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Abstract
The hard-core model has as its configurations the independent sets of some graph instance G. The prob-
ability distribution on independent sets is controlled by a ‘fugacity’ λ > 0, with higher λ leading to denser
configurations. We investigate the mixing time of Glauber (single-site) dynamics for the hard-core model
on restricted classes of bounded-degree graphs in which a particular graph H is excluded as an induced
subgraph. If H is a subdivided claw then, for all λ, the mixing time is O(n log n), where n is the order of G.
This extends a result of Chen and Gu for claw-free graphs. When H is a path, the set of possible instances
is finite. For all other H, the mixing time is exponential in n for sufficiently large λ, depending on H and
the maximum degree of G.
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1. Introduction
The complete bipartite graph K1,3 is known as a claw. A graph is said to be claw-free if it does
not contain a claw as an induced subgraph. The hard-core model is specified by a graph G and
a fugacity λ > 0. These inputs define a probability distribution on independent sets of a graph,
the so-called hard-core distribution. Higher values of λ favour larger independent sets, leading to
denser configurations. (Precise definitions will be given presently.)

Glauber dynamics defines an ergodic Markov chain on independent sets in a graph, whose
stationary distribution is the hard-core distribution. We are interested in analysing the mixing
time (time to near stationarity) of Glauber dynamics. With increasing fugacity λ the density of
configurations increases and we expect the mixing time to increase too. For most graph classes,
for example, graphs of bounded degree, which have been extensively studied [11, 25, 29], there is
a critical λ above which the mixing time becomes exponential in the size of the graph. However,
in his PhD thesis, Matthews [23] showed that, for any fixed λ, however, large, the mixing time of
Glauber dynamics on a claw-free graph G is polynomial in n= |V(G)|.

Recently, Chen and Gu [9] showed (amongst other things) that, with the additional assump-
tion that G has bounded degree �, the mixing time of Glauber dynamics on claw-free graphs
is in fact O(n log n). The constant implicit in the O-notation depends on λ and �. We call this
mixing ‘optimal’, since O(n log n) time is necessary for Glauber dynamics to visit every vertex in
G, by the coupon-collector argument. The intuition that O(n log n) is optimal can be formalised,
though doing so is surprisingly challenging [19]. Prior to Chen and Gu’s work, optimal mixing
for matchings in bounded-degree graphs – a related result – had been shown by Chen, Liu, and
Vigoda [12].
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2 M. Jerrum

Figure 1. The claw, the fork, the E, and the skew star.

It is natural to wonder whether excluding graphs other than the claw can lead to optimalmixing
time for all λ. There is an extensive literature on independent sets in graph families that exclude
a fixed connected graph H as an induced subgraph. (From now on we restrict attention to con-
nected H.) In this line of work, subdivided claws play a crucial role [1, 13]. A subdivided claw
is obtained from a claw by subdividing the three edges by an arbitrary number of intermediate
vertices. Alternatively, a subdivided claw is a tree with a single vertex of degree 3, and all other
vertices having degree 1 or 2. For 1≤ i≤ j≤ k, we write Si,j,k for the subdivided claw whose leaves
are at distance i, j, and k from the degree-3 vertex. The smaller subdivided claws have special
names: S1,1,1 (as we have seen) is the claw, S1,1,2 the fork, S1,2,2 is the E, and S1,2,3 is the skew star.
See Fig. 1.

It soon becomes apparent that the interesting cases for us are when the excluded graph H is
a subdivided claw. Informally, the reason is this: if H is not a subdivided claw or a path, then it
contains either a vertex of degree greater than 3, or a cycle, or two vertices of degree 3 connected
by a path. We can exclude the first case by working with instance graphs G with maximum degree
3, and the other two cases by working with graphs whose edges have been ‘stretched’ or subdi-
vided by sufficiently many vertices. This intuition is formalised in Section 6. Note that excluding
a path in a bounded-degree graph leads to a finite graph class. The (fairly routine) conclusion,
expressed in Theorem 18, is that Glauber dynamics mixes in exponential time for sufficiently
large λ (depending on� andH but not on n= |V(G)|) whenH is not a subdivided claw or a path.

