.12) this function attains a positive minimum d
and maximum e. It then follows that

0 < d < | |S(yΛ,y n) | | = \WnxnV
2 \\S(Wnxn, Wnxn)\\ = | Wnxn\~21| WnS(xn9 xn)\\

< II Wn\\ \Wnxn\~2 \\S(xn9 xn)\\ < || Wn\\\Wnxn\-2e .

From || Wn\\ -> || W\\ > 0 and || Wnxn\\ -> oo we get a contradiction to d > 0.
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We therefore have proved that (Wn; neN) is bounded and, consequently,
ω contains a convergent subsequence. Hence, we may assume that ω
converges to (W, W). It remains to prove We Glc U. But Wu = 0 implies
0 = S(Wu, Wu) = WS(u, u); from We Aut K we conclude 0 = S(u, u) and
so u = 0 by (1.12).

b) is an immediate consequence of a).
As a consequence we have

THEOREM 1.2. For α Siegel domain D(K, S) there are equivalent
(1) D(K, S) is homogeneous,
(2) There exists a closed subgroup Γ c Aut if swc/i that (Γ, S) is

admissible.

Proof. Use [36; Propositions 2.2 and 3.1] and Lemma 1.1.

5. For a Lie group Γ we denote by Lie Γ the Lie algebra of Γ.
To abbreviate notation we set for a Siegel domain D(K, S)

(1.20) q(K9 S) = Lie Aut D(K, S) .

Where no confusion is possible we write g for Q(K9 S).
As usual, we identify g(ϋΓ, S) with the Lie algebra of complete holomorphίc
vector fields on D(K, S) [36; § 4].
Further, we identify all tangent spaces of D(K, S) with Vc X U; hence
all elements of q(K, S) are identified with holomorphic mappings from
D(K, S) into Vc X U. For Xe q(K, S) we therefore write

X(z9 u) = (Xv(z, u\ Xu(z, u)) eVcχU f o r (z, u) e D(K, S ) ,

where Xv and Xυ are holomorphic mappings.
The Lie bracket of two vector fields X and Y of Q(K, S) can be

computed as follows, w : = (z, u) e D(K9 S),

(1.21) [X, Y](w) = 4rW«> + tX(w)) - X(w
at

As standard reference for results on Q(K, S) we use [29] and [36].
The following theorems are of special importance for this work and

are therefore stated explicitly.
Here we use the adjoint representation ad of Q(K, S) and the vector

field 9 € Q(K, S), d(z, u) = (z, \u).
For a Siegel domain D(K, S) and λ e R we denote by gXJBΓ, S) the

eigenspace of ad 9 in g(UL, S).
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THEOREM 1.3 ([29]). a) g(lf, S) consists of polynomials.

b) q(K, S) is the sum of the subspaces Qλ(K, S), λ = — 1, — J, 0, \, 1.

c) MK, S\ $μ(K, S)] C qλ+μ(K, S).

The spaces Qλ — Qλ(K, S) can be described in more detail. To do this

we denote by pkr (resp. qkr) polynomials in (z, u) which are homogeneous

of degree k in z and of degree r in u.

THEOREM 1.4 ([29]). a) g.j = {(z, u) -> (α, 0); a e V},

b) g_έ = {(z, u) -> (2iS(u, d), d);de U},

c) 9 o = LieGli)(ϋ:,S),

d) βj C {fe w) H-> (pn(z, M), g10fe M) + qQ2(z, u))}9

e) βt C {(2, M) H-> (p20(2f, u), qn(z, u))}.

Obviously, βj is contained in the vector space gj. of all polynomials

of type (p n , g10 + q^) and β! is contained in the vector space gj of all

polynomials of type (p20, giί). For a description of g4 and βt it therefore

suffices to find conditions which single out the elements of gέ (resp. &)

within gέ (resp. gj).

THEOREM 1.5 ([37]). a) βj consists of all polynomials XβQ^ which

satisfy

(1.22) [X, g. J C g0 .

b) 0! consists of all polynomials X = (p20, qn) e Qt which satisfy

(1.23) [X, g.J C g0 ,

(1.24) [X, 8_d C gέ ,

(1.25) Im (trace (u «-> gn(ι;, w))) = 0 /or α/Z i; e V.

Remark. For a tube domain we obviously have g_̂  = ĝ  = 0. The

space QX has been described in [18] for this case (see also Theorem 2.8).

Finally, we consider the radical of q(K, S).

THEOREM 1.6 ([29]). Let to be the radical of g = Q(K, S).

a) tv = to.! + tυ.h + lυ0, to, = to Π β,,

b) dimjj βj = dim^ g_4 — dim^ to.j,

In § 7 the radical to of g will be described more precisely.
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§ 2. A new description of homogeneous Siegel domains

In this section, D(K, S) denotes a homogeneous Siegel domain in

Vcχ U.

1. It is known that for Siegel domains the Hubert space of square

integrable holomorphic functions has a reproducing kernel, the Bergmann

kernel [1].

By [19; Proposition 5.1] we have

THEOREM 2.1. Let B(vu ux\ v2, u2), (vk, uk) e D(K, S), k = 1, 2, denote the

Bergmann kernel for D(K, S), then there exists a map ηκs: K—> R+ such

that

a) ηκs can be extended holomorphically to K + iV,

b) B(vu u,\ v2, u2) = ηzsiQΐ)-^ - v2) - S(uu u2)).

Where no confusion is possible we write η instead of ηκs.

In what follows we denote by Δ°x the directional derivation operator

at x in direction υ.

A map χ:K-+R is called homogeneous (of degree k), if χ(ax) = akχ(x)

for all a > 0 and all x e K.

The following result says that (K, η, e), for arbitrary ee K, is a triple of

& in the sense of [14; § 1,1].

LEMMA 2.2. a) η is real analytic and homogeneous.

b) ΔυJl log η{x) > 0 for all xeK, veV, υψ 0.

c) η(x) converges to oo, when x converges to a point of the {finite)

boundary of K.

d) The group Aut (K,η):={We Aut K; η{Wx) = a{W)η{x) for appro-

priate a(W) > 0 and all xeK} acts transitively on K.

Proof a) is obvious. To prove b), denote by g(ZfU) the Bergmann

metric at the point (z, u) e D(K, S). It is easy to show g(ίx,0)(v, v) =

ΔlΔl\ogη(x) for xeK, ve V. This implies b). Part c) follows from [30;

Proposition 5.2] or [59; §2, Proposition 3]. Finally, choose Γ C Aut if,

such that (Γ,S) is admissible. Thus, for WeΓ there exists a WeG\cU

such that (W, W) e Gl D(K, S). By the properties of the Bergmann kernel

we get η{Wx) = det W'2 |det W\~2 η(x) for xeK. Hence Γ c Aut (K, η) and

(1.18) implies d).

COROLLARY 2.3. There exists a closed subgroup Γ c Aut K such that
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a) (Γ, S) is admissible,

b) for all We Γ there exists aWeG\cU such that (W,W)e Gl D(K, S)

and η{Wx) = det W~2 |det W\~2η(x).

We remark that the argument of Lemma 2.2 shows that the first

components of elements of Gl D(K, S) are contained in Aut (K, η).

2. As remarked above, Lemma 2.2 means that (K, η, e), e e K, is a

triple of J*\ In [14] and [17], there have been associated to such a triple

several mathematical objects. As these objects will play an essential part

in this paper we will assemble the most important definitions and some

of the associated results.

We may suppose η(e) = 1,

(2.1) σ(v, w) : = A*J% l o g η(x) U , υ,weV.

(2.2) σ is extended C-bilinear to Vc .

(2.3) σ(h(x), v) : = - Δ l l o g η { x ) , υ e V , x e K .

(2.4) σ(H(x)v, w) : = Δυ

xΔξ l o g η(x) , v, w e V, x e K .

Let M be a finite dimensional vector space, τ a nondegenerate bilinear

form on M and X an endomorphism of M. Then by Xτ we denote the

adjoint endomorphism for X with respect to τ. Using this notation the

following result follows from Lemma 2.2.

LEMMA 2.4. a) σ is a positive definite bilinear form on V.

b) h (resp. H) is real analytic and homogeneous of degree —1 (resp.

- 2 ) .

c) H(e) = I d , H(x) = H(x)% H(x)v = - Δ υ

x h ( x ) f o r x e K

d ) H(x) is positive definite (with respect to σ) for xeK.

We use the σ-dual cone Kσ (see (1.6)) and [17; Lemma 3.8, Theorems

4.2 and 4.4] and get

LEMMA 2.5. a) h(K) = K%

b) h:K->Kσ is a bίrational diffeomorphism with the unique fixed

point e.

Further, we recall (see [16; I, §4]) the definition of the commutative

algebra 2ί = S%, e) which is associated to (K, η, e). This algebra will be

the main tool for the description of g0? 9* and g^
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We define the product in 21 implicitly by

(2.5) σ(uυ, w) : = - \ Δ u

x Δ l Δ w

x l o g η { x ) \ x = e , u,υ,weV.

The left multiplications in 21 will be denoted by A(v), v e 31.

The complexificatίon of SI will be denoted by SIC.

For the left multiplications of SIC we write A(z), z e SF.

We have immediately

LEMMA 2.6. a) SI is a commutative algebra with unit e.

b) σ(uv, w) — σ(u, vw) for u,v,we V.

c) A(v) = A(υ)σ for veV.

Finally, we recall the definition of the mutation 81, of SI by x. The

product of 81* is given by (u, v) «-• (ux)ι; + W(JCI ) — x(uv). Obviously, SÎ

is commutative but, in general, will have no unit element.

The importance of mutations for the description of g arises from the fol-

lowing fact [18].

THEOREM 2.7. For a tube domain D(K) the elements of & are all of

type z ι-> Ax(z)z with appropriate xeV.

Remark. For an arbitrary triple F = (KF, ηF, eF} of iF we may define

analogously a bilinear form σF, mappings hF and HF and an algebra SÎ

(with unit eF). Moreover, Lemma 2.5 and Lemma 2.6 still hold.

In what follows, however, we mainly deal with the triple (K, η, e}

derived from a homogeneous Siegel domain. At the few places where we

use different triples we will always make this clear by using the triple

indicator as subscript.

3. We will now introduce some further notation which completes

the alternative description of homogeneous Siegel domains.

By a simple argument we get

LEMMA 2.8. The map p: U x U—>C which is defined by p(u, w) : =

σ(S(u, w), e) is a positive definite hermitian form on U.

We define a linear map φ: Vc -> End c U by

(2.6) ρ(φ(x)u, w) : = σ(S(u, w\ x) , x e Vc , u,weU .

Further, we set

(2.7) Sym (U,p):={Xe Endc U; Xp = X) ,
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(2.8) Pos (U, p) : = {Xe Sym (U, p); X positive definite with respect to p) .

By a simple computation we prove

LEMMA 2.9. a) φ(v)p = <p(v) for v e Vc,

b) φ(x) e Sym ([/, p) for xe V,

c) φ(x) e Pos (U, p) for x e Kσ,

d) 9(e) = Id.

e) For We G1Λ V and We Gl c U the following are equivalent

( i ) We Aut K and φ{Wσv) - Wy(v)W for v e Vc,

(ii) (W, W)eG\D(K,S).

f) For Te EndΛ V and T e End c i7 the following are equivalent

( i ) Te Lie Aut if <m<2 <p(Tσv) = f ^(u) + 9(ι;)f /or u e y c ,

(ii) (T,f)eUeGLD(K9S).

4. We want to apply the results of [15] on J-morphίsms of homo-

geneous cones (for definitions we refer to [15]). We therefore define a

triple Mκs : = (F, φ, F) where

(2.9) F:=(K°,c(K°; ), β> ,

(2.10) F : = <Pos ([/, p), .(Pos U, p); )α, Id> , α : = i[dimc C/]"1 .

As in [15; 4] the "invariants" are normalized as to take the value 1 at

e (resp. Id).

It is easily seen c (Pos (U, p); X)a = |det X\~K

Where no confusion is possible we write M instead of Mκs.

From Lemma 2.9 we easily derive

LEMMA 2.10. M is a J-morphism of homogeneous cones.

By [15; (1.6)] we form the new triple of &

(2.11) G(Mκs):=(K\ΐκs,e)

where

(2.12) γκs(y) =<K°;y)[detφ(y)]-*, yeK*.

We write γ instead of γκs where no confusion is possible.

We recall that in [17; §8] to each triple Q of J^ there was defined

a triple Qσ. To simplify notation we use Q instead of Qσ,γ instead of γa

etc.

LEMMA 2.11. a) [f(x)]2 = η(x), xeK9
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b) η{x) = [c{K; x)Y det φ(h(x)\ xeK,

c) η is a rational map.

Proof, Set ψ(x) : = [η(x)Y'[ι(K] x)f det φ(h(x)) where c(K; e) = 1 and

choose a subgroup Γ C Aut K such that (Z7, <S) is admissible. Then it is

easy to verify ψ(Wx) = ψ(x) for PFe.Γ. This proves b). For the triple

N : = <i£, 37, β> we compute N and get N = <!?% f2, e> because of ^(y) =

frί^)]2- Hence, for G = G(MKS) we get σN = σ# = 2σGf and Λ^1 = hs = ΛG.

Part a) follows. By Lemma 2.5 and [17; Lemma 3.8] we derive that h and

ί(i£; )2 are rational.

COROLLARY 2.12. Set N : = <iξ 37, e> αrad G : =

a) 2ί̂  = Slσ, σ = σN = 2σG, Λ^ = Λβ, ί^ = fli?.

b)

Proof. We frequently use the results of [17; § 8]. First we have σQ =

aG = ^σ$ = %σN = ^σ. This implies hN = hQ by part a) of Lemma 2.11.

Hence HN — H& and 21̂  = SIδ = SIG and a) is proved. Further, we get

[KG]
aG == (JSLO" = K. We apply again Lemma 2.11 to see f = ήG = ηK Part

b) follows.

Remark. By Lemma 2.10 we get a J-morphism M with associated

triple G = <if% ^, β>. We apply the results of [15] and so derive a descrip-

tion of Lie Aut ([KG]
σG, ήG) = Lie Aut (K, rj). This will be carried out in

detail in § 3.

5. In this paragraph we explain how one can compute η = ηκs ex-

plicitly. We choose an arbitrary positive definite bilinear form τ on V

and extend r to a C-bilinear form on Vc. We choose xQ e Kτ and put

κ(u, w) : = τ(S(u, w), x0) for u, w e U. As in Lemma 2.8 we see that K is a

positive definite hermitian form on U.

We define a map ψ: Vc -> End c U as in (2.6) by κ(ψ(x)u9 w) =

τ(S(u, w), x), xeVc, u,we U. As in Lemma 2.9 we get ψ(Wτx) = Wκψ(x)W

for each (W, W) e Gl D(K, S). By [17; Theorem 4.2] we know that hT9 given

by τ(h£x),υ) = — J; log *(ϋΓ; Λ), is a diffeomorphism from K onto iίΓ and

for all We Aut if and all xeK the equality h£Wx) = [W]"1*^) holds.

We put χ(x) := KZ; x)]2 det ψ(h£x)) and get χ(Wi;) = |det Wάet W\-2χ(x)

for xeϋΓ, (W, W)eGlD(K,S). As in Lemma 2.11, we have that χ and

ηκs coincide (up to a positive constant factor).

6. In this paragraph we present different descriptions for the class
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of homogeneous Siegel domains.

By Si(V, U) we denote the set of triples (K, S, e) associated to homo-

geneous Siegel domains D(K, S) in Vc X U, e e K.

We write Mo(V9 U) for the set of tuples (K,χ,e,φ,p) which satisfy

the following six conditions.

(2.13) if is a regular cone in V and e e K .

(2.14) p is a positive definite hermitian form on U.

(2.15) φ: V-> Sym (U, p) is a linear map satisfying φ(e) = Id .

(2.16) The triple JV = (K, χ, e) is in $F and <p(x) is positive definite

(with respect to p) on K% τ — σN.

(2.17) There exists a closed subgroup Γ c Aut K which operates tran-

sitively on K and which has the property that to each WeΓ

there exists a WeGlcU such that the identity φ(Wσx) =

W'φ)W holds for all xe V.

(2.18) Up to a positive constant factor χ(x) coincides with

[i(K; x)]2 det φ{hN{x)) and satisfies χ(e) = 1 .

Finally, by 2ft(V, Z7) we denote the set of pairs (M, p) where p is a

positive definite hermitian form on £7 and, using the notation of [15; (8.4)],

M is an element of 3K( V, Sym (U, p), X), λ(A) = \ trace A. (Here the product

of the Jordan algebra Sym (U, p) is given by (A, B) t-> j(AB + BA).)

In the following theorem we prove that the sets Si(V, U), Mo(V, U)

and ^(V, U) are essentially the same. Hence, via [15; Theorem 8.5] we

get an algebraic description of all homogeneous Siegel domains. This

algebraic classification of homogeneous Siegel domains contains implicitly

a construction procedure for each homogeneous Siegel domain from lower

dimensional ones. Moreover, the construction from lower dimensional

domains of a domain D(K, S) is uniquely determined by D(K, S).

THEOREM 2.13. There exist canonical bijectίons between

Sί(V, ϋ) , Mo(V, U), SK(V, U) .

Proof, a) We define fc Si(V, U)->Mo(V, U) to be the map which

associates to a triple (K, S, e) of Si(V9 U) the tuple (K, ηκs, e, φ, p), where

ηκs, φ and p are defined by Theorem 2.1, Lemma 2.8 and (2.6). By the

results of this paragraph we see that /Ί is well defined.
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b) By gγ\ Mo(V, U)->Sί(V, U) we denote the map which associates

to a tuple (K, χ, e9 φ, p) of Mo( V, U) the triple (K, S, e), where S is defined

by the equation σN(S(u, w), x) = ρ(φ(x)u, w), N = (K, χ, e). It is easy to

check that S is a if-hermitian form and D(K, S) is a homogeneous Siegel

domain. This shows that gx is well defined. Further, by definition of a

and equation (2.6) we have gi°/i = Id.

c) To prove /i°gi = Id we start with (K, χ, e, φ, p) e Mo(V, U) and

have S defined by σN(S(u, w), x) = p(φ(x)u, w). We use (2.17) and (2.18) to

verify χ = ηκs. This implies σ = σN and the hermitian form p defined by

Lemma 2.8 for (K, S, e) coincides with the given one. By (2.6) it follows

that φ is the function defined by means of (K, S, e). Hence fx °gx = Id.

d) We define a map /2: Mo(V, U) -> M(Vy U) by attaching to a tuple

(K,χ,e,φ,p)eMo(V,U) the pair (M, p)9 M=(F,φ,F) with F (resp. F)
defined by (2.9) (resp. (2.10)) where a — σN. Obviously, M coincides with

Mκs for the homogeneous Siegel domain g^K, χ, β, ψ, p). Hence, by Lemma

2.10 we know that M is a J-morphism. The choice of the exponent a in

(2.10) gives (M,p)eWl(V, U).

e) Finally, we define a map g2: 3K(V, U) -> Mo(V, U). Let (M,p)e

m(V, U), M= (F,φ,F). From the definition of m(V, U) we know Me

MY, Sym (17, p), λ), λ(A) = i trace A, Ae Sym (U, p). We put R : = G(M),

<τ = σΛ, if : = (KF)% χ : = f *, e : = eF and ft(M, p) : = (K, χ, e, φ, p). It is clear

that (2.13), (2.14) and (2.15) are satisfied. By [15; Lemma 1.1] we know

that R is a triple of J*\ Hence R = <J5Γ, χ, e) is a triple of IF and we

have (7£ = σR = a by [17; § 8]. From the definition of M we get that φ{x)

is positive definite for xeKF = K\ This proves (2.16). Condition (2.17)

is easily derived from the definition of a J-morphism. To verify (2.18)

we first note that by the definition of Wt(V9 U) we have F = (KF, t(KF; ), eF)

and F = <Pos (U, p\ η\ Id> where η\X) = i (Pos (U, p); X)\ r = itdimc i/]"1.

This implies ηλ(φ{x)) — [det£>(x)]~* and by the definition of γM [15; (1.5)]

we get γM(x) = c(KF\ x) [det^(x)]~*. From [17; Theorem 4.2] we know that

hR is a diffeomorphism from KF onto K. Further, by [17; § 8] we have

hR = [hR]~\ Hence, χ(x) = γM(x = YMQI^X))-1 = KIT,; ^(x))]" 1 [det p(ΛΛ(x))]*.

This proves (2.18).

f) It remains to prove f2°g2 = Id and g2

of2

:= Id. We show that /2

is injective and that f2°g2 = Id holds. Suppose we have /2(iί, χ, β, p, ̂ o) =

Λίif', χ', e', p', ̂ 0- Then, by definition of /2, we get (F, 9, F) = (F r, φ', F")

and ^ = p\ This implies φ = <p'9 e = e' and iftf = UL/<;/ where σ = σN, N =
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<JBΓ, χ, e) and σf = **,, JV' = <#', χ', e). We use (2.18) and Ka = iΓ*' to

see χ = χ'. This implies σ = σ', hence K = K' and Λ^1 = Λ }̂. From this

we get χ = χ' and /2 is injective. Let now (M, p)e 3JΪ(V, 17). It is easy

to verify that it suffices to prove KF = {Kp)τ with σ — σG(m and τ = σN,

N = (Kp> fM> £F) Because of N — G{M) we have σ = r. Hence the asser-

tion and the theorem is proved.

§ 3. Description of go(JΓ, S)

In this section we give a detailed description of g0 = Li© Gl D(K, S)

for homogeneous Siegel domains. We use the notation introduced in the

preceding sections. We mainly draw from [15].

By D{K, S) we always mean a homogeneous Siegel domain in Vc X 17.

1. As remarked before, because of Lemma 2.11 we may apply the

results of [15]. By Corollary 2.13 we thus get a description of m : =

Lie Aut (K, ηκs).

Let 21 denote the algebra which has been defined from (K, ηκs, e) in

§2.2. Corollary 2.13 shows that we have 21 = %GiMKS) = 2ICQ^).

For idempotents en, , eqq of 21 we set

(3.1) 8Γ4i :={xeVl;eitx=: x} .

(3.2) 5t4J : = 8tJ4 : = {x e 2T; eHx = |x, β^x = |x} , 1 < i < j < q .

(3.3)

(3.4) A«(x) : = A(x)μ, .

By Lemma 2.11 we may apply the map Jfj of [15; (8.6)] to Mκs. Hence,

from [15; Theorem 8.5] we know that J?Ί(MXS) is the algebraic equivalent

of Mκs.

By the definition of j#Ί(Mκs) we get

THEOREM 3.1. There exist uniquely determined q e N and idempotents

«ii> > eii of % such that

a) δt = ΘiS«,S β8t«,

b) Xii%t. = Oif{i,j}n{k,s} = 0,

Sίi;Sίft c %t ifiψk,

*„«„ c %u + %}.
c) %u is a Jordan algebra,

d) Ai1](xn) is a derivation of %™ ifl<k<s<n<q and x s n e « . „ .
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In what follows, where we use ekk or %i3 we tacitly refer to Theo-

rem 3.1.

We are going to describe m. We put

(3.5) mi3 : = { A , . ^ ) ; xts e SI,,} if 1 < i < j < q .

(3.6) mu : = the Lie algebra generated by {A(xu); xu e SI«} .

(3.7) α : = {D D derivation of 31, m u = 0 for all i} .

As in [15; 7] we split the reductive Lie algebra a (resp. mu into the direct

sum of its center and a semisimple summand

(3.8) mu = ftu + §u ,

(3.9) o = o, + o, .

Further, we set

(3.10) n : = = i * , ? L m < ' '

From [15; Theorem 7.3] we conclude

THEOREM 3.2. a) Lie Aut (K> ηκs) = n + a + Θf=1 mu (direct sum of

vector spaces).

b) αa ® Θf=i ίu is an abelian algebraic Lie algebra consisting of semi-

simple endomorphisms (direct sum of Lie algebras).

c) αή Θ Θf=i \ι is a maximal semisimple subalgebra of LieAut (K, ηκs)

(direct sum of Lie algebras).

d) n + aB + Θf=1 $ti is the radical of Lie Aut (K, ηκs) (direct sum of

vector spaces).

e) n is the maximal ideal of Lie Aut (K, ηκs) consisting of nilpotent

endomorphisms.

Next we characterize the spaces %u and 3£ : = ®?.iSl«. From [15;

Lemma 6.1, Theorems 6.3 and 7.3] we get

THEOREM 3.3. a) £ = ®U 8t« = {̂  e 2ί A(x) e Lie Aut (ΐΓ, 27̂ 5)},

b) 2Tfcfc = {αe 2ί <*> Aa(v) e Lie Aut (if, ηκs) for all v e Ψk)}.

2. Sometimes it is convenient to use a coarser splitting of 21. We

set

(3.11) 2ί, : = « u ,

(3.12) W t := φ « u ,
K
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(3.13) Sί o := 0 « „ .

Further, to simplify notation we put

(3.14) c : = Cj : = en and c0 : = e — cx .

(3.15) Aέ(x,) : = A(x,)|^ , x.eSί,, i = 0,1 .

We use [14; Corollary 7.6] and get

THEOREM 3.4. a) A%: 2ί0 -* EndΛ 8l4 is injectίve,
b) 2ί0 is generated (as a vector space) by {CO(JC|); X± e 2IJ.

3. Up to now we have drawn from properties of J^ι(Mκs) which are

related to V. For the description of g0 = Lie Gl D(K, S) we need precise

information on how ψ "behaves" with respect to the spaces 2ίo .

We first note an easy consequence of (2.10).

LEMMA 3.5. Let Mκs = (F, φ, F) and & = St̂ .

a) The product in & = Sym (U, p) is given by (X, Ϋ) -> \{XΫ + ΫX)9

b) σ(X9 Ϋ) : = σp(X Ϋ) = i trace X7.

In this paper we always provide Sym (U, p) with the product of Lemma 3.5.

We use Lemma 3.5 and derive from [15; Theorem 5.5]

LEMMA 3.6. For all xe£ and all v e Sί we have

ψ{xv) = \(φ{x)ψ{v) + φ{v)ψ{x)) .

Let dί9 - - -, dn be a complete system of orthogonal idempotents of 21

which are contained in 36 (we abbreviate this by CSI). Consider the Peirce

decomposition 21 = Θ i ^ ^ %3 of 21 with respect to the CSI du , dn.

(For definition and properties of a Peirce decomposition we refer to [18].)

LEMMA 3.7. Let dl9 >,dn be a CSI and 21 = Θ i ^ ^ * 8 ^ the Peirce

decomposition of 21 with respect to du , dn. Then for 1 < i, j < n and

%jj e $>jj w e have

φid^φiXjj) = φ(XjMdi) = δυ<p(χjj)

Proof. From Lemma 3.6 we get 2δijφ(xjj) — φ(di)φ(XjΊ) + ψ(xjj)φ(d^).

In particular ^(cQ = φ(dϊf holds. By ί o Y we denote the product in

Sym (C7, p) and verify ψ{dίiφ{xj^φ{dύ = 2φ(dί) o (^(d,) o pfo,))

= Si$φ{xjs). The equality difp{xjS) = 2p(d1)J{p(«iJ)?)((?<) +

) = (2δtJ - l ) ^ ^ ) ^ , ) . Hence φ{d^φ{xSί) = δφ{Xjj). The
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assertion follows as ψ{Xj3) is self adjoint with respect to p by Lemma 2.10.

C O R O L L A R Y 3.8. With the notation of Lemma 3.7 and l<i,j<n we get

a ) φ(di) is an orthogonal projection (with respect to p),

b) φ(dMdj) = ^ ( c Q , ΣU φ(dk) = Id.

c) φ(xa)φ(Xjj) = 0 for xit e 8l«, x3j e 81^ // i Φ j .

Proof. We only have to prove c). But <p(xu)<p(x3j) = φ(xώψ(d^ψ(x3j)

= 0 by Lemma 3.7.

LEMMA 3.9. Let du - ,dn and %3 as in Lemma 3.7. We set Όt : =

<p(di)U. Then we have

a) u=®UUif

b) p(*,,)E7t c δikUj + djkUt for 1 < i, j , k<n, xί3 e «„.

c) S(C7,, ί/,) c % for 1 < ί, j < n.

Proof, a) is clear by Corollary 3.8. To prove b) we first note that

the case i = j follows from Lemma 3.7. In the case i Φ j we may assume

i Φ k. Hence <p(Xi3)Uu = 2<p(dίxίj)Uk = φid^ψix^Uj, + φix^ψid,)^ =

φ(dΐ)φ(xi3)Uk and <p(Xij)Uk c Ut. If, additionally, j Φ k then φ(xiJ)Uk C E7,

Π C7y = 0. b) follows. Finally, from Lemma 2.10 and Lemma 3.6 we get

(Aidi), lφ(dτ)) e Lie Gl D(K, S). This implies dtS(uu u3) = iSiφid^ Uj) +

iS(uί9 ψ(d^)u3). We put x := S(uί9 Uj) and get dtx = jx, djX = \x if i Φ j

and diX = x if i = j . This proves c).

4. In this paragraph we exploit another property of ψ and derive a

description of go

From [15; Lemma 8.1] we know that

(3.16) <p(Aess(xs3)) := Aψ{ess)(ψ(xSJ)), 1 < j < s < q , * „ e «.,

defines a homomorphism from the Lie algebra m f : = {Tσ; Tem0}, m0 : =

®i^i<i^5 mίiJ i n t ° the Lie algebra LieStrS, the structure group of $ (for

definition see [5; IX, §5]).

Let l < / < s < g and xJte^LJe; then we use Lemma 3.3 and (3.16)

and get by a straightforward computation

(3.17) φ([Aejj(xjs)Yv) =

On the other hand we know that the map

ξ: (Endc U)~ • Lie Str & , ξ(f )(X) : = - 1 P X - XT
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is an isomorphism of Lie algebras (where (Endc U)~ denotes the usual Lie

algebra on End c U).

We define a map ψ: m0 -> (Endc U)~ by

(3.18) ψ(T) := ξ-\φ(-T°)) .

It is clear that ψ is a homomorphism of Lie algebras. Further, we have

(3.19) φ(Tσx) = ψ(T)pφ(x) + φ(x)ψ(T) for x e V, Te m 0 .

This follows from ^(T'x) = φ(T°)φ(x) = i?^(x) + p(*)i? because

for Te m 0 .

We are now in the position to describe the essential part of g0. For

simplicity we write (Γ, T) instead of (z, u) t-> (Tz, Tu) for the elements of go

LEMMA 3.10. The Lie algebra mξ : = {(T, ψ(T)); Te m0} is a subalgebra

of g0 and mψ

0 is the direct sum of the subspaces

(3.20) m j y : = {(Aeti(xtJ\ M ^ M ^ u ) ) ; *i, e 21,,} forl<i<j<q.

(3.21) mfi : = the Lie algebra generated by {(A(xu), iφ(xu)); xHe$ltt};

l<i<q.

Proof. A comparison with Lemma 2.10 shows mξ C g0. Further, it is

clear that mφ

Q is the direct sum of the subspaces m?y : = {(Γ, ψ(T)); Te m^}.

From (3.17) we get (3.20) and that mψ

u is generated by {(A(xti), ?<p(eu)<p(xu));

Xίi ̂  Sί«} Lemma 3.7 now proves the assertion.

COROLLARY 3.11. Let i <j, xe %u and y e St<y.

e g0.

Proof. From the lemma we know that

(A(x), \φ(x)) and (Aβtt(y), iφ(ejΊ)φ(y))

are elements of g0. This implies that (T,f):=(Aei.(xy),iφ(ejj)φ(xy)) +
([Aeii(y), A(x)], [iφiej^φiy), iφ(x)]) also lies in g0. We use the "Grundformel"

[33; Theorem 1.2] (see also [14; Theorem 1.2]) and get T = Ax(y). It

obviously suffices to prove φ{ejj)ψ(xy) + %φ(ej3)φ(y)φ{x) - Mχ)ψ(ejj)ψ(y) =

iφ(y)φ(χ) ^ n ^% a n ^ o n f̂  this identity is easily verified; by Lemma 3.9

the assertion follows. To finish the preparations for the description of g0

we set
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(3.22) a* := {(T, f);Tea9 TS(u, w) = S(tu, w) + S(u, fw) for u, w e U} .

Obviously aφ c g0.

THEOREM 3.12. a) g0 = ®i<i^j^q mϊj + &9 (direct sum of vector spaces).

b) The Lie algebras mφ

u and aφ are self adjoint with respect to a Θ p,

hence they are reductive.

c) Split Θf=i mf< = 8i + ϊ)i, aψ = g2 + ζ2 mίo center 3, and semisίmple

part §j and set nφ := θ ^ ^ g i n ^ then

(1) 8i + 82 zs #^ abelian algebraic Lie algebra consisting of semίsimple

endomorphisms (direct sum of Lie algebras).

(2) \ + §2 is a maximal semisimple subalgebra of q0 (direct sum of

Lie algebras).

(3) 61 + 62 + tt^ is ZΛe radical of go

(4) n* is ίΛe maximal ideal of g0 consisting of nilpotent endomorphisms.

Proof, a) Let (Γ, T)eg 0, then we know Γ e Lie Aut (K, Ύ]KS). There-

fore, by Theorem 3.1, there exist Tw e m0 and Taea such that T = Tm +

Ta. From Lemma 3.10 we get m?y C qo; hence it exists a Tm e End c Ϊ7

satisfying (Γm, Tm) e g0. This proves that g0 is contained in the space at

the right hand side of the formula. The converse inclusion has been

proved above. It remains to show that the sum is direct. But 0 = Xm +

I α e m ; + aφ implies that the first components of Xm and X» are equal to

0. Lemma 3.10 shows Xm = 0.

b) Clearly, (A(xit), %<p(xit)) is selfadjoint with respect to a® p. Hence

{mψ

u)
σ@p c mφ

u. For (T,f)ea* we have Te = 0. By [17; (6.11)] we get

T + f = 2A(Te) = 0. From 0 = φ(Tσe) = fp + f we derive that (T, f) is

skewadjoint with respect to σ Φ p. Hence the assertion.

c) In b) we proved that all elements of aφ are skewadjoint with

respect to σ@p. Hence, for (Γ, t) e Ψ we have [φ(xu), f] = φ(xu)f +

fpφ(xu) = -φ(Txu) = 0 and [A(xu)9 T] = ^(Tx^) = 0. This implies [mj,, cf]

= 0. As a result we get (1) and [ζi, ΐ)2] = 0. By a similar computation

we see [nφ, aφ] c n*5. It now suffices to prove that nφ is an ideal of go5

for, nφ consists of nilpotent endomorphisms and nφ + fa + g2 is contained

in the radical of go; using this and a) we easily prove the assertion. It

remains to show that nφ is an ideal of g0. By the above remarks it suffices

to verify [m^, nφ] c nφ. But by [15; Theorem 7.3] we know that n =
mυ i s a n ideal of m. Hence Lemma 3.10 implies the assertion.

Remark 3.13. a) Theorems 3.1 and 3.12 clarify the structure of homo-
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geneous Siegel domains. Our approach to the description of homogeneous

Siegel domains uses larger "building blocks" than the approaches by j -

algebras [43] or S-algebras [52]. This appears to have advantages for the

description of the (infinitesimal) automorphisms. We get the building

blocks of S-algebras when we form the Peirce decomposition with respect

to a CSI dί9 , dn—hence replacing en, , eqq by du , dn—which ad-

ditionally satisfies Rdt = {x e 2Ϊ; dtx = x}9 1 < i < n.

b) Examples show that the algebra aψ can be rather large. It is

clear that aψ is contained in the Lie algebra of the isotropy group of the

point ie.

For later use we mention some properties of aψ.

LEMMA 3.14. a) aφ is the Lie algebra of a compact subgroup of

Gl D(K, S); hence aψ is reductive.

b) The elements of aφ are skewadjoίnt with respect to σ 0 p.

c) aφ annihilates 21 j 7 and commutes with mφ

jj9 1 < j < q.

d) aφ leaves invariant each of the spaces 3Γίy, 1 < i, j < q.

e) For each idempotent b of 3£ = ©^=12ij7 the space φ(b)U is left in-

variant by aφ.

Proof, a) To prove the first part of the assertion suffices to note

that the isotropy subgroups of Aut D(K, S) are compact and that Gl D(K, S)

is closed in Aut D(K, S). The second part now follows (see e.g. [9; IV,

§ 4, Proposition 5]).

b) This has been shown in the proof of b) of Theorem 3.12.

c) By definition, aφ annihilates the spaces SI;J. The assertion follows

from b) and Lemma 2.10.

d) Let (T, f) 6 a*. Then T is a derivation of 21 which annihilates

all βjj. Hence, T commutes with all A(eJS). From (3.1) and (3.2) the as-

sertion now easily follows.

e) Follows from b) and Lemma 2.10.

To finish this paragraph we consider the set

(3.23) α0 = {(0, f) e α*} .

LEMMA 3.15. a) αξ is an ideal of g0,

b) α'o = {(0, f); fp = -f, fφ(x) = φ(x)f for all x e 21}.

Proof. Part a) is obvious. To prove part b) we note that 0 = S(fu, w)

+ S(u9 fw), u,weU} is equivalent to 0 = σ(x, S(fu, w)) + σ(x, S(u, fw)),
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x e V, u,weU. Using (2.7) we see that this is equivalent to 0 = fpφ(x)

+ φ{x)t, xeV. The assertion follows.

5. In this paragraph we consider a special infinitesimal automorphism

of K. We use the decomposition 2ί = % + SIέ + 2ί0 of 81 which has been

introduced in 2. It is clear that this decomposition is a Peirce decompo-

sition % = $ π , 8Tj = ®12, STo = S22 of Sί with respect to dx : = ct = c, d2 : =

c0. Hence we may apply the results of the preceding sections.

The space φ(co)U will be denoted by Uo instead of U2.

LEMMA 3.16. The endomorphism v t-* Re (S(φ(v)uy w)) of V is an element

of Lie Aut (K, ηκs) for ueUx and all weU.

Proof Because of Lemma 2.2 we may apply [16; Theorems 1.7 and

3.3]. Hence it suffices to prove that q(v, u, w) : = σ(h(v), Re (S(φ(v)u, w)))9

v e K, does not depend on v. From [14; Theorem 1.8] we know that v

can be represented in the form υ = exp Ac(v£){vx + v0) with υ^ e St4 and vt

€ Ki9 i — 1, 0, appropriately chosen (for results on the projections Kt of
K on % we refer to [14].). From Lemma 3.10 we know (Ac(vh)9 jφ(co)φ(vh))

e g0. Hence, for W : = exp Ac(v£) and W": = exp lψ(c^φ(v^) we have the

identities h{W{v, + vQ)) = W - 1 / ^ + ι;0) and ^ - ^ ( y , z) = S(W-^, # " ^ ) for

all y, 0 6 Z7. It follows g(u, u, w) = gίWfe + v0), u, w) = ^(^(i;! + v0), W'1

Re(S(φ(v)u, w))) = σQiiυ, + v0), R e ^ r X ^ + υQ))u, W'ιw))). From

WT̂ i + ô) ==^1 + 0̂ + v&t + icoiviϋ} ι;4) we get by Lemma 3.9 the equality

φ{W(v1 + ι;0))w = ^(uj + vxv^)u. We use again Lemma 3.9 and get W'1 =

exp —iφ(co)φ(vh) = Id — iφ(co)(vh). Putting this together we have q(v, u, w)

= σ(h(vx + u0), Re (S(a, b))) with a := φfa + v.v^u - iφi^φiv^φiv, + vλvh)u

and b : = w — \φ(c^φ{v^w. From Corollary 3.8 and Lemma 3.9 we derive

φiccύφiv^φfav^u — 0, ψ{c^φ{v^)w0 = 0, where w = : wx + w0 with wj e CT̂, and

α = <p{v^)u + (pfav^u — \φ{v^)φ{v^u and 6 = ^ + w0 — ^φiv^w^ But by

Lemma 3.6 and Lemma 3.9 we have φiv^v^u — ^φ{v^ψ{v^u = 0 for we Ux.

Hence a = φ(v^)u e Uv Now we split b = bt + bQ with bx : = wι and b0 : =

^o — %φ(vi)wi- ft follows q(v, u, w) = ^(^(i;! + u0), Re (S(a, b^) + iS(α, 60))) =

q(vi + y0> w, wj + ^(/i(^ + ι;0), Re (S(a, b0))). We know hfa + f0) e 2ίj + 2ί0

and Re (S(a, b0)) e 2î ; Hence q(v, u, w) = q(vt + v09 u, w^). From [14; Lemma

2.2] we know h^ + v0) = hfa) + hQ(vQ) where hs{υ^ e 8iif j = 0,1. We

therefore get g(u, u9 w) = g(u1? M, ^ ) = ipWh&jypivJu, w,) +

φiv^u) = Re (σiφih^v^φiv^u, wj). It obviously suffices to prove

= ô(c). But, by Lemma 3.6, the restriction of φ to Sίj is a homomorphism
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of Jordan algebras and h^Vi) is the inverse of vt in the Jordan algebra

Sίj by [14; Corollary 2.5]. Hence the assertion.

Remark 3.17. a) If w = w0 e Uo, then it is easy to verify directly

Re (S(φ(v)u, w0)) = Ac (Re (S(u, wo)))v. If w = wx e Ux a similar representa-

tion is not known.

b) A statement which is weaker than that of Lemma 3.16 has been

proved in [45].

6. We end this section with some remarks on nondegenerate Siegel

domains. As usual a Siegel domain D(K, S) is called nondegenerate if the

set {S(u, w); u, w e U] generates the vector space Vc.

It is easy to see that D(K, S) is nondegenerate if and only if the map

φ: SI -> Sym (U, p) is injective.

For the description of Ker 9 we represent the Jordan algebra 3£ ==

{x e V; A(x) e Lie Aut (K, ηκs)} as the sum of its simple ideals dci9 96 =

Θf=1 dcit By di we denote the unit of Xt and form the Peirce decomposi-

tion SI = ®iζi<cj<m %} of SI with respect to du , dm.

In what follows we use without mentioning the following identity

which was proved in Lemma 2.10:

φ(Tσx) = fpφ(x) + φ(x)f for x 6 V and (T, f ) e g0 .

We obviously have

LEMMA 3.18. T0 Ker φ c Ker φ for all (T, f) e go-

As a consequence of this fundamental property of Ker φ we get

COROLLARY 3.19. a) Ker^? = Θi^^™ (S^ ίΊ Ker^).

b) // i < j and %s C Ker φ then %t C Ker φ.

c) If 8« C Ker φ then % c Ker φ for all 1 < j < m.

Proof. From (A(cQ, iφ(dτ)) e g0 we conclude that A{d^) leaves invariant

Ker φ for all 1 < i < m. This implies a) and c). To verify b) we use

(Ad<(sfi), iφ(XiMdi)) e δo and [Adi(x^Y = Ad.(xi3) for x 6 % and easily get

the assertion.

Finally, we use again % = St^c) = %n and get

COROLLARY 3.20. Ker j j f l ϊ i (resp. Ker p (Ί T) is an ideal of % (resp.

3£) and Ker φ Φ 0 implies Ker ^ Π 36 9̂  0.
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§ 4. Description of g l̂Γ, S)

In this section we denote by D(K9 S) a homogeneous Siegel domain

in Vc X U.

We retain the notation of the preceding paragraphs.

By P% we denote the set of w e U which satisfy

(4.1) <p(c)w = w ,

(4.2) S(φ(S(u, w))u, d) = S(u, φ(S(d, u))w) for all u, d e U.

THEOREM 4.1. q± = {(z, u) ι-> (2S(u, φ(z)w), iφ{z)w + 2φ(S(u, w))ύ); w e P J .

Proof. From Theorem 1.5 we derive that it suffices to show that a

polynomial X{z, u) = (pn(z9 ύ), qί0(z, u) + qQ2(z, u)) can be represented as in

the assertion if and only if it satisfies [X, g_J c g_έ and [X, g_J c Go-

To simplify notation we write 1̂0(2:) = qio(z, u) and q^{u) — qO2(z, u).

As in [48] we first prove that X e g4 is equivalent to

(1) Pn(z, u) = 2iS(u, qlo(z)),

(2) 2S(κ, glo(S(d, u))) + iS(qO2(u), d) = 0,

(3) (1; ^ Im (S(glo(ϋ), d))) e Lie Aut (if, 7 j r β) for all z e Vc, u9 d e U, v e V.

A computation shows that [X, g_J C g_̂  is equivalent to (1). The condi-

tion [X, g_J c g0 precisely means that R : = (2iS(glo(2:) + feί^), d) —

Pu(2iS(u, d), u) — pn(z, d), —qί0(2ίS(u9 d)) + qO2(u; d)) is an element of go;

here we put qO2(u; d) : = ΔlqO2(u). Obviously, J2eg0 is equivalent to

(a) 2ίS(qO2(u)9 d) - 2ipn(S(u, d), u) = 0,

(b) ((«, u) ̂ > (2ίS(qίQ(z), d) - 2iS(d, qί0(z))y - 2ίq10(S(u, d)) + qO2(u d))) e go

Clearly, (a) is equivalent to (2) whereas (b) is equivalent to two condi-

tions: (3) and

(c) 2iS(qί0(S(u, w)\ d) - 2iS(d, qlo(S(w, u))) = S(-2iqlo(S(u, d)) +

qO2(u; d), w) + S(u, -2iqί0(S(w9 d) + qO2(w; d)\

We prove that (c) is a consequence of (2). We apply the operator ΔZ

and get

(d) 2S(w, q1Q(S(d9 u))) + 2S(u9 qlo(S(d9 w))) + iS(qO2(u; w), d) = 0.

In this formula we replace the triple (w, d9 u) e U X U X U by (d9 w, iύ).

It yields

(e) 2iS(d, qlo(S(w, ύ))) + 2iS(u, qlo(S(w, d))) - S(gO2(W; d), u;) = 0.

Now, we conjugate (d), replace (w, d, u) by (d, —ίu9 w) and get

(f) -2iS(qlo(S(u9 w))9 d) - 2ίS(qlo(S(u9 d)), w) - S(u9 qO2(w; d)) = 0.

Adding (e) and (f) gives (c). This finishes the proof that Xe Q$ is equiv-

alent to (1), (2) and (3).
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Next we exploit (3). By [16; Theorems 1.7 and 3.3] we know that a

linear map T.V-+V is an element of Lie Aut (K, ηκs) if and only if

σ(h(v), Tv), ve K, does not depend on u. Hence (3) is equivalent to

(3.a) σ(h(v), S(qlo(v), d)) = σ(e, S(qlo(e), d)) for i; e K.

We set w: = w1 + wQ : = glo(β), z^ e Uj9 use the definition of p, Lemma 2.9,

and see that (3.a) is equivalent to

(3.b) φ(h(υ))qlo(v) = w for all ve K.

From Lemma 2.6 we know h(v) e Kσ for υ e if hence, by Lemma 2.10,

φ(h(v)) is invertible. This implies

(3.c) qio(v) = φQi^y^w for v e K.

We differentiate this identity twice at u = e and get

(4) qίQ(x) = φ(x)w9 xeV,

(5) <p(χy)w = J(pOM:y) + φ(y)φ(χ))w> χ J e ί /

We use (4) to compute g02 from (2) explicitly.

-iρ(qu(u), d) = σ(e, -iS(qO2(u), d)) = 2σ(e, S(u, φ(S(d, u))wj)

= 2p(u, <p(S(d, u))w) = 2p(φ(S(u, d))u, w)

(w, d), S(u9 w)) = 2p(φ(S(u, w))u, d) .

This implies

(6) qO2(ύ) = 2iφ(S(uy w))u.

Using (4) and (6) it is easy to verify that ĝ  consists exactly of those

polynomials (z, u) t-> (2iS(u, φ(z)w), φ{z)w + 2ίφ(S(u, w))u) where w satisfies

(4.2) and

(3.d) (υ H-> Im (S(φ(v)w, d))) e Lie Aut (K, ηκs).

Here we replace w by wι + w0. Then, by Lemma 3.16, we see that (3.d)

is equivalent to T e Lie Aut (K, ηκs) where T is defined by

Tv:=Ίm(S(φ(ϋ)wQ9d)).

Because of Theorem 3.3 we may apply [14; Theorem 3.3] and thus get xx

e Sίj, x± e Sί̂  and a derivation D of the algebra Sίc which satisfies Dc = 0,

such that T = Ac(xj) + Ac(^) + D. From the definition of T we imme-

diately derive TSIj = 0. Hence xx = 0 and x4 == 0. This means that ϊ 7 is

a derivation of SIe which leaves invariant the spaces 2ί4. But from the

definition of T we get T%h c STj and Γ2T0 c % Hence Γ = 0. This

especially implies φ{v^)w^ = 0. We use (5) and get φ(covl)wQ = 0 for all

ι>£ e Sίj. Theorem 3.4 now shows w0 = 0. The theorem is proved.

COROLLARY 4.2. Each Xe§± is uniquely determined by its value at ie.
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COROLLARY 4.3. For w e ETΊ the following are equivalent

(1) weph

(2) S(φ(S(u, w))u, d) = S(κ, p(S(d, M))H;) /or αtt u9deU,

(3) 7%e map fo M) >-* (S(φ(z)w, d) + S(d, φ(z)w), -φ(S(u, d))w +

+ ^(S(d, w))w) is for all deU an element of g0.

Proof (1) £φ (2): clear by definition of P 4 .

(2) => (3): insert qlo(z) = ίφ(z)w and ςfoί̂ ) = 2φ(S(u, w))u in the state-

ment (b) of the proof of Theorem 4.1.

(3) φ (2): by assumption we have S(φ(S(a, b))w, d) + S(d, φ(S(b, a))w)

= S(~φ(S(a, d))w + φ(S(a, w))d + φ(S(d, w))a, b) + S(α, -φ(S(b, d))w +

y>(S(6, κ;))d + φ(S(d, w))b) for all a, b, de U.

We replace the tuple (a, w, d, b) by (u, w, u, d) and get

(a) S(φ(S(u, d))w9 u) + S(u, φ(S(d, u))w) = S(-φ(S(u, u))w, d) +

S(φ(S(u, w))u, d) + S(φ(S(u, w))u, d) + S(u, -φiSid, u))w) +

S(u, φ(S(d, w))u) + S(u, <p(S(u, w))d) for u,deU.

Now we replace (a, w, d, b) by (u, w> d, u). It results

(b) S(φ(S(u, ύ))w, d) + S(d, φ(S(u, u))w) = -S(φ(S(u, d))w9 u) +

S(φ(S(u, w))d, U) + S(φ(S(d, U))U, u) - S(u, φ(S(u, d))w) + S(ll, φ(S(ll, Uϋ))d) +

S(u, <p(S(d, w))u) for u,deU.

From (b) we derive

(c) Re (S(φ(S(u, u))w, d)) = - R e (S(φ(S(u, d))w, u)) +

Re (S(u, <p(S(u, w))d)) + Re (S(u, φ(S(d, u))u)) for all u,deU.

This implies

(d) S(φ(S(u, u))w9 d) = -S(φ(S(u, d))w, u) + S(u, <p(S(u, w))d) +

S(u, φ(S(d, u))u) for all u, de U.

A comparison of (a) with (d) gives (2).

Remark 4.4. a) In [48] Theorem 4.1 has been proven under the ad-

ditional assumption that D(K, S) is symmetric.

b) For symmetric Siegel domains we always have Sίέ = 0 and 2ί0 =

0. With this additional assumption the proof of Theorem 4.1 simplifies

considerably.

c) P% is a vector space over C but gέ is only a vector space over R.

d) Corollary 4.3 has been proved in [48] for symmetric Siegel domains.

Finally, we expand (4.2) in terms of Ux and C/o.

LEMMA 4.5. Let wxe UΊ; then (4.2) is equivalent to the following set

of equations (where uu dx e U1 and uQ9 d0 e Uo are arbitrary
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a) S(φ(S(uu wj)uu dλ) = S(uu φ(S(dl9 u

b) 0 = φ(S(u0, Wi))M0,

c) S(φ(S(uu wx))uu d0) = S(ul9 φ(S(d0, u

d) 0 = S(M l, pCSfa, uQ))wx) + Sfa

Proof. In (4.2) we replace u hy ux + u0 and cZ by d1 + d0. Then we

expand (4.2) and compare in 2Ifc + iSlΛ, fe = 1, J, 0. This yields three equa-

tions. We use the fact that u5 and ds can be chosen arbitrary and get

the following set of equations which is equivalent to (4.2).

(1) S(φ(S(ul9 H J K , d,) = S(uu φ(S(du uβwλ

(2) S(φ(S(u0, wβuo, d,) = 0,

(3) S(φ(S(u0, ziOK, di) = S(^, ^(Stt , uo))w1) + S(u0, <p(S(dl9 u^wj,

(4) S(φ(S(ul9 wj)^, d0) = S(uly <p(S(dOy u^wj,

(5) S(φ(S(uQ, Wί))u0, d0) = 0,

(6) S(φ(S(u0, u)^)uu d0) = S(M0, φ(S(d0, u$)wd>

(7) S(MO, ̂ (S(d1? uo))Wl) = 0.

Clearly, (1) and a) coincide as do (4) and c). It is easy to verify that (2)

and (5) together are equivalent to b). Hence it remains to investigate

(3), (6) and (7). Here we use that (Ac(xέ), Ϊψ{cQ)φ{xh)) and (Afo), ^φ(x1))

are elements of g0 for all xx e SI1? x̂  e 21̂  i.e. we have the following identi-

ties at our disposal

( * ) 2Ac(xh)S(a, b) = S(φ(co)φ(x^)a, b) + S(a, φ{φ{^)b) ,

2A(x1)S(α, b) = S{φ{xx)a, b) + S(a, φ(xdb)

for all xk e Sίk, k = 1,% and all a, h e U.

By (*) and (**) we get from (3) equivalently

S(φ(S(u0, wj)uu d,) - S(uu φ(S(dί9 ty>

= 2A(S(^1? W M O , wλ) = 2

= S(φ(S(u0, wl))ul9 dx) + S(^, φ(S(wl9 u^d,) hence d) .

In (*) we put x% : = S(w0, ι^!); then (6) easily follows. It remains to

show that (7) is a consequence of a) to d). To prove (7) it suffices to

show that the left hand side of (7) is orthogonal to all 2ί^, 2 < ί < j < q.

Thus let x,j 6 %iS and (T, f) e m?,, 2 < i < j < q, such that Γ'e = Te = x o

holds. Then f Z7, = 0 and T is a derivation of the algebra Sίc [14; § 3].

We use this, (*) and b) and get
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σ(S(uQ, φ(S(du wo)Vi), xiS) = 2σ(TAc(S(u0, d1))S(ι/0, w,)9 e)

= σ(S(fMo, d,) + S(iio, TdJ, S(MO, M;,)) + σ(S(uOi dx\ S(fuQ, wx)

+ S(uQ, fwj) = σ(S(fu0, dd, S(u0, wj) + σ(S(u09 d,\ S(fu0, ωj)

= piφiSiUo, Wλ))tu, + φ(S(fu0, wβUo, dj = 0 .

This finishes the proof.

§ 5. Description of §X{K, S)

In this section we finish the description of Lie Aut D(K, S). By

D(K, S) we denote a homogeneous Siegel domain in Vc X U. We use

again the decomposition 2ί = % + Sί̂  + Sί0 of 2ί which has been introduced

in § 3, 2. The unit of Sίj is denoted by c = Cj = en and we set Ux = φ(c)U

and C70 = φ(cQ)U where c0 — e — c. We then have U = Ux + £/0.

Finally, we mention that in this section we frequently use mutations

of Sί which have been introduced in § 2, 2.

We set

pλ := {χe%; it exists B e End c U such that (z9 u) »-> (A^^)^, φ{z)Bu)

is an element of gj .

LEMMA 5.1. Lei (Γ, T) 6 go; ^ n

Γ^Pi c Px and TpPh c P έ .

Proo/. Let x e P j and X the associated element of glβ We form the

commutator of X and (T7, T) and get TAx(z)z — 2Ax(z)Tz as first component.

The "Grundformel" [33; Theorem 1.2] implies that this expression equals

—Aτσx(z)z. Because of [X, (T, T)] e & the first assertion follows. To prove

the second one we choose we P^ and denote by Y the associated element

of g4. Then the linear part of the second component of [Y, (T, T)] equals

Tiφ(v)w — iφ{Tv)w. From this we derive that [Y, (T, f)] e gέ is parametrized

by Tiφ(e)w — ίφ(Te)w = —iTpw where we have used Lemma 2.10.

We specialize (Γ, f) := (A(y), \φ{y)\ ye%, and get

COROLLARY 5.2. Pt is an ideal of %.

By the corollary, we know in particular that Px is a subalgebra of the

formally real Jordan algebra 2^ and hence has a unit which we denote

by p or pt. We sometimes abbreviate p0 : = e — p.

COROLLARY 5.3. Let X be the element of βi which is associated to pe

Pj. Then we have (adX)2g_! = & and (adX)g0 = g1#
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Proof. By a straightforward computation we see that the first com-
ponent of (adX)2Y, Y := (a, 0) € g_1} equals r(z) := — 2Ap(ά)Ap(z)z +

4AP(AP(8L)Z)Z. Because of Ap(v) e Lie Aut (K, ηκs) for υeV, the "Grund-

formel" [33; Theorem 1.2] implies r(z) = Ab(z)z where b = 2[Ap(ά)]σe =

A(pa)σe = pa. The first assertion follows. The second one is proved in

an analogous way.

The first part of the last corollary has also been proved in [45].

THEOREM 5.4. Pί = {xe%; (z, u) »-> (Ax(z)z, φ(z)φ(x)u) e gj.

flt = {{z, u) H-> (Ax(z)z, φ(z)φ(x)u); x e P J .

Proo/. By Theorem 1.5 we know that each XβQί can be represented

in the form X(z, u) — (p20(z), qn(z, u)). We prove

(1) X(z, u) = (Ax(z)z, φ(z)Bu) where x e % and B e End c i7. We men-

tion that the polynomial p20 is contained in the Lie algebra q(K) of the

group of automorphisms of the tube domain V + ίK by [29; Theorem 4].

Let S denote the algebra which is constructed for D(K) = V + iK and

e 6 K according to § 2,2. The left multiplications of this algebra are

denoted by A(υ), v e V. From Theorem 2.8 we know p20(z) = Aa(z)z for

all ze Vc and αef ί appropriate. Now, we represent qn in the form

9n(2> u) = B(z)u where B is a C-linear map from Vc into End c £7. From

[X, g_i] C g0 we conclude (Άa(v), jB(v)) e g0 for all v e V. We apply Theo-

rem 3.3 and [33; Theorem 5.10] to get an xe% such that Aa(v) = Ax(v)

holds for all v e V. Finally, we choose Y(z, u) = (2iS{u, d), d) e g_έ and

compute [X, Y] e gj. The linear term of the second component of [X, Y]

turns out to be B(z)d. Whence, by Theorem 4.1 we get a weP^ such

that B(z)d = iφ(z)w holds for all ze Vc. We set B : = B(e) and it results

B(z)d = φ(z)Bd for all z e Vc. This proves (1). Next we claim

(2) A polynomial X(zy u) = (Ax(z)z, φ(z)Bu), xe%, Be End c U, is an

element of gx if and only if

(2.a) (Ax(a), iφ)B) e g0 for all αeV,

(2.b) Im (trace φ{a)B) = 0 for all α e V,

(2.c) ΰ t / c P , ,

(2.d) φ(S(u, d))Bu = φ(S(u, Bd))u for all u,de U.

We apply part b) of Theorem 1.5. Clearly, (1.23) is equivalent to (2.a)

and (1.25) is equivalent to (2.b). Finally, choose Yeg_έ, Y(z, u) =

(2iS(u, d), d) and compute

[X, Y] = (2iS(φ(z)Bu, d) - 4iAx(z)S(u, d), -2ίφ(S(u, d))Bu - φ(z)Bd) .
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We use (2.a) and see that the first component of this expression equals

— 2ίS(u,φ(z)Bd). Because of [X, Y] e gέ we get from Theorem 4.1 that

w : = iBd is an element of P^. Comparing the expression for [X, Y] which

we have computed above with the expression for the element of Q% which

is associated to w it is easy to verify that (1.24) and (2.a) are equivalent

to (2.a), (2.c) and (2.d). This proves (2). In the next step of the proof

we compute [gέ, gj .

(3) Let w, wf e P$ and Y, Y' the corresponding elements of g4. Set

y : = -4Im (S(w, w')); then [Y, Y'](z, u) = (Ay(z)z, φ(z)φ(y)u) for all (z, u)e

VCX U.

B e c a u s e o f [Y, Y ' ] e & w e k n o w f r o m (1) t h a t t h e r e e x i s t s a y e % a n d a

BeΈndcU such that [Y, Y*](z, u) = (Ay(z)z, φ(z)Bu) holds. A straight-

forward computation of [Y, Y'] produces

(3.a) Ay{z)z = 2S(iφ(z)w, φ(z)uf) - 2S(ίφ(z)w\ φ(z)w\

(3.b) £>(z)JBw = iφ(2S(u, φ{z)w))w' + 2<p(S(ίφ(z)w, wf))u +

2JP(S(M, w'))ίφ(z)w - ίφ(2S(u, φ(z)w'))w - 2<p(S(iφ(z)w', w))u —

2φ(S(u, w))iφ(z)u/.

From these two equations we obviously get y= —4Im (S(w, w')) and

B = φ(y).

(4) y e P1 ? ^>(y)Pέ = 0 Φ p(y) = 0.

Consider the map /c: 2It -> Sym (P^, ô), y «->- φ{y)\P^ It is well defined because

of Lemma 5.1 and it is a homomorphism of Jordan algebras because of

Lemma 3.6. Hence, Ker tt is an ideal of %γ. By Corollary 5.2 also Ker K

Π Pi is an ideal of the formally real Jordan algebra SIj. This implies

that Ker K Γ) PX has a unit; we denote it by r. Let Ye Qt such that Y(z, u)

= (Ar(z)z, φ(z)Bu) holds. From (2.a) and Corollary 3.11 we derive that it

exists CeΈndc U which satisfies B = φ(r) + C and (0, φ(a)C)eq0 for all

ae V. Put a := e then Lemma 2.10 implies Cp = —C and [φ(ϋ), C] = 0

for all veV. Consequently [ψ{r), B] = 0 and by (2.c) we get 0 = <p(r)BU

= Bφ(r)U. From p(Bpφ(r)u, w) = p(u, φ(r)Bw) = (̂w, Bφ(r)w) = 0, u, w e U,

we conclude that the restrictions of B and J5P vanish on φ(r)U. Then

also B + Bp = φ(r) vanishes on φ{r)U. Whence ψ{r) = 0. Let ye Ker/c

Π Pi be arbitrary; then ψ{y) = ^(ry) = \{φ(r)φ(y) + φ(y)φ(r)} = 0. This

proves (4).

Set P ^ : = Ker 9 Π Pi. As in the proof of (4) we see that P{0) is an

ideal of the formally real Jordan algebra Px. Hence there exists an ideal

Piι) of Pt such that Pi = P^ θ P2

(1) holds.
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(5) {S(w, w); weP$} generates the vector space Px

(1).

From (3) we know S(P i ? Pi) C Pt + iPu Denote by r the unit element

of PP. Then (A(r), 0) e g0 whence rS(w, w') = 0 for all w, w' e P έ . This

implies S(P i ? P έ) c Px

(1) + i P ^ . On the other hand let xePP such that

<τ(x, S(z#, w)) = 0 for all w; e P^. Consequently ρ(φ(x)w, w) = 0; so we get

9(*)α; = 0 for all 10 6 P έ . From (4) it follows x e Ker φ Π Px

(1) = 0.

(6) The polynomial (z, ύ) H-» (AX(Z)Z, φ{z)φ{x)u) is for all x e P j an ele-

ment of glβ

Let x e P ^ we have to prove that the map (z, u) •-> (A,,(^), 0) is an element

of Qj. From (2) we derive that only (Ax(ά), 0) e g0 must be checked. But

this is a consequence of Corollary 3.11.

Let x e Px

(1) then the assertion follows from (3) and (5). This finishes

the proof of (6).

To prove the theorem it now obviously suffices to show that & con-

tains no nontrivial map of the form (z, u) ̂  (0, B(z)ύ). If such a map is

contained in & then (0, B(a)) e g0 f° r all a e V. This implies B(a)p — —B(ά).

On the other hand we have 0 = [Q19 [&, 2ί_J]; by a computation we derive

from this B(zf = 0. Consequently B(z) = 0 for all z e Vc. The theorem

is proved.

COROLLARY 5.5. Ker^> Π Sίi c Px. For tube domains 2^ = P1 holds.

Proof. We use (2) from the proof of Theorem 5.4 and see that we

only have to check (Ax(ά), 0) e g0 f° r all x e Ker φ Π SIi and all ae V. But

this is clear by Corollary 3.11.

More precisely we have

COROLLARY 5.6. The vector space Pf1} which is spanned by {S(w, w);

w e P J is an ideal of Px and we have

P 1 = (Ker f) Π 21,) Θ P ^ .

Proof. Clear from Corollary 5.5 and (5) from the proof of Theorem 5.4.

The last result implies

COROLLARY 5.7. a) // P, gt Ker φ then qi Φ 0.

b) IfQiΦO then Qt Φ 0.

The next result characterizes Pt without recourse to glβ

COROLLARY 5.8. For xe% the following are equivalent

(1) xeP»
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(2) <p(x)UaPh

(3) S(φ(S(u, φ(x)w))u, d) = S(u, φ(S(d, u))ψ{x)w) for all d,u9we U.

Proof. Because of x e % and (4.2) it is clear that (2) is equivalent

to (3). To prove (1) => (2) we start with xePύ then, by Theorem 5.4, the

map (z, u) •-• (Ax(z)z, φ(z)φ(x)u) is an element of glβ Hence we may apply

(2.c) from the proof of Theorem 5.4 and get (2). Assume now that (2)

holds. By Corollary 5.2 we know that Pλ is an ideal of the formally real

Jordan algebra 8Γlβ Hence there exists an ideal P1 of % satisfying SIχ =

P1®P1. The unit of Pt is denoted by g. To prove (1) it clearly suffices

to show gx = 0. To verify this we first mention that by (2) and Lemma

5.1 we have φ(gx)U = %{φ(g)φ(x) + φ(x)φ{g)}Ud φ{g)φ{x)U + φ(x)UC φ{g)P±

+ Ph(Z Ph. By (3) from the proof of Theorem 5.4 we get y : = S(φ(gx)u,

φ(gx)u) = — Im (S(φ(gx)uf φ(gx)iu)) e Pt. Because of φ(p)φ(gx) = 0 we have

py = 0. But yePu whence y = 0. From (1.12) we get ψ(gx)u ~ 0 for all

u e U. Therefore, gx e Ker φ (Ί 2Ii. Corollary 5.5 now implies gx e Pt.

Hence gx = 0. The corollary is proved.

COROLLARY 5.9. φ(p)U = Ph.

Proof. Because of (2) of Corollary 5.8 we only have to prove P έ c

φ(p)U. Let weP^; as φ(p)U a P± we may assume φ(p)w = 0. From

Corollary 5.6 we know S(w, w) e Pu whence S(w9 w) = pS(w, w) =

iS(φ(p)w, w) + \S{w, φ(p)w) = 0. This implies w = 0 and the assertion

is proved.

As a trivial consequence of the last result we get

COROLLARY 5.10. Let X denote the element of Q: which is associated to

peP,. Then

A similar result has been directly proved in [45]. We are now able

to simplify the conditions of Theorem 1.5.

COROLLARY 5.11. For Xe^ the following are equivalent

(1) Xen»
(2) [X, 8_J C g0 and [X, β . J c gέ.

Proof. Obviously, we only have to prove (2) Φ (1). Let Xe & satisfy

the conditions of (2). From [X, g.J C g0 we conclude that the first com-

ponent of X lies in Qi(K) C Lie Aut D(K). As in (1) from the proof of
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Theorem 5.4 we show X(z, u) — (Ax(z)z, qn(z, u)). We also derive qn(z, u)

= φ{z)Bu from [X, g_J C ĝ . Checking the proof of (2) from the proof of

Theorem 5.4 we see that the conditions [X, g.J c go and [X, g_ J C gέ are

equivalent to (2.a), (2.c) and (2.d). It now suffices to note that the con-

dition Im (trace φ(a)B) = 0 for a e V was not used in the proof of Theo-

rem 5.4.

From Theorem 5.4 we get further

COROLLARY 5.12. The elements of & are uniquely determined by their

value at ie.

COROLLARY 5.13. For xe% the following are equivalent

(1) φ(S(u9 w))φ(x)u = φ(S(u> φ(x)w))u for all u9we U,

(2) φ(x)φ(S(u, w))u — φ(S(φ(x)u, w))u for all u, we U.

For x e P1 the conditions (1) and (2) are satisfied.

Proof. The first assertion follows from

φ(S(u, w))φ{x)u — <p(S(u, <p(x)w))u = 2φ(xS(u, w))u — φ(x)φ(S(u, w))u

— <p(S(u, φ(x)w))u = <p(S(φ(x)u, w))u — φ(x)φ(S(u, w))u .

The second assertion follows from (2.d) from the proof of Theorem 5.4.

Remark 5.14. Theorem 5.4 has been proved for symmetric Siegel

domains in [48]. The proofs are different.

We finish this section with a detailed description of Pt and P^. Let

2Ii = Sΐίυ Θ Θ SIίs) be a decomposition of % as sum of ideals. We denote

the unit of %[j) by cU). Then, by Lemma 3.9, U1 is the orthogonal sum

of the spaces Ui3) : = ^(c( j))^i Let %3 denote the Peirce spaces of the

Peirce decomposition of §ί with respect to the CSI f : = c(1), ••-,/,:= c(s\

f:+ί:=c0; then SI, = Θ ^ ^ , « „ , «„ = 8t^, 8Γ* = Θ w *.«,, , + 1 and SI0 =

®*+if*+i The choice of cιJ) implies that A(c(j)) has only the eigenvalues

0 and 1 on % whence S€i = 0 for 1 < ί, j < s, i Φ j . For such i and j we

have %,S+A,S+1 C % = 0. Further, from Lemma 3.9 we get S(W\ Uij))

C % = 0.

The following result is a very useful detailed description of Pj and Pj.

LEMMA 5.15. Assume that ${Λ is simple for all j . Then

a) Pj = Θ}., (Pi Π

b) p, = Θ5., (P, n
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c)

d)
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then Pi Π Uij) = U^

then Pi Π 8lίΛ = Stί" a

and

nd F * n cψ =

Proof. By Corollary 5.2, Px is an ideal of %, hence sum of some %[j\

We may assume P, = SI^ Θ Θ 2ίf >. From Corollary 5.7 we get θ * β l t / ^

= P i # Hence a), b) and the first parts of c) and d) are proved. To prove

the second part of c) we choose yeP$ Π U}j\ y Φ 0; then S(y,y)eP1.

From y φθ we get S(y,y) Φ 0; hence P2 Π W Φ 0. By assumption, %[j)

is simple, whence Pi Π %[j) = 2ίίJ). Finally, the assumption of d) implies

<p(cϋ))U — Uij) c Pj, whence the assertion.

Remark 5.16. Let i ζ 0 ) denote the projection of K onto 21^ and define

Sj: Uij) X U}» -> aί Λ + i2ίp> by S3(u, w) := S(u, w). Assume further that

%[j) is simple. Then it can be shown that D(Kίj\ S3) is symmetric if and

only if Px Π W Φ 0.

§ 6. Commutators in g(jfiΓ, S)

In this section we express the commutators in $(K, S) by parameters.

By D(K, S) we denote a homogeneous Siegel domain in Vc X £7. We

first fix some notation.

(6.1) P^:= V, P-i'.= U, P 0 : = g 0 .

By Theorem 1.4 we know that P_j is a domain of parameters of g_x and

that U is a domain of parameters for g_̂ .

We recall that P^ and Px have been defined in the preceding sections

as the respective domain of parameters for qi and glβ It is clear that all

Pλ are vector spaces over R. P_j and P^ are vector spaces over C.

Let Λ Φ 0 and wePλ; then by Xj[w/| we denote the element of Qλ which

is characterized by w (see Theorems 1.4, 4.1 and 5.4). To unify notation

we also put X0[T, f] : = (Γ, f ) for (Γ, f ) e g0.

For the description of all commutators it clearly suffices to consider

the commmutators in [ĝ , ĝ ] d §λ+μ. Here we proceed as follows. At one

hand we directly compute L(w, ιυf) : = K [ ^ ] , Xμ[w']]; on the other hand

we know L(w, w') e $λ+μ. Hence L{w, w') = 0 if λ + μ £ {—1, — J, 0, J, 1} and

there exists an element /(u;, α;') e Pλ+μ such that

, u O = Xi+μ\f(w, wf)} holds if Λ + /ιe{—1, - i , 0, J, 1} .

In what follows we evaluate this equation case by case. More precisely,
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we compute f(w, w') in all cases and derive several identities which turn

out to be helpful in concrete computations.

All parameters appearing are chosen arbitrarily. The proofs, being

easy, are omitted.

(6.2) [X-M, X-AW]] = 0 .

(6.3) [X. .N, X-hW)} = 0 .

(6.4) [X_M, X0[T, f]] = X.JTw] .

(6.5) [X-M, XiM] = X-iVφW .

(6.6) [X-M, XχWΊ\ = XoVAUw), φ(w)φ(w')] .

(6.7) [X-Aw], X-iW]] = X-A-4 Im (S(w, «/))] .

(6.8) [X-άwl XoW. T]} = X-ilfw] .

[X-ilw], Xi[w']](z, u) = 2(S(w, φ{z)w') + S(Ψ(z)w', w),

-φ(S(u, w))w' + φ(S(w, w'))u+φ(S(u, w'))w) .

(6.10) [X.iM, X1[w']] = Xά-ίφiw'M .

(6.10.a) φ(S(u, w))ψ{w')u = φ(S(u, ψ{w')w))u for u, w e U, w' e Pj .

(6.11) [X0[T, f), X0[T, f']] = X0[-[T, T], - if, f']] .

(6.12) [XJ[T, f], Z j N ] = f

The following three identities are valid for all ze Vc, ue U, we P^, (T, T)

ego

(6.12.a) ψ(Tz)w - fφ(z)w = φ(z)ffw ,

(6.12.b) S(u, φ(Tz)w) - S(u, Tφ(z)w) = S(u, φ(z)f"w) ,

(6.12.C) φ(S(fu, w))u + φ(S(u, W))fu - fφ(S(u, w))u = φ(S(u, f"w))u .

(6.13) [X0[T, f], XM] = XλT'w] .

ψ(Tz)φ(w) + φ(z)ψ(w)f - Tφ{z)φ(w) = φ(z)φ(T°w)
{ } for all zeVc, we Pu (T, f)e S o .

(6.14) [Xh[w], Xh[w']] = X,[-4 Im (S(w, w'))] .

The next four identities hold for all ue U, ze Vc, w, w'e

w, u))u^ + S(Ψ(S(u, w))u, Ψ{z)w')

= S(«, φ(S(φ(z)w', u))w) + S(φ(S(u, w'))u, φ(z)w)

(6.14.b) ίί(S(w, iϋ'))p(S(w, w))u =
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(6.14c) -2Alm{S{WtW,))(z)z = iS(φ(z)w, φ(z)w') - iS(φ(z)w\ φ(z)w),

— 2<p(z)φ (Im (S(wf w')))u = iφ(S(u, φ(z)w))w' + ίφ(S(φ(z)w, w'))u

(6.14.d) + ίφ(S(u, Wf))ψ{z)w - ίφ(S(u, φ(z)U)'))w - iφ(S(φ(z)w', U)))u

— ίφ(S(u, w))φ(z)w/ .

(6.15) [Xflw], Xι[υfΆ = 0 .

The following three identities hold for all w e P^ w' eP19 ue U, ze Vc.

(6.15.a) 2Aw,(z)S(u, φ(z)w) = S(φ(z)φ(w')u, φ(z)w) + S(u, φ{Aw,(z)z)u)) .

^ ' φ{z)U)))φ(wf)u + φ(z)φ(wf)φ(S{u, w))u
/c iκ IΛ

= <p(S(φ(z)φ(w')u, w))u + φ(S(u, w))φ(z)φ(w')u .

(6.15.C) φ(Aw,(z)z)w = <p(z)φ(w')φ(z)w .

(6.16) ffl, Λi[u^] = 0 .
The last two identities are valid for all w,w' e Pu ue U, ze Vc.

(6.16.a) Aw,(z)Aw(z)z = A ^ A ^ ^ z .

/ f l 1 , w φ(z)φ(w')φ(z)φ(w)u + φ(Aw(z)z)φ(w')u
(o.lo.b)

= φ(z)φ(w)<p(z)φ(w')u + φ{Aw,{z)z)φ(w)u .

§ 7. The radical and a Levi decomposition of g(ϋΓ, 5)

Let D(K, S) denote a homogeneous Siegel domain in Vc X U. We

use the results of the preceding sections to describe the radical and a

Levi decomposition of §(K, S). Finally, we associate to D(K, S) in a

canonical way a symmetric Siegel domain which turns out to be a con-

crete realization of a symmetric domain which has been abstractly con-

structed by K. Nakajima in [38].

1. To describe the radical to = ΪΌ(K, S) of g = g(jK", S) we use Theorem

1.6. But first we have to fix some notation.

(7.1) Pi ! : = { * e V; *•_,[*] e t tu} ,

(7.2) Pii:={deU;X.i[d]en.i},

(7.3) PJ : = {* e V; σ(x, y) = 0 for all y e PJ ,

(7.4) P± :={deU; p(d, u) = 0 for all ue P4} .

THEOREM 7.1. a) Plj = Pi1,

b) Pίh = P£.
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Proof. By a dimension argument we derive from Theorem 1.6 that

it suffices to prove Plx c P^ and P l έ c P£. Let y e P ^ ; then X.t[y] e ftu

and for all Xί[w/] e qt we get [X^[y]9 Xi[w']] e ΪΌ Π g0 c lυ0. We know ID Π

9! = 0; hence [[X^[y]f Xί[w% Xι[wr\] = 0. Now we use (6.6) and (6.13) and

get 0 = [Ay(w')]aw; = Aw,(y)w' for all u/ e Pu ye Pίτ. We insert for w'

the unit p of the ideal Pί of %. We thus get 0 = Ap(y)p = py. This

implies yeP^ and a) is proved. Now, let d e P l j , then we have [X-^td],

-X'-it^Ίl € lυ Π g_! = ίυ_! for all w' e U,dePlh. Applying (6.7) and a) we

get Im (S(d, w')) e P^-. We specialize wr : = id; hence S(d, d) e P^. By (6.8)

we may replace d by φ(p)d; in this case we have 0 = σ(p, S(φ(jp)d, φ(p)d))

= p(ψ(p)d, φ(p)d), whence 0 = φ(p)d. But this means d e P£. The theorem

is proved.

Now we characterize ίυ0.

THEOREM 7.2. Let X = (Γ, T) e g0. TΛβλi ίΛβ following are equivalent

(1) Xetυ0,

(2) Xe rad g0> [X, g.J c tυ_u [X, g.J C ίυ_έ,

(3) I e rad g0, T°PX = 0, f " P t = 0.

Proof. Let fυ0 denote the set of X's which satisfy (2) and ΐυ0 the set

of X9s which satisfy (3). We obviously have ϊv0 C ίυ0. To prove fr>0 = ̂ o

let X= (Γ, f ) e r a d g 0 ; then Xetb0 is equivalent to TV c Pf1 and f E7c

P ^ because of (6.4) and (6.8). Hence Xefυ0 if and only if T^P, = 0 and

T^P^ = 0. This proves ft0 = So- To prove the theorem it suffices to show

that c : = 1D_! + jτ)_̂  + fϋ0 is a solvable ideal of g. We first note

(a) [c, gj c c, [c, g_J c c,

for [c,g_J C [fυo,g.J c t o . j by (6.2) and (6.3).

(b) [c, gj C c, [c, gj C c.

By the properties of g it is clear that [c, gj C tv0 + [fδ0, gj holds. It ob-

viously suffices to prove [ίυ0, gj = 0. But this follows from (6.13) and TσPx

= 0 for (Γ, Γ) C (b0. The second assertion is proved along the same lines

using [c, g j C tυ_έ + tυ0 + [tυ0, gέ] and (6.12). Next we verify

(c) [c, g0] c tυ0.

Because of [c, g0] c to., + lυ_έ + [fb0, g0] it suffices to show [ίυ0, g0] c fυ0. By

(2) this means [ίυ0, g0] c radg0, [[fb0, g0], g_J C ΪΌ^ and [[fυ0, g0], g-J c ϊυ^.

Here the first inclusion is clear. Let Xefbo> Y^Qo a n ( i Zv e gy, v = — 1, — J.

We then have [[X, Y], Zv] = [X, [Y, ZJ] + [Y, [Zv, X]], and by definition of

fυ0, [Zu, X] is contained in tov. Hence [Y, [Zy, X]] e ΪΌV C C, V = — 1, — | . On

the other hand [Y, ZJ c gv; whence [X, [Y, Zv]] e lυy c c. It now remains

https://doi.org/10.1017/S0027763000019796 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019796


76 JOSEF DORFMEISTER

to prove that c is solvable. Here we use [c, c] c [to_1? ίυ0] + D#-i> to-J +

[to-*, to0] + [ίυ0, fυ0] c iu_! + to_έ + [ίυ0, fυ0]. Hence, for the Λ-th derived c(fc)

we get c(fc) C lϋ_! + to_έ + fδofc> But fo0 is solvable, whence there exists

n e N such that fitf* = 0. Then c(n+2) = 0. This finishes the proof of the

theorem.

By [28], [25; Theorem 4.1] we know that adg is an algebraic Lie

algebra. We use the notation of Theorem 3.12 and [9; V, §4, Proposition

6] to get

COROLLARY 7.3. a) to = [(& + a2) Π to] + nφ + to_x + to_j,

b) (δi + 62) Π to is abelίan and for Xefa + g2) Π to is ad X semisimple,

c) n^ + to_j + to_£ is £Λe largest nilpotent ideal of g.

2. This paragraph is devoted to the construction of a Levi decom-

position of g. We set Lj : = {X-t[w]; w e PJ, Γ_έ : = {X_4[ιι;]; w e P J , I4 : =

[X^w]; w e P J and I, : = {^[α;]; u; e PJ.

We are looking for some space ί0 such that the sum of the ί/s is an

semisimple Lie algebra. We are going to describe Γo quite explicitly. We

use the Peirce decomposition SI = Θ i ^ ^ ^ SI*, and the spaces mij9 mfy, α

and aψ which have been introduced in § 3. We decompose % = Sίπ into

the direct sum of its simple ideals SIj = SIf} Θ Θ 2Iίs) and get a corre-

sponding decomposition of mπ and mίΊ, mn = mff Θ θ mίf and mfΊ

= mΓi(1) θ θ mlis\ Without restriction we may assume Px =

θ Si{fc).

With this notation we put ΓOm : = m ^ θ θ mΓ^.

LEMMA 7.4. [ί.έ> y c tOm + α'.

Proo/. Let X : = JC.έ[iι;] and Y : = X^u/\ and (T, f) : = J[X, Y]. Then,

by (6.9), we know Tυ = 2 Re (S(φ(v)w\ w)) and fu = -φ(S(u, w))w'+

φ(S(w, w'))u + <p(S(u, w'))w. From the definition of T, Lemma 5.1 and

Corollary 5.6 we derive T% C Pt; further, Γ3ί0 = 0 is immediate. On the

other hand we may apply Theorem 3.12; hence there exist (Tu Ti)emji,

xh e ST̂  and (To, fQ) e ®2<ί<j<q mfy + a* such that (Γ, f) = (T7!, t,) + (Ac(^),

iφ(xi)<p(c)) + (To, To) holds. The properties of T mentioned above imme-

diately imply (Tl9 tx) e ίOm and ^ = 0. Hence also To2ro = 0. Whence To

e t> and (To, To) e aφ. The lemma is proved.

Denote by ΓOα the projection of [ί_έ, Γέ] into aφ. We set Γo : = ίo«π + Γoo

In the proof of the following theorem we use the properties of aφ

which we have listed in Lemma 3.14. We add that α^-annihilates Pj and,
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by Corollary 5.9, leaves invariant P^.

As usual, by p we denote the unit element of Plt

THEOREM 7.5. a) •[ : = Γ_x + Γ_4 + Γo + Γ4 + lx is a semίsimple sub-
algebra of Lie Aut D(K, S).

b) ΓOα is an ideatl of a9.

c) The elements of I leave invariant the vector space Pf X P έ .

d) If Xe Γ annihilates Pf x Pi then X = 0.

Proof 1) In the definition of I we replace Γo by ΓJJ : = ίOm + aφ. The

vector space thus constructed will be denoted by V, its summands by l'λ.

We claim that V is a subalgebra of g = Lie Aut D(K, S) which leaves in-

variant Pf X P^. The second assertion is easily verified using the explicit

expressions for the elements of Vλ. To prove the first assertion it suffices

to show [l'λ9Vμ] al'λ+μ for λ, μe {—1, — | , 0, J, 1}. There is nothing to be

proved for the pairs (λ, μ) e {(-1, -1) , ( - 1 , - | ) , (£, 1), (1,1)}. Next we use

(l'0)
σ@p = IQ, the results of § 6 and Lemma 5.1 and immediately get the as-

sertion for the pairs (λ, μ) e {(-1, 0), ( - 1 , i), (-1,1), ( - J , 0), ( - J , 1), (0, J),

(0,1)}. To settle the cases (λ, μ) e {(- J, - J), (J, J)} we use (6.7), (6.14) and

Corollary 5.6. We are left with the cases [l'O9 l'o] C l'o and [Γ_έ, l[] c ΓJ. The

first one is clear because ίOm and α? commute by Lemma 3.14. The second

one coincides with the assertion of Lemma 7.4.

2) We claim that I is an ideal of V. We only have to prove [L^, ί j

C Γo for λ — 0, J, 1 and [I, aψ] c I. The case Λ = 1 is a consequence of

(6.6) and the case λ = | follows from the definition of ί0. Let λ = 0; then

it obviously suffices to prove [ΓOα, a
ψ] C ΓOfl. But this follows from the de-

finition of ΓOα, the fact that a9 leaves invariant Γ_έ and ί̂  and that ΓOm

commutes with a9. From these remarks we also get [L^ + ϊ0 + i4, a
9] c ϊ.

Finally, (6.4) and (6.13) imply [Lj + Γj, a9] = 0 and the assertion is proved.

3) The radical ft/ of V is contained in the set q of Xelo which an-
nihilate Pf x P^.

To prove this claim we first mention that the map Σ -^ *"* Σ ^ ^ ^s a

derivation of Γ; therefore ft)' is the sum of the vector spaces to, : = ft/ Π R.

The proof for the fact ft>£ = 0 and ϊo[ = 0 can be taken almost unchanged

from [29; Lemma 4.2]. Hence [ft)J, 1̂  + ΓJ = 0. We now consider the vector

field X(z, ύ) = (Ap(2;)^, φ(z)φ(p)u) which is contained in l[. As a conse-

quence we get (adX)ft>!j = 0 and ( a d l ) 2 ^ ! = 0. We use (6.4), (6.6\ (6.10)

and Corollary 5.9 to get ϊoL± = 0 and ft)7.! = 0. This implies [ft>£, ί^ + Γ_J

= 0. By (6.4) and (6.8) the assertion follows.
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4) The Lie algebra Γ is reductive.

From the definition of q we easily derive q C a9. We know that a9 is

reductive (see Lemma 3.14) and that ft>J is a solvable ideal of a9. Hence,

ΪD'O is contained in the center of a9. This implies [iυ£, ϊ£] = 0 and ΪΌ'O equals

the center of V. Hence, the radical radί of the ideal I of V coincides

with the center of I and the assertion follows (see [4; §§5, 6]).

5) i c [ t , q .

To prove this claim we put E : — (A(p), iφ(p)) and get [E, ϊJ = lλ for λ Φ 0.

From (6.6) we derive {(A(x), iψ(x)); * e PJ C [Γ, ί]. Whence ΓOm c [Γ, ί]. By

definition of ΓOα we know IOα c [!_$, IJ + IOm. Hence Γo = ΓOm + IOα c [I, ί].

This proves the assertion.

We are now in the position to prove the theorem. Part a) follows

from 4) and 5). Part b) is contained in 2) and c) is contained in 1). It

therefore suffices to prove d). Choose Xeϊ which annihilates Pf X P^.

Write X = ΣXX where Xλ e lλ. Now, the first components of the X/s are

polynomials of different type; hence the first component of each X̂  an-

nihilates Pf X P έ . This implies X.x = 0, X_έ = 0 and Xx = 0. Comparing

the second components of the remaining X/s we get along the same lines

Xh = 0. This means that the set % of Xe I which annihilate P? X P± is

contained in ΐOa. By the results of § 6 we see that £ commutes with Lj

+ Γ_£ + tj + ti We also have [g, ΓOm] = 0 because of £ c !„». Further, £

is an ideal of a9. Putting all together, we have shown that £ is an ideal

of I. We have proved above that ί is semisimple; hence I = £ θ ϊ where

the ideal ϊ of I equals the orthogonal complement of £ in ί with respect

to the Killing form. Finally, we consider E : = (A(p), \ψ{p)) e ί. From

the definitions of E and £ we easily derive [E, £] = 0. Whence Eel and

[E, ί] c ϊ. In 5) we have shown that [E, Γ] = I_i + Γ_έ + Γ4 + ϊ2 generates

the Lie algebra ί. This implies £ == 0 and the theorem is proved.

COROLLARY 7.6. a) Γo is generated by [L^, I.J + [ί_1? ΓJ.

b) Let (T, f)e lOa and veV satisfying pv = 0, then Tv = 0.

Proof, a) is a consequence of 5) from the proof of Theorem 7.5 and

b) is contained in the proof of Lemma 7.4.

Next we describe a9 more precisely. We set tβ : = {Xe a9; X(Pf X P$)

= 0}. From d) of Theorem 7.5 we get iβ Π ΓOα = 0.

COROLLARY 7.7. The Lie algebra a9 is the direct sum of its ideals tβ

and ίOα, a
9 = t β 0 ίOα.
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The Lie algebra tα is reductive and its center is contained in the radical

of 6(K, S), tβ = [tβ, t j Θ too Π a'.

Proof. It is clear that tβ is an ideal of aψ and, as carried out in the

proof of Theorem 7.5, I is an ideal of the Lie algebra I + aφ. Hence,

a d X is a derivation of the semisimple Lie algebra I for all Xeaψ. The-

refore, there exists Yeί such that ad(X— Y)ϊ = 0 holds. We apply

ad (X - Y) to (A(p), lψ{p)) e I and get Ye Io. We know that Y = Ym + Ya

where Ym e ίOm and Ya e ΓθQ and derive from ad (X — Y)ϊ = 0 easily Y = Ya.

Hence X- Yea9. Finally, a d ( Z - Y)Lέ = 0 shows that X-Y annihi-

lates Pf X P 4 and thus proves the first assertion. Let now X lie in the

center o of tfl. Then X is contained in the center of aψ. By Theorem 3.12

we thus get -X"eradg0. But, by definition of tα, we also have TσPί = 0

and TpPh = 0 where X= (T, f ) ; hence, by Theorem 7.2, we get Ie lD 0 .

Finally, the ideal iα of the reductive algebra aφ is reductive again, whence

tfl = [tβ, t j + b. But we have shown above o c ΪΌ0 Π tα and the assertion

follows.

We are now in the position to provide a Levi decomposition where

the semisimple summand has especially nice properties. Let ϊj^ (resp. ζ{[}

resp. ϊ)b) denote the semisimple part of the reductive Lie algebra m^ (resp.

mΓi(r) resp. tα)

We set ζ: = Θ ί - ^ i ^ + ®UΪ» + 5«

THEOREM 7.8. a) The sum ί + § of Lie algebras is direct.

b) I + § is a maximal semisimple subalgebra of Q(K, S).

Proof. It is clear that the sum of the vector spaces I and ϊj is direct.

The Lie algebras m j ; and mrr commute as do mΐij) and mΓi(r) if j Φ r.

Further, [mφ

rr, a
φ] = 0 for 1 < r < q and [ΓOα, i j = 0. To finish the proof

of a) it now suffices to note that, by the results of § 6, we have β, ί_i +

L^ + ίj + Γi] = 0. To prove b) it is enough to show g = $(K> S) = I + §

+ ft>. We use the definition of ί and Theorem 7.1 and see that we only

have to prove g0 c [0 + ϊ) + ft)0. We apply Theorem 7.2 and get that the

centers of τriπ(r), r>k, and m^, j > 2, are contained in ίυ0. Hence,—see

Theorem 3.12—it suffices to show aψ C ΓOα + \ + ft>0 Π α9. But, by Corollary

7.7, we know ϊjα + ft)0 Π α̂  = tβ. The theorem is proved.

3. In [38] it was shown that g = g(UL, S) contains a (possibly trivial)

semisimple subalgebra which is canonically isomorphic to the Lie algebra

of infinitesimal automorphisms of a symmetric Siegel domain. In this
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paragraph we construct a symmetric Siegel domain D(K', S') a D(K, S)

and prove that the restriction of the Lie algebra I (which has been con-

structed in the last section) to D(K', S') coincides with Lie Aut D(K\ S')*

This makes concrete the rather abstract construction of [38].

We recall that a Siegel domain is called symmetric if its Lie algebra

of infinitesimal automorphisms is semisimple [58], [60], [61].

We define ψ : = Pu Uf : = P έ and S' : = S\ufχu.. Further, by Kr we

denote the projection of K into V7. Then, by Corollary 6.6, S' is a K'-

hermitian form. We therefore may consider the Siegel domain D(K\ S').

THEOREM 7.9. The Siegel domain D(K\ S') is homogeneous and I is

canonίcally ίsomorphic to Lie Aut D(K\ S') The Siegel domain D(K', S')

is symmetric.

Proof. 1) We identify I with its restriction to Pξ X Ph. This can

be done because of part d) of Theorem 7.5. If Px decomposes into the

sum Pi = Sί^ Θ ® 3tί*\ then also I decomposes. We therefore may

assume that Px is simple.

2) We compute ηκ,s,, p\ φ' for D(K', S'). Put

i(x) : = [Άx)Y [det φ{x)\nY
ι , x e K' ,

and W : = exp tA(y)9 W : = exp tφ(y), y e Px then

^(Wic) = [det W]-2 [det lίΠ"Y(x)

follows. Hence, ηκ,8, and ^ only differ by a positive constant factor.

Further, it is clear that ω(x) : = det^(x)|P i is a "multiplicative polynomial"

in the sense of [5; II, §3] and therefore, by [5; III, §6] a power of cκ,{x).

This implies that there exist a > 0, β > 0 such that ηK's'(x) = oε[eκ^(x)]β

holds for all xe K'. We now apply the results of [31; VI] on domains of

positivity and formally real Jordan algebras and see that the algebra which

is defined for ηκ,s, and the unit p of Pγ according § 3 coincides with the

ideal P1 of %. From this and the fact that Px is simple we get that the

bilinear form </ which is defined for ηκ,s, and p and the bilinear form

σ|P l X P l only differ by some positive factor δ because both bilinear forms

are associative. We use the definition of p' and see pf = δp\P^XPy Whence

φ'(χ) = φ{x)\Ph for all xePt.

3) We set $' : = Lie Aut D(K\ S), g' = $U + βi* + g« + βj + βί. From

2) and Theorems 4.1 and 5.4 we get I_j = g^j, ϊ_j = gί.j, ϊj = ĝ  and ίj =

βί. By Theorem 1.6 we thus have ΪΌ'^ = 0 and ίoij = 0. But now (6.4)
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and (6.8) imply too = 0 whence g' is semisimple. We therefore only have

to prove t0 = gί We now apply Corollary 7.6 to ί and to g'. But lλ = g£

for λ Φ 0 and Io = go follows. The theorem is proved.

Remark 7.10. Put Es :== (A(p), \φ(p))) then, by the results of this

paper, most of the results of [38; §§2,3] are immediate consequences.
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