ONE SIDED INVERTIBILITY AND LOCALISATION
by C. R. HAJARNAVIS

(Received 26 April, 1991)

1. Introduction. In general, a prime ideal P of a prime Noetherian ring need not be
classically localisable. Since such a localisation, when it does exist, is a striking property;
sufficiency criteria which guarantee it are worthy of careful study. One such condition
which ensures localisation is when P is an invertible ideal [S, Theorem 1.3]. The known
proofs of this result utilise both the left as well as the right invertiblity of P. Such a
requirement is, in practice, somewhat restrictive. There are many occasions such as when
a product of prime ideals is invertible [6] or when a non-idempotent maximal ideal is
known to be projective only on one side [2], when the assumptions lead to invertibilty
also on just one side. Our main purpose here is to show that in the context of Noetherian
prime polynomial identity rings, this one-sided assumption is enough to ensure classical
localisation [Theorem 3.5]. Consequently, if a maximal ideal in such a ring is invertible on
one side then it is invertible on both sides [Proposition 4.1]. This result plays a crucial role
in [2]. As a further application we show that for polynomial identity rings the definition
of a unique factorisation ring is left-right symmetric [Theorem 4.4].

2. Notation and preliminaries. All rings are associative and have identity. Let R be
a ring with a quotient ring Q. Let [ be an ideal of R and M a right or left R-module. We
define

€(I)={ceR|c+1regularin R/I}

I*={qeQ|qlcR}

1*={qeQ|Ilg=R}

|Mg| = Krull dimension of My

|gkM| = Krull dimension of zM

PI ring = a ring satisfying a polynomial identity

P™ = the n-th symbolic power of P deﬁned by Goldie [8]
Rp = the ring of fractions formed when 4(P) is an Ore set
p,(Mg) = the reduced rank of M,

p1(gM) = the reduced rank of ;M

R is said to be as local ring if R/J is a simple Artinian ring where J is the Jacobson
radical of R. When R is a prime right Noetherian ring and a prime ideal P satisfies the
right Ore condition with respect to €(P), we may form the right localisation R, which is a
local ring with Jacobson radical PRp. Further, under two sided assumptions the left
localisation coincides with the right localisation. In this case we have PR, = R,P.

The ideal I is said to be left invertible if I*I =R, right invertible if 1I* =R and
invertible if I*I = R = II*. When [ is invertible it is easily seen that [* = [,
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Let R be a ring with a simple Artinian quotient ring. Let I be a non-zero ideal of R.
The dual basis lemma [4, Proposition 3.1, p132] shows that I is projective if and only if
1€ II*. Similarly g/ is projective if and only if 1 € I*1.

The ring R is said to be a maximal order if there is no larger order in Q equivalent to
R. A convenient characterisation is as follows: Let R be a prime Noetherian ring. Then R
is a maximal order if and only if for each non-zero ideal Iof Randqe Q,Iqc]/>q€R
andglclI=>qe€eR.

It is easily seen that the property I* = I* also holds in a maximal order.

A prime ideal P is said to have height 1 if P does not properly contain a chain of two
distinct prime ideals. By [11, Proposition 13.8.2] in a Noetherian prime PI ring every
non-zero prime ideal contains a height 1 prime.

R is said to be a Krull symmetric ring if for each R-R-bimodule M which is finitely
generated on both sides we have | M| = |Mpg|.

Let M be a module over a semi-prime right Noetherian ring R. We say that M is a
torsion module if given m e M there exists ¢ regular in R such that mc =0. The term
torsion-free is defined analogously.

Let P be a prime ideal of a Noetherian ring R. The symbolic powers P™ of P that we
require are those described by Goldie [8]. These have the property that

4(P)=4(P™) forall n=1.
R is said to be a right unique factorisation ring (UFR) if every height 1 prime ideal of R is
principal as a right ideal.

Finally, where relevant, the absence of the adjectives right or left will imply that the
given condition is meant to hold on both sides. '

3. The main theorem.

LemMA 3.1. Let R be a Noetherian prime Krull symmetric ring. Let M be a bimodule
finitely generated on both sides. Then p,(M)=0¢p,(M)=0.