Our main result, Theorem 17 in Section 6, asserts that bounded-degree graphs that exclude
any subdivided claw support optimal mixing. Together with the matching negative result just
mentioned, we obtain the following dichotomy. If H is any collection of graphs, we say that a
graph G isH-free if G is H-free (does not contain H as an induced subgraph) for all H ∈H.

Theorem 1. Let H be any finite set of connected graphs, and �≥ 3. Consider the hard-core model
on H-free graphs of maximum degree �. If H contains a subdivided claw or a path then Glauber
dynamics mixes in optimal O(n log n) time, at any fixed fugacity λ > 0, where n is the number of
vertices of G. Otherwise, for some sufficiently large fixed λ (depending on H), the mixing time is
exponential in n in the worst case, even when �= 3.

The above statement is essentially a composite of Theorems 17 and 18, and the (very short) proof
can be found in Section 6.

There is a formal similarity between this dichotomy and that of Abrishami, Chudnovsky,
Dibek, Cemil, and Rzçżewski [1], who studied the problem of finding the largest independent
set in a bounded-degree H-free graph. The current result is technically not as difficult. This is
to be expected: the algorithm, for finding a largest independent set in a claw-free graph is quite
involved, whereas that for sampling an independent set is quite simple: simulate Glauber dynamics
for O(n log n) steps.

It is interesting to note that claw-free graphs arise in nature as crystal structures, for example,
the kagome and pyrochlore lattices. However, I am unaware of any real-life crystals that are free
of subdivided claws without in fact being claw-free.

In related work, Chudnovsky and Seymour [14] showed that the partition function of the hard-
core model on claw-free graphs has only (negative) real roots. The existence of a zero-free region
that includes the positive real axis has implications for the existence of deterministic algorithms
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• Let the current state (independent set) be I.
• Select a vertex v ∈ V (G) uniformly at random.
• If ΓG(v) ∩ I = ∅ then:

– with probability λ/(1 + λ), set I ′ ← I ∪ {v};
– with the remaining probability set I ′ ← I \ {v};

• else: set I ′ ← I.
• The new state is I ′.

Figure 2. Glauber dynamics for the hard-core model.

for approximating the partition function, through work of Barvinok [6] and Patel and Regis [24].
For fork-free graphs, a zero-free region, smaller but still including the positive real axis, has been
identified by Bencs [8].

Note that the restriction to bounded-degree graphs is crucial. General fork-free graphs include
the complete bipartite graphs of arbitrary sizes, which certainly do not support optimal or
even polynomial-time mixing. Additional restrictions other than bounded degree can lead to
polynomial-time algorithms; for example, Dyer, Jerrum, and Müller treat the case of fork-free,
odd-hold free graphs (equivalent to fork-free perfect graphs) [17].

Finally, although we concentrate on the hard-core model here, a result of a similar flavour
has been obtained for the antiferromagnetic Ising model. For this model, Glauber dynamics has
been shown to have optimal mixing time on the class of line graphs at any non-zero temperature
however small (i.e. for any interaction strength however large). This result is due to Chen, Liu,
and Vigoda [10], strengthening the mixing time bound of Dyer, Heinrich, Jerrum, and Müller
[16] from polynomial to optimal.

2. Preliminaries
Suppose G is a graph and λ > 0 a ‘fugacity’. A set I ⊆V(G) is an independent set in G if no edge in
E(G) has both endpoints in I. The weight wt(I) of independent set I is simply wt(I)= λ|I|. Denote
by IG the set of all independent sets in G. The hard-core distribution μG,λ assigns probability
μG,λ(I)=wt(I)/Z(G, λ) to each I ∈ IG, where Z(G, λ) is the partition function.

Z(G, λ)=
∑
I∈IG

wt(I).

We think of μG,λ being a distribution on 2V(G) with support IG.
Glauber dynamics defines aMarkov chain on the independent sets ofG. It is presented in Fig. 2,

where �G(v) is used to denote the set of neighbours of v in G. This Markov chain is ergodic, and
converges to the hard-core distribution on independent sets of G.

Denoting the t-step transition probabilities of this Markov chain by Pt(·, ·), convergence to
stationarity may be measured by total variation distance (i.e. one half of the �1 distance) at time t,
that is,

d(t)=max
I∈IG

{
dTV(Pt(I, · ),μG,λ)

}
.

Then themixing time of theMarkov chain is defined to be tmix =min{t : d(t)≤ 1
4 }. The constant 1

4
is arbitrary, subject to lying in the interval (0, 12 ). It is standard [21, Section 4.5] that convergence
to stationary is exponential, when time is measured in units of tmix, specifically, d(� tmix)≤ 2−�,
for all � ∈N. The central question is then: is tmix bounded by a polynomial in n= |V(G)| and,
more particularly, is tmix =O(n log n) (with the constant of proportionality being a function of λ
and �)?

For a short while we change perspective very slightly and view independent sets in G as
spin configurations in {0, 1}V(G). Naturally, the independent set I ∈ IG corresponds to the spin
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configuration σ , where

σ (v)=
{
0, if v /∈ I;
1, if v ∈ I.

Let βG,λ be the product distribution of independent Bernoulli random variables, with success
probability p= λ/(1+ λ) living on the vertices of G. The following simple fact will be important
in what follows.

Lemma 2. The distribution βG,λ stochastically dominates the distribution μG,λ. That is, there is a
coupling of random variables, σ and σ ′, distributed as μG,λ and βG,λ, respectively, such that σ ≤ σ ′
in the product order on {0, 1}V(G).
Proof. A simple way to see this is by monotone coupling of Markov chains [18, §3.10.3]. Modify
the Markov chain from Fig. 2 by removing the test �G(v)∩ I =∅ and the ‘else’ part of the condi-
tional statement. Thus the probabilistic update is done whatever the state of the vertices adjacent
to v. This modified process clearly converges to the product distribution βG,λ. Now run the modi-
fied process starting from the all-1 configuration in parallel with Glauber dynamics starting from
the all-0 configuration. Use the same random choice of vertex v at each step, and optimally couple
the updates. It is easy to see that the first process remains above the second in the product order.
The upper process converges to βG,λ and the lower to μG,λ. �
Corollary 3. Let G be a graph of maximum degree �, and v be a vertex of G. If I is sampled from
μG,λ then

λ

(1+ λ)�+1
≤ P(v ∈ I)≤ λ

1+ λ
.

Proof. The upper bound is immediate from Lemma 2. For the lower bound, note that P(I ∩
�(v)=∅)≥ 1/(1+ λ)�, again from Lemma 2, and that P(v ∈ I | I ∩ �(v)=∅)≥ λ/(1+ λ). �

Supposeμ andμ′ are probability distributions on {0, 1}V(G). TheWasserstein (or Kantorovich-
Rubinstein) distance between μ and μ′ (specialised to this application) is defined to be

W1(μ,μ′)= inf
σ∼μ,σ ′∼μ′

dH(σ , σ ′),

where dH denotes Hamming distance, and the infimum is over all couplings of random variables
σ , σ ′ with the appropriate distributions.

For a graph G and vertex v ∈V(G) let μ(v,0)
G,λ (respectively,μ(v,1)

G,λ ) denote the hard-core distribu-
tion onG at fugacity λ conditioned on vertex v being excluded from (respectively, included in) the
independent set. We will be using the powerful spectral independence machinery of Anari, Liu,
Oveis Gharan, and Vinzant [5] and Anari, Liu, andOveis Gharan [4], as sharpened by Cryan, Guo,
and Mousa [15] and Chen, Liu, and Vigoda [12]. However, we can ease our task by using Chen
and Gu’s packaging of the machinery for situations such as ours. Indeed, as we shall see presently,
to show optimal mixing we just need to construct a coupling that achieves bounded Wasserstein
distanceW1

(
μ
(v,0)
G,λ ,μ(v,1)

G,λ
)
.

A graph class is said to be hereditary if it is closed under taking induced subgraphs. Note
that graph classes defined by excluding induced subgraphs, with or without a degree bound, are
hereditary.

Corollary 4. Let G be a hereditary class of graphs with degree bound �, and λ be positive. Suppose
there exists η > 0 such that for all G ∈ G and all v ∈V(G)we haveW1(μ(v,0)

G,λ ,μ(v,1)
G,λ )≤ η, whereμG,λ

is the hard-core distribution with fugacity λ on V(G). Then the mixing time of Glauber dynamics
for the hard-core model on G ∈ G at fugacity λ is bounded above by O(n log n), where n= |V(G)|.
The constant implicit in the O-notation depends on λ, �, and η.
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Proof. This follows from [9, Theorem 9 and Lemma 10],1 which builds on earlier work, such as
[12]. In order to make the correspondence we need to discuss briefly the notion of ‘pinning’. The
distributionsμ

(v,0)
G,λ andμ

(v,1)
G,λ are examples of distributions obtained by pinning, in this instance by

pinning vertex v to 0 and 1, respectively. More generally, wemay consider pinning a set of vertices,
say 	⊂V(G), to values given by τ :	→{0, 1}, resulting in a marginal distribution μ

(	,τ )
G,λ on

V(G) \	. Lemma 10 of [9] quantifies over pairs of pinnings (	, τ ) and (	, τ ′) where τ and τ ′
differ at exactly one point. However, the hard-core distribution has a pleasant property: pinning
a vertex v to 0 is equivalent to removing v from the graph, while pinning v to 1 is equivalent to
removing v and all its neighbours. So, in the case of the hard-core model we need only quantify
over single vertex pinnings, since we are restricting attention to graph classes which are closed
under taking induced subgraphs.

From our premisses, Lemma 10 of [9] tells us that that μG,λ is ‘η-spectrally bounded’. For
our purposes we don’t need to define this concept as we are merely going to feed this infor-
mation about μG,λ into Theorem 9 of [9]. The remaining premiss required for this theorem
is that μG,λ is ‘b-marginally bounded’. This just means that P(σ (v)= 1) is bounded away
from both 0 and 1 by a margin b. But this is exactly what is guaranteed by Corollary 3, with
b=min{λ/(1+ λ)�+1, 1/(1+ λ)}. �

3. S1,1,t-free graphs (claw-free and upwards)
Suppose �≥ 3 is a degree bound and H a fixed graph. Let G be an H-free (i.e. excluding induced
copies ofH) connected graph of maximum degree �. Chen and Gu [9, Theorem 4] show optimal
mixing of Glauber dynamics for the hard-core model on G, for any given fugacity λ > 0, when
the excluded graph H is the claw. In fact, optimal mixing also holds for H = S1,1,t with t≥ 2, for a
rather dull reason. Define

vol (�, t)= 1+�
(�− 1)t − 1

�− 2
,

and note that vol (�, t) bounds the number of vertices in a radius-t ball around any vertex of a
graph of maximum degree �.

Lemma 5. Suppose that G is a connected graph of maximum degree �, and that t≥ 2. If |V(G)|>
vol (�, t+ 1) and G contains an induced claw, then G contains an induced S1,1,t .

Proof. Let G be as in the statement and suppose {v, a, b, c} ⊆V(G) induces a claw centred
at v. As vol (�, t+ 1) is an upper bound on the number of vertices of G within distance
t+ 1 of v, there must exist a vertex w at distance t+ 2 from v. Consider a minimum
length path from {v, a, b, c} to w, which clearly has length at least t+ 1. Let this path be
P= (w0,w1, . . . ,ws), where w0 ∈ {v, a, b, c}, ws =w and s≥ t+ 1. Consider the graph induced by
the vertex set U = {v, a, b, c,w1,w2, . . . ,ws}. By minimality of P, the graph G[U] contains edges
{{v, a}, {v, b}, {v, c}, {w1,w2}, {w2,w3}, . . . , {ws−1,ws}} together with some non-empty subset A of
{{v,w1}, {a,w1}, {b,w1}, {c,w1}}. The 15 possibilities for A fall into four cases, up to symmetry:

• A= {{v,w1}}: the set {v, a, b,w1, . . . ,wt} induces S1,1,t ;
• A= {{a,w1}}: the set {v, b, c, a,w1, . . . ,wt−1} induces S1,1,t ;
• A= {{v,w1}, {a,w1}}: the set {v, b, c,w1, . . . ,wt} induces S1,1,t ;
• A⊇ {{a,w1}, {b,w1}}: the set {w1, a, b,w2, . . . ,wt+1} induces S1,1,t .

The cases are exhaustive, completing the proof. �
1The quoted results are stated for edge-based configurations rather than vertex-based, but this is inessential.
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• Let R be a random ‘red’ independent set from μ
(v,1)
G,λ .

• Let B be a random ‘blue’ independent set from μ
(v,0)
G,λ , with B independent

of R.
• Consider the subgraph G[R ∪ B] of G induced by the union of the two

independent sets. Let C ⊆ V (G) be the connected component of G[R∪B]
containing v. We refer to C as a cluster.

• Modify the blue independent set by setting B ← (B ∩C)∪ (R \C). Thus,
B is made to agree with B inside C and with R outside. The independent
set R remains unchanged.

• (R, B) is the required coupling.

Figure 3. The coupling of van den Berg and Brouwer. Here, G is a graph, v ∈ V(G), and λ > 0.

Corollary 6. Restricted to connected graphs of maximum degree �, the class of S1,1,t-free graphs is
a finite variation of the class of claw-free graphs, for any t≥ 2.

Corollary 7. For any �≥ 3 any t≥ 1 and any λ > 0, Glauber dynamics for the hard-core model at
fugacity λ has mixing time O(n log n) on the class of S1,1,t-free graphs of maximum degree �.

Proof. This is immediate from [9, Theorem 4] and Corollary 6. �

4. S1,2,t-free graphs (E-free and upwards)
Before heading off to larger graph classes it is instructive to go back to a precursor of [9]. Van den
Berg and Brouwer [26] construct an explicit coupling for matchings in a bounded-degree graph
that (in modern terms) bounds spectral independence.2 This almost immediately gives optimal
mixing of Glauber dynamics for the monomer-dimer model at all temperatures. (Of course, van
den Berg, and Brouwer did not have the spectral independence technology, so they were only
able to deduce low-degree polynomial mixing time.) Their method extends easily to independent
sets in claw-free graphs (though this was not stated in their paper). In this section, we rederive
the result of Chen and Gu, as the proof will provide a base from which we may progress to large
subdivided claws.

The coupling of van den Berg and Brouwer, translated to independent sets, is given in Fig. 3.

Lemma 8. Let G be a connected claw-free graph, v ∈V(G) be a vertex, and λ > 0. Then the coupling
of Figure 3 is correct: R is a sample from μ

(v,1)
G,λ and B is a sample from μ

(v,0)
G,λ .

Proof. Since the independent set R was never modified, it is clearly a sample from μ
(v,1)
G,λ .

For B, we argue as follows. Think of the pair R, B being selected as follows. First we select the
cluster C⊆V(G), as if it had been formed from a pair of independent sets R, B as above. Since
G[C] is a connected bipartite graph, and v ∈ R, we can reconstruct the portion of R and B lying
within C. Denote by

∂C= {w ∈V(G) \ C : {w, u} ∈ E(G) for some u ∈ C}
the boundary ofC. A subsetRext ⊆V(G) \ C extendsRint = R∩ C to an independent setR= Rint ∪
Rext on the whole ofV(G) if and only if Rext is an independent set of the graphG[V(G) \ (C ∪ ∂C)].
(A vertex in Rext certainly cannot be adjacent to a red vertex in the cluster C, and it cannot
be adjacent to a blue vertex by maximality of C.) Exactly the same is true of extensions Bext of
Bint = B∩ C. In short, the set of possible extensions to Bint and Rint are identical. Informally,
Rext is equally valid as an extension of Bint as Bext is. Thus B= Bint ∪ Rext is a true sample
from μ

(v,0)
G,λ . �

2Although this reference is closest to our application, the general concept of ‘disagreement percolation’ appears earlier in
work of van den Berg and Maes [27] and van den Berg and Steif [28].
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.

Algorithm 1 Growing a red-blue cluster by Breadth-First Search (BFS).

Cluster BFS(v) // R and B are random independent sets, revealed as the algorithm progresses.
L0←{v}
U← V(G) \ {v} // the set of unprocessed vertices
d← 0 // current depth of search
while Ld �= ∅ do
N← U∩ ∂Ld // ∂Ld = {u ∈ V(G) \ Ld : {u,w} ∈ E(G) for somew ∈ Ld}
if d is even then
reveal the blue vertices within N, and set Ld+1← N∩ B

else
reveal the red vertices within N, and set Ld+1← N∩ R

end if
U← U \ N
d← d+ 1

end while
d← d− 1 // The red-blue cluster containing v is C= L0 ∪ L1 ∪ · · · ∪ Ld

Using this coupling we can rederive the result of Chen and Gu.

Corollary 9. Suppose that �≥ 3 and λ > 0. If G is a claw-free graph of maximum degree � and
v ∈V(G), then W1(μ(v,0)

G,λ ,μ(v,1)
G,λ )=O(1).

Proof. The claimed bound on W1 is evidenced by the coupling just analysed. As R⊕ B= C, we
just have to demonstrate that |C| is small in expectation. Note that G[C] is bipartite. It is straight-
forward to see that a connected bipartite claw-free graph can have no vertices of degree 3 or
greater, so is either a path or a cycle. As paths and cycles are one-dimensional structures, we do
not expect them to propagate far, and this is indeed the case. Imagine that we reveal the colours of
vertices in a breadth-first fashion, starting with v at time 0. The breadth-first search (BFS) is pre-
sented as Algorithm 1. This is a little heavy for current purposes, but its generality will be useful
later. As the cluster is either a path or a cycle, we have |Lj| ≤ 2 for all levels j. Since the hard-core
distribution is dominated by the product of independent Bernoulli distributions (Lemma 2), on
each iteration, with probability at least p= (1/(λ+ 1))2�, the BFS will halt. So E|C| =E[|R⊕ B|]
is bounded above by the expectation of a random variable having a geometric distribution with
success probability (λ+ 1)−2�, which is (λ+ 1)2�. �

Then, by Corollary 4 we obtain:

Corollary 10. For any �≥ 3 and λ > 0, Glauber dynamics at fugacity λ has optimal (i.e.
O(n log n)) mixing time on the class of claw-free graphs of maximum degree �.

Let’s make some modest steps towards excluding larger subdivided claws.3 Fork-free graphs
were characterised by Alekseev [2]. See also Bencs [8]. A connected bipartite fork-free graph is
either a path, a cycle, or a complete bipartite graph minus a (possibly empty) matching. Since the
last of these can have size at most 2(�+ 1), the argument just given in the Proof of Lemma 8 for
claw-free graphs carries over to fork-free graphs, as the expected size of a cluster is still constant.
However, as we already saw in Corollary 6, this generalisation is illusory.

In light of Corollary 6, the first interesting case beyond claw-free is E-free (i.e. S1,2,2-free). Fig. 4
illustrates an infinite family of E-free graphs which are not claw-free. Indeed, by iterating the basic
building block either horizontally or vertically, or both, we can appreciate that the family includes

3The remainder of the section is not essential to the technical development of the main result, Theorem 17, relating to
general subdivided claws. However, it contains some contextual material on graphs with excluded subdