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Most current nutrition policies and dietary recommendations still reflect decades of research
addressing the mechanism of action or health risks of individual nutrients. Yet, most high-
income countries including the UK are far from reaching the dietary intakes which are
recommended for good health. Food-based dietary patterns (DPs) can help target specific
combinations of foods that are associated with disease risk, recognising the coexistence of
multiple nutrients within foods and their potential synergistic effects. Reduced rank regres-
sion (RRR) has emerged as a useful exploratory approach which uses a priori knowledge of
the pathway from diet to disease to help identify DPs which are associated with disease risk
in a particular population. Here we reviewed the literature with a focus on longitudinal
cohort studies using RRR to derive DPs and reporting associations with non-communicable
disease risk. We also illustrated the application of the RRR approach using data from the
UK Biobank study, where we derived DPs that explained high variability in a set of nutrient
response variables. The main DP was characterised by high intakes of chocolate and confec-
tionery, butter and low-fibre bread, and low intakes of fresh fruit and vegetables and showed
particularly strong associations with CVD, type 2 diabetes and all-cause mortality, which is
consistent with previous studies that derived ‘Western’ or unhealthy DPs. These recent stud-
ies conducted in the UK Biobank population together with evidence from previous cohort
studies contribute to the emerging evidence base to underpin food-based dietary advice for
non-communicable disease prevention.
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The burden of non-communicable diseases such as heart
disease or diabetes continues to increase, and this trend is
accelerated by poor dietary habits(1–3). Many of the top
twenty risk factors reported in the Global Burden of
Disease study are related to diet, including low intakes
of whole grains, legumes, nuts, fruits, fibre or vegetables,
and high intakes of red and processed meats, trans fat or
sodium(4). Despite efforts to improve population diets,
most high-income countries including the UK are far
from reaching recommended dietary intakes consistent
with good health(5). Many current policies and dietary

recommendations are still based on single nutrients or
foods(6,7), and media attention often focuses on one
specific nutrient (e.g. sugar or saturated fat). In reality,
food intake is a multi-dimensional exposure with many
dietary risk factors showing high correlations between
themselves, and the biological effects of different nutri-
ents may also have synergistic effects(8,9).

A whole-diet approach to disease prevention is
increasingly being adopted in policy and practice.
There are several methods to derive dietary patterns
(DPs) but this review focuses on reduced rank regression
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(RRR), which uses a priori knowledge about risk factors
or nutrients of concern to help identify DPs in a particu-
lar study population(10). We include a detailed explan-
ation of the RRR approach to derive DPs from the
research by the authors in the UK Biobank study. The
UK Biobank study is a prospective cohort that recruited
over 500 000 adults, aged 40–69 at baseline (2006–2010),
who provided detailed measures of dietary intake.
Together with previous evidence from longitudinal cohort
studies using RRR-derived DPs, we present observational
associations between RRR-derived DPs and the risk of
health outcomes as well as other cardiometabolic risk fac-
tors in the UK Biobank population(11,12).

Dietary pattern research

A whole-diet approach is an important tool in nutrition
research to capture the inherently complex nature of
food intake. Energy intake in human subjects has been
shown to be relatively stable, and this implies that
changes in one food or nutrient will be associated with
changes in another one, also known as substitution
effects(13,14). Therefore, making inferences about a particu-
lar food or nutrient in observational studies is problematic
and residual confounding will likely affect the observed
associations with health outcomes. DP approaches can
potentially overcome these issues, while capturing any syn-
ergistic effects and the cumulative exposure to different
foods and nutrients(9), which in turn may result in stronger
associations with health outcomes than what has been
observed with single nutrients or foods(8,10).

In observational studies, there are two main approaches
used to derive DPs using self-reported measures of dietary
intakes: a priorior pre-definedDP, and a posteriorior data-
driven/exploratory DP(8,15). Pre-defined DP approaches
include specific diets (i.e. vegetarian or vegan) as well as
dietary indicesor scores,whichareusedas aproxy foradher-
ence to a particular diet (i.e. Mediterranean dietary score,
healthy eating index). Exploratory approaches are data-
driven because they use different statistical techniques to
derive particular combinations of food groups from dietary
data collected in a specific population. Themostwidely used
exploratory approaches include factor and principal compo-
nent analysis, partial least squares and RRR.