Proof. Assume that p,(M)=0. Then xM is a torsion module so by [11, Proposition
6.3.11] we have
lRM| <|&RI. (i)

Suppose that p,(M)+#0. Then My is not a torsion module. By factoring by the torsion
submodule of My (and observing that this is a subbimodule) we may assume that Mg
is torsion-free. Since R is prime, Mg must be faithful. Now M is finitely generated.
Let M=Rm;+...+Rm; where m;eM. The map R>M®D...®M (k times)
given by r—>(mr,...,mr) for r € R shows that Ry is isomorphic to a submodule of
MD...D M) It follows that

|Rg| < |MRg|. (ii)

(i) and (ii) conflict with the assumption of Krull symmetry. This contradiction shows that
pA(M)=0.

LemMA 3.2. Let I be an ideal of a Noetherian Krull symmetric ring R. Suppose that the
maximal nilpotent ideal N of R is a prime ideal.

Then p,(I)=0& p,(I) =0.
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Proof. Suppose that p,(I) =0.
Consider the chain IoINNoINN?>o...oINN=0. By addivity of the reduced

rank we have
k) INN:
I - i( ] >.
pl( ) ,2—_:0 p Ian+l

Since the reduced rank is a non-negative integer and

INN
pi(I)=0 we have p,(

W>=O for i=0,...,k—1.

INN'
Now each InN* is an R/N-module (on both sides). So by Lemma 3.1
INN' )
,<W)—O for l—O,. .. ,k—l.
Since

S INN
05 nlnte)
p() ,gop InN1+1

it follows that p,(I) =0.

ProposiTion 3.3. Let P be a prime ideal of a Noetherian Krull symmetric ring. Then
for each n =1 there exists d, € €(P) such that P*"d, c P".

Proof. By induction on n. Assume that P~Yd,_, < P! where d,,_, € 4(P). By [8,
§3 and 4] there exist ¢, d € €(P) such that cP®d c PP~ ", Hence

cP™dd,_, = P". *)

Let p, denote the reduced rank of right modules over the ring R/P" and let p, be the
analogous reduced rank on the left. Consider I = [P“dd,,_;R + P"]/P" an ideal of R/P".
By (*) we have p,(I)=0. It follows by Lemma 3.2 that p,(I)=0. Since [ is finitely
generated as a left ideal it follows that P"d, < P" for some d, € €(P).

We note that every non-zero ideal of a prime PI ring contains a non-zero central
element [11, Theorem 13.6.4] and when such a ring is Noetherian it satisfies the symmetry
condition on Krull dimension required in Proposition 3.3, [10] or [11, Corollary 13.6.6
and Corollary 6.4.13].

LEMMA 3.4. Let P be a prime ideal of a prime Noetherian PI ring. Suppose that P is
right invertible. Then (i) () P =0 and (i) €(P) < 4(0).
n=1

Proof. (i) Suppose not. Then (1) P contains a non-zero central element—p say. By

n=1
Proposition 3.3 we have pc, € P" for some c, € €(P). We shall show that p € P" for all
n=1. Assume by induction that p € P*~'. Then p(P¥)"~' < R. Now since pc, € P" we
have pc,(P*)"~'< P and so c,p(P*)" "' c P. As c, € 4(P) and p(P*)"~' c R, we obtain
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p(P*Y""'c P. Thus (P*)""'pcP. Hence Rp c P" which gives p e P". So we have
O#pe ﬁ P" which is a contradiction since () P* =0 by [6, Lemma 3.1].

n=1 n=1

(ii) Follows from the above noting the property of symbolic powers that €(P) =
G(P™) for all n.

A special case of our next theorem was proved in [6] for maximal ideals under an
extra hypothesis.

Recall that a pri (pli) ring R is a ring in which every right (left) ideal of R is
principal.

THEOREM 3.5. Let R be a prime Noetherian Pl ring. Let P be a right invertible prime
ideal of R. Then P is localisable and the localised ring R, is a pri and pli ring. In particular,
P has height 1.

Proof. Let a, ¢ € R with ¢ € €(P). By Lemma 3.4 we have ¢ € €(0). Hence ¢R is an
essential right ideal and so by [1, Theorem 7] or [11, Corollary 13.2.9], cR contains a
non-zero ideal. Thus ¢R contains a non-zero central element. Let A be a maximal left
invertible ideal contained in cR. Suppose that A ¢ P. Since ¢ € €(P) we have A ccP. So
we have AP¥ ccPP¥ =cR since P is right invertible. Now clearly AP* c A and
PA*AP* = PRP* = PP¥ = R. So AP¥ is left invertible. By the maximality of A we have
A =AP*. Therefore A*A=A*AP* and so R = P*. Hence P=PR = PP* =R. This is a
contradiction and so A¢P. So we may select ¢,e AN $(P). Now aAcAccR.
Therefore we have ac, = ca, for some a, € R. Thus the right Ore condition is satisfied with
respect to 6(P) and so R is right localisable at P. By [3, Theorem A] R is also left
localisable at P.

Let S and J denote respectively the localised ring Ry and its Jacobson radical
PR, = RpP. Since P is right invertible it is easy to see that JJ* = § where J* is taken with
respect to the ring S. Let a be a non-zero central element of S. By [6, Lemma 3.1] we

have (M) J” = 0. So there exists an integer k such that a € J* but a ¢ J**'. Since a$ c J* we

n=1

have aS(J*)* c S. Clearly aS(J¥)* is an ideal of S. Suppose that aS(J*)* c J. Then since a
is central we obtain aS ¢ J“*' which is a contradiction. Thus aS(J*)* ¢ J. Since S is a local
ring we must have aS(J*)* = S. Hence a$ =J*. It is clear now that J must be an invertible
ideal of S. It follows by [9, Proposition 1.3] that S is a pri and pli ring. It is standard to
show that J has height 1 in S and thus P has height 1 in R.

REMARK. If only the conclusion that P has height 1 is required then a proof
independent of localisation can be given.
4. Applications.

ProPOSITION 4.1. Let R be a Noetherian prime PI ring and let M be a maximal ideal of
R. Then
M is right invertible & M is left invertible @)

M is a principal right ideal & M is a principal left ideal. (i)

Proof. (i) Suppose that M is right invertible. By Theorem 3.5 the ring R,, exists and
is a pri and pli ring. The rest of the proof can proceed as in [6, Lemma 4.1].
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(ii) Follows from the above noting the equality of the left and the right inverses of M
(see the proof of Theorem 4.4).

REMARK. We have no information on the status of Proposition 4.1 when M is a
non-maximal prime ideal.

Our next application is a part of the joint work with A. Braun [2].

ProrosiTiON 4.2. Let R be a Noetherian prime Pl ring. Let M be a maximal ideal such
that Mg is projective. Then M is either idempotent or invertible. In the latter case M has
height 1.

Proof. Since M is a maximal ideal and M < M*M < R, we have either M*M =M or
M*M = R. Suppose that M*M = M. Since My is projective we have by the dual basis
lemma 1 € MM*. Therefore M = 1M c MM*M = M? and M is idempotent. Otherwise we
have M*M = R and then by Proposition 4.1 M is invertible.

In the next lemma the intersection is taken in Q the quotient ring of R.

LeMMa 4.3, Let R be a prime Noetherian Pl ring. Suppose that R is a left UFR. Then
R = NR, where P runs over the height 1 prime ideals of R. Moreover each Rp is a pri and
pli ring. In particular, R is a maximal order.

Proof. Let P be a height 1 prime. Since P is a principal left ideal with a regular
generator, P is a right invertible ideal. So by Theorem 3.5 the localisation R, exists and is
a pri and pli ring. Let g € NR,. Define X = {r e R | qr € R}. Then X is a right ideal of R.
Since R is a prime PI ring, by Posner’s theorem [11, Theorem 13.6.5] ¢ = aA~' where
a € R and A lies in the centre of R. Thus X contains a non-zero ideal of R. Since R is a
prime Noetherian ring, every non-zero ideal of R contains a product of non-zero prime
ideals. Since every non-zero prime ideal of R contains a height 1 prime ideal, there exist
height 1 prime ideals P,,..., P, such that P,... P, c X. Thus gP,... P, < R. Since
q € Rp, we have q = c™'a for some a € R and c € 4(P). Thus aP, . .. P._,P, = cR. Since
c € €(Fy) it follows that aP, . . . P,_,P, = cP.. Now P, = Rp, for some p, € P, since R is a
left UFR. Thus aP, ... P._Rp, c cRp,. Since R is a prime ring p, must be a regular
element. Therefore aP, ... P,_,ccR and so gP, ... P,_, = R. Proceeding in this way we
obtain g € R. Hence R = NRp. Now Rp being a pri and pli ring is a maximal order by [12,
Corollary 4.6] (or by the criterion mentioned in §2). As an arbitrary ideal of R is of the
form IRy it is easily seen that R is also a maximal order.

THEOREM 4.4. Let R be a prime Noetherian PI ring. Then
R is a right UFRSR is a left UFR.

Proof. Suppose that R is a left UFR. Let P be a height 1 prime ideal of R. By
assumption P = Rp for some p € P. Hence P¥ =p~'R. By Lemma 4.3 R is a maximal
order and so we have P*=p~'R. Thus p 'RP c R and hence P cpR. It follows that
P =pR. Therefore R is a right UFR.

In the context of Proposition 4.1 it is interesting to note that in a ring, a maximal
ideal which is projective on one side need not be projective on the other, even when the
ring is prime and a finitely generated module over its Noetherian centre.
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ExampLE 4.5. Consider

_[klx,yl ()
R‘[k[x,yl k[x,y]]

where k is a field and (x, y) is the ideal generated by x and y. Then R is a prime ring and
a finite module over its centre which is isomorphic to k[x, y]. The two maximal ideals

_[&y) )
M [k[x,y] k[x,y]]
and

sy

are projective on one side but not the other. Noting that (x, y) is not an invertible ideal of
the domain k[x, y] we have

. [klx,¥] (x,y) s [klx,y] k[x,yl
_[k[x,y] k[x,y]] and M ’[k[x,y] k[x,y]]'

It is easily seen that 1€ M*M but 1¢ MM*. Thus M is left projective but not right
projective. Now R is obtained as an idealizer at a semi-maximal right ideal of the full
2 X 2 matrix ring. So by [13, Theorem 2.8] R is a ring of global dimension 2. It follows
that My has projective dimension 1.

It is easy to see that the ring considered in the above example is not a maximal order.
Indeed, in this case, we can prove the following.

THEOREM 4.6. Let R be a Noetherian prime PI ring which is a maximal order. Let | be
a ideal of R. Then Iy projective < gl projective. Consequently, if either condition holds
then 1 is an invertible ideal.

Proof. Assume that I, is projective. Then 1e/l*. Since R is a maximal order
I* =I¥. This implies that /I* is an ideal of R and so II* = R. Thus [ is right invertible.
Note that for each m=1 we have (I*)"I"cR. Moreover [(I*)"I")=
(=Y [*y™ 1™ = {I*Y"RI™ = (I*)"I". Thus each (I*)™I"™ is an idempotent ideal of R.
By [14, Theorem 3] R has only a finite number of idempotent ideals. Thus there exist two
integers n and k with k>0 such that (I*)"I" = (I*)"**I"**. Therefore I"(I*)"I"(1*)" =
I"(I*)" 1"+ *(1*)". Hence R = R(I*)*I*R. Thus (I*)*I* = R. It follows easily from this
that [ is left invertible and left projective.

Remarks. It is possible to give a ‘first principles’ proof of Theorem 3.5 without
reference to Goldie’s symbolic powers. The key step is to observe that under the
hypothesis of Lemma 3.2, R has the Ore condition with respect to €(N). This is proved
by induction on the index of nilpotency of N. The induction hypothesis shows that
T ={x e R | xc =0 for some c € 6(N)} is an ideal of R. Now p,(T) =0 and so p,(T) =0.
Thus for any d € €(N) we have p,[l(d)] =0 giving p,(R/Rd) = 0. The left Ore condition
with respect to €(N) now follows.

Finally we note that the symmetry hypothesis on the Krull dimension can be replaced
by a function with similar formal properties.
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NoTe ADDED IN PROOF. We have been able to extend Theorem 3.5 to the case in
which R is a semi-prime ring.
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