Both a priori and a posteriori approaches aim to
reduce a large amount of information from complex diets
in order to investigate diet–disease associations, but all
these methods have particular pros and cons that have
been summarised elsewhere(8,9,15). In any case, it is crit-
ical to choose the most appropriate approach that aligns
with a well-developed research question, as this can influ-
ence the observed associations with disease risk(8,10,16).

Dietary patterns derived by reduced rank regression

RRR has emerged as a useful hybrid approach which
uses a priori knowledge about nutrients or biomarkers
with an established link with disease, to help identify
data-driven combinations of foods in a particular

population(10). In common with all the other exploratory
approaches, the RRR method aims to extract successive
linear combinations of predictor variables (i.e. food
groups). However, the main goal of RRR is to explain
the maximum variability in response variables (i.e. nutri-
ents of interest with established associations with disease
risk); while the other exploratory approaches aim to
maximise the variability in the predictors (principal com-
ponent analysis) or a balance between predictor and
response variation (partial least squares)(10).

The RRR model can include one or more response
variables, and a number of uncorrelated factors (DPs)
will be derived which is equal to the number of specified
response variables in the model. The variation in each of
the response variables that is explained by each DP gives
an indication of the likely ‘strength’ between each DP
and each response variable. Typically, the DPs that
explain the maximum variability in all the response vari-
ables collectively are retained for analysis. Each predictor
variable in the model (i.e. food group) will also receive a
factor loading, so that a larger value (positive or nega-
tive) indicates that the food group makes a greater contri-
bution to the DP. Participants in a study population can
then obtain an overall score (z score) for each of the
derived DPs based on the factor loading and their intake
of each food group, representing the degree to which
their dietary intake adheres to a DP relative to other
participants.

A key strength of the RRR approach is that the
derived DPs use a priori knowledge of established asso-
ciations between biomarkers or nutrients of interest and
disease, hence it is particularly appealing if the aim is
to identify DPs in association with disease endpoints.
The emerging DPs are food-based, meaning they are eas-
ier to interpret and communicate, which helps inform
public health advice. However, RRR-derived DPs
share limitations in common with the rest of approaches,
for example, subjective decisions are made about the
number of DPs that will be retained for analysis, and it
is unclear which food group(s) may drive the associa-
tions. In particular, RRR relies on the availability of
response variables with solid evidence of their associa-
tions with disease outcomes; and by choosing a specific
set of nutrient response variables, there will be some vari-
ability explained by other nutrients which may also be
involved in the disease pathway of interest(10,15).

Dietary patterns emerging from longitudinal
cohort studies

The state of the evidence with regards to RRR-derived
DPs and non-communicable diseases such as CVD and
diabetes is gradually growing. A literature search on
PubMed and Embase up to May 2022 returned seventeen
studies using data from longitudinal cohorts looking at
prospective associations between RRR-derived DPs
with CVD risk and/or all-cause mortality(11,16–31), and
nineteen studies investigating associations with the risk
of developing diabetes(12,32–49). The vast majority of
these studies have been published since 2015, and
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have included samples from a variety of populations
including the USA (n 8(20,24,25,31,39,40,42,45,46)); Europe
(n 11(16,18,19,21,23,26,29,35–37,47,48)), Asia (n 6(22,27,28,32,33,41,49)),
UK (n 4(11,12,30,34,43,44)) or others (n 2(17,38)). Population
specificity is important here, because even when the choice
of response variables (e.g. nutrients) is the same, the
emerging DPs can vary substantially between different
populations, owing to cultural differences in food intakes.

Until very recently, evidence with regards to
RRR-derived DPs in association with CVD and all-
cause mortality risk in the UK population was limited
to one small study(30), while the evidence with regards
to diabetes was constrained to two small cohort stud-
ies(43,44). Here we focus on the use of the UK Biobank
study to illustrate the application of the RRR approach
to derive DPs and summarise the prospective associa-
tions between RRR-derived DPs and CVD(11), type 2
diabetes(12) and all-cause mortality(11) in the context of
previously conducted studies. We have also investigated
associations with cardiometabolic risk factors (e.g.
BMI, blood pressure or lipid biomarkers) to help under-
stand potentially underlying mechanisms. The UK
Biobank is a prospective cohort that recruited over 500
000 adults between 2006 and 2010, aged 40–69 years at
baseline. Together with important information on demo-
graphic, lifestyle factors, medical history, physical mea-
sures (height and weight) and blood and urine samples,
detailed dietary intake measures were collected through
an online questionnaire (Oxford WebQ) administered
via email on up to five times during approximately 1⋅5–
2 years(50,51). The WebQ is a validated 24-h dietary
assessment tool which collected quantitative information
on two hundred and six widely consumed foods and
thirty-two beverages(52–54). We developed a food group-
ing system to group the number of reported foods and
beverages into fifty major food groups before including
them into the RRR model(55,56), as this would also facili-
tate obtaining meaningful and relevant DPs. Four nutri-
ent response variables were included: energy density (kJ/
g), saturated fat (% total energy), free sugars (% total
energy) and fibre density (g/MJ). These nutrient variables
have established associations with the development of
obesity, type 2 diabetes and CVD(57–66), which under-
scores the importance of a well-supported hypothesis
underlying the proposed research. From the initial base-
line cohort, a subsample of participants that provided at
least two 24-h questionnaires (n ∼117 000(11); n ∼120
000(12)) and free of disease at baseline, were included
and the mean dietary intake across multiple assessments
was calculated to derive DPs.

With four response variables, the RRR model
extracted four DPs together explaining a total of 77 %
of variability in the response variables. The top two
DPs explaining 43 % (DP1) and 20% (DP2) of variability
were retained for analyses. DP1 showed high factor load-
ings for chocolate and confectionery, butter and other
spreads, low-fibre bread, table sugars, grain-based des-
serts, sugar-sweetened beverages (SSBs) among others;
and low factor loadings for fresh fruit, vegetables and
high-fibre breakfast cereals. DP1 showed strong positive

correlations with energy density, free sugars and satu-
rated fat, but negative correlations with fibre.
Conversely, DP2 showed high factor loadings for SSBs,
fruit juice, table sugars and preserves, chocolate confec-
tionery; and low factor loadings for high-fat cheese, but-
ter and other animal fat spreads. DP2 showed a strong
positive correlation with free sugars, but a negative cor-
relation with saturated fat, while energy density or fibre
were not correlated(11,12).

There is wide heterogeneity in previous studies regard-
ing the choice of response variables in the RRR model,
and most studies included combinations of nutri-
ents(16,21,34,44,67) (% energy from monounsaturated fats
and polyunsaturated fats; protein and total carbohy-
drates), as well as biomarkers(25,27,32) or disease risk fac-
tors (BMI, waist circumference, blood lipids or blood
pressure)(30,35,38,49). The majority of these previous studies
obtained dietary measurements from food frequency ques-
tionnaires with fewer using either 24 h recalls or food
records/diaries. The resulting DPs yielded combinations
of food groups which were population-specific, although
most studies identified at least one unhealthy or
‘Western’ DP characterised by high intakes of soft drinks,
alcohol, refined carbohydrates, added sugars, fats, meat
(including processed) and low fruit/vegetable intakes.

Associations with health outcomes

CVD

Previous research studies have derived CVD-related DPs
and their associations with several outcomes, mostly
using response variables such CVD biomarkers or risk
factors(18,20,26,29–31,35,68) as oppose to nutrients(11,16,21,25).
In common with the DPs derived in the UK Biobank
population, most of these previous DPs were charac-
terised by intakes of high-fat/high-sugar, refined carbohy-
drates (i.e. low-fibre bread, table sugars, SSBs) and high
saturated fat foods (i.e. butter and animal spreads, red
and processed meats), but low intakes of fruit, vegetables
or higher-fibre foods. Of the studies performed in US
cohorts, one reported significant associations between
DPs characterised by high meat and refined carbohy-
drates/potato products but low fruit intakes with CVD
mortality(20); and another one reported a DP charac-
terised by high intakes of fats, SSBs, meat, but low vege-
tables in association with a higher incidence of stroke(31).
In European populations, a study in Germany reported
significant inverse associations with CVD mortality
among those following a DP high in whole grain, fruits,
cereals and vegetables but low intakes of processed
meat, butter and cheese(29). Another study among
Swedish participants with obesity reported a significant
association with total CVD in people following an energy-
dense, high SFA, low-fibre DP(21). A study in the UK
Whitehall II study reported significant associations with
incident CHD in association with a DP characterised by
high intakes of white bread, fried potatoes, added sugars,
processed meat and SSBs but low intakes of vegetables(30).

The associations between DPs obtained in the UK
Biobank population and several health outcomes are
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summarised in Fig. 1(11). People in the highest quintile of
adherence to DP1 showed a 40% higher risk of total car-
diovascular events and 29% higher risk of fatal CVD
events compared to people in the first quintile. DP2
showed non-linear associations, although there were 14
% higher risk of total CVD and 18% higher risk of fatal
CVD among people in the highest quintile of DP2 com-
pared to those in the lowest quintile. Adjustment for the
BMI revealed slightly attenuated associations only for
the associations observed with DP1, suggesting that the
observed association was potentially mediated through
excess weight. These observations are broadly consistent
with previous evidence from single-nutrient studies or
other DP studies using dietary quality scores(69–72).

Diabetes

Most previous studies have investigated associations
between DPs and incident type 2 diabetes using response
variables such as biomarkers(38,39,42,49), diabetes markers
such as HbA1c or the homoeostasis model assessment of
insulin resistance(32,37,41,43) or nutrients(12,34,44,67). In the

US population, two studies found DPs characterised by
high intakes of red meat/meat products, refined carbohy-
drates, SSBs that were significantly associated with type 2
diabetes(38,42), while the opposite DP characterised by
high intakes of whole grains, fruit, vegetables and low-fat
dairy was inversely associated with type 2 diabetes(39). A
study among German adults reported a DP rich in fresh
fruit but low in SSBs, alcohol, red/processed meat that
was inversely associated with type 2 diabetes(37); while
less traditional DPs among Asian populations were gen-
erally associated with type 2 diabetes incidence(32,41,49).
Two small studies including UK middle-aged adults
reported a high fat/glycaemic index DP(44) and a DP
with high intakes of SSBs, fast foods/snacks, white
bread(43) which were both significantly associated with
type 2 diabetes. The associations observed in the UK
Biobank study with type 2 diabetes showed that those
in the highest quintile of adherence to DP1 showed a
45% higher risk of incident diabetes compared to people
in the first quintile (Fig. 1)(12). However, there were
non-significant associations between DP2 and diabetes
incidence. Adjustment for BMI in the main model also
attenuated the association observed with DP1, while
the association with DP2 remained not statistically
significant.

Most of the food groups and underlying nutrients that
characterise DP1 in the UK Biobank study as well as
other unhealthy DPs derived in previous cohorts have
been shown to be significantly associated with diabetes
and adverse metabolic effects(73,74), particularly for choc-
olate confectionery(75), SSBs(76,77) or added sugars(78); as
well as low consumption of fruits, vegetables and
higher-fibre bread(79,80). For the unexpected lack of asso-
ciation between DP2 and diabetes, it is important to note
that this DP was characterised by high intakes of foods
rich in free sugars but in the context of low intakes of
saturated fat rich foods and energy density, and adequate
intakes of fibre. This finding supports previous evidence
suggesting that free sugars increase diabetes risk through
increased energy intake and consequently weight gain,
rather than through independent effects(64,81). This has
also been observed in short- and medium-term isoener-
getic intervention trials showing no effects of free sugars
on body weight or blood pressure(82).

All-cause mortality

The associations with CVD and diabetes observed in pre-
vious studies as well as the UK Biobank support the
associations observed with the overall risk of mortality.
Previous US and European cohort studies have generally
reported significant associations between unhealthy/
Western DPs and all-cause mortality(16,20,25,26). In the
UK Biobank(11), people in the highest quintile of adher-
ence to DP1 showed a 37 % higher risk of all-cause mor-
tality compared to people in the first quintile (Fig. 1).
DP2 showed somewhat weaker associations, with 11 %
higher risk of all-cause mortality among people in the
highest quintile compared to those in the lowest quintile.
These associations generally mirror the ones observed
with total and fatal CVD events, which supports the

Fig. 1. Risk of health outcomes associated with dietary pattern 1
(DP1) and dietary pattern 2 (DP2) in the UK Biobank study.
Adjusted hazard ratios (HR) and 95% CI, showing the risk of each
DP for people in the fifth quintile (indicating the highest adherence
to each DP). Estimates were obtained from Cox proportional
hazard models using age during study as the underlying timescale.
The models were stratified by sex and regions (England, Scotland
and Wales) and adjusted for socio-demographic characteristics:
ethnicity (white, others, missing), Townsend index of deprivation
(quintiles one to five, with higher scores representing greater
deprivation), education (higher degree [college or university degree,
or professional qualifications], any school degree [A levels, AS
levels, O levels, General Certificate of Secondary Educations or
Certificate of Secondary Educations], vocational qualifications
[National Vocational Qualifications, Higher National Diploma or
Higher National Certificate], other [none of the above
qualifications], missing); behavioural risk factors: smoking status
(never, current, previous, missing), physical activity (low [<600
metabolic equivalent (MET)-minutes per week], moderate [≥600
and <3000 metabolic equivalent (MET)-minutes per week], high
[≥3000 metabolic equivalent (MET)-minutes per week], missing),
log-transformed energy intake; and health history/conditions:
family history of diabetes, menopause in women, hypertension,
CVD, high cholesterol.
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evidence showing that CVD contributes a higher burden
to total mortality than diabetes(83).

For this particular outcome, diet is one of the multiple
factors that may act synergistically with others (i.e.
smoking, physical activity, socioeconomic status) which
can influence mortality risk, hence the results observed
with all-cause mortality have to be carefully interpreted
given the possibility of residual confounding in these
associations due to non-dietary differences between the
groups.

Cardiometabolic risk factors

Several studies have reported associations between DPs
and markers of cardiometabolic risk which collectively
help understand potential underlying mechanisms in
the observed associations with non-communicable dis-
ease risk. A US study showed that a DP characterised
by high SSBs, meat, potatoes was associated with mar-
kers of arterial stiffness(68); while other studies in
Swedish adults showed a higher incidence of metabolic
syndrome among people following a Western DP(35);
and positive associations with cardiometabolic risk fac-
tors among people with obesity and high adherence to
an energy-dense high SFA low-fibre DP(21).
Cross-sectional analyses in the UK Biobank population
showed significant associations between the DPs and sev-
eral cardiometabolic risk factors measured at baseline(11).
For DP1, people adhering the most to this pattern
showed particularly large differences in baseline BMI
(BMI 27⋅1 kg/m2 in the highest quintile compared to
BMI 25⋅4 kg/m2 in the lowest quintile), and somewhat
smaller differences in diastolic blood pressure (82
mmHg in the highest quintile compared to 79⋅7mmHg
in the lowest quintile) and HDL cholesterol (1⋅41 mM/l
in the highest quintile compared to 1⋅59 mM/l in the low-
est quintile). For DP2, there were no clear associations
with baseline markers, except for a small clinical differ-
ence in LDL cholesterol (3⋅62mM/l in the highest quintile
compared to 3⋅70mM/l in the lowest quintile) and HDL
(1⋅45mM/l in the highest quintile compared to 1⋅57mM/l
in the lowest quintile).

Strengths and limitations

The evidence summarised here comes from longitudinal
cohort studies, with wide variability in population char-
acteristics and sample sizes. The UK Biobank is one of
the largest contemporary cohorts of UK adults who pro-
vided detailed measures of dietary intake, which is essen-
tial to investigate the associations between food-based
DPs and long-term disease risk. The follow-up times
since completion of the dietary questionnaires (from 5–
8 years) was sufficient to accumulate enough cases of
CVD, diabetes and all-cause mortality and to achieve
more precise estimates of association. Linkages with elec-
tronic health records also allowed for an objective ascer-
tainment of cases.

However, previous research as well as recent studies by
the authors in the UK Biobank share common

limitations that are inherent to observational studies.
The derived DPs are based on self-reported measures
of dietary intakes, which can be over- and/or underre-
ported by participants introducing biases, although peo-
ple with implausible dietary intakes were excluded in the
studies by the authors. Day-to-day variation in diet was
partly accounted for by including at least two dietary
questionnaires, but some degree of bias due to random
variation will remain(84). In terms of investigating the
associations between dietary exposures and longer-term
health, it is clear that a lifetime exposure to a poor diet
is a major determinant. However, most studies collected
measurements of diet over a short time-period before dis-
ease manifestation and this may only reflect the most
recent portion of this exposure. It is also unknown if
DPs are stable over time or if changes preceding disease
may affect the results. As with any observational
research, caution is needed to avoid any causal inference
and residual confounding (even after careful adjustment
is made) cannot be ruled out. The cross-sectional associa-
tions investigating potential mechanisms through the
associations with cardiometabolic risk factors measured
at baseline may be affected by reversed causality, there-
fore careful interpretation is warranted. Finally, DPs
identified in each study are culturally specific and rele-
vant to each population, hence generalisability to other
populations or countries is limited.

The main advantage of using RRR over other DP
methods is that it allows an investigation of the cumula-
tive effects of the whole diet, hence reducing confounding
due to other dietary aspects, while also incorporating the
mechanistic evidence through the integration of nutrient
response variables(10). The interpretation of the results is
based on foods rather than nutrients, providing a more
specific evidence base to inform the development of food-
based dietary guidelines and making it easier to develop
public health nutrition policies. However, the RRR
method hinges on an imperfect evidence base to identify
the underlying response variables and their association
with disease endpoints. By focusing on a limited set of
nutrients and foods which usually cannot explain 100 %
of the nutrient response variance, it is possible that the
emerging DPs contain other important nutrients which
are involved in the biological pathway to disease but can-
not be specified. For most chronic diseases there might be
complex interactions in different metabolic pathways
linking diet and disease, which may not be captured in
a single RRR model with a limited number of response
variables.

Implications and conclusions

In the context of previous evidence, recent DP research
by the authors in the UK Biobank study supports current
dietary recommendations for good health which empha-
sise reductions in saturated fat and free sugars, and
increases in vegetables, fruits or grains, among others(6,7).
But this new evidence is food-based, and points towards
diets which are lower in chocolate and confectionery,
butter, low-fibre bread, added sugars and SSBs, and
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higher in fresh fruit and vegetables and whole grain foods
to reduce the risk of CVD, diabetes and limit premature
mortality. This should also help avoid confusing mes-
sages to the public regarding specific nutrients (e.g. satu-
rated fat and sugars), recognising that foods are mixtures
of nutrients and there might be synergistic effects
between them. By identifying patterns in population-
specific cohorts the hope is that food-based dietary
advice may help accelerate behaviour change because it
helps target specific foods and their combinations
which are culturally relevant.

In conclusion, a whole-diet approach to disease preven-
tion is attracting increasing interest from researchers, prac-
titioners and policymakers. RRR is a particularly useful
tool to derive population-specific food-based DPs using
a priori knowledge about biomarkers or nutrients of con-
cern which mediate the associations between the emerging
DPs and disease outcomes and to help provide culturally
relevant information to underpin behaviour change strat-
egies to reduce non-communicable diseases.
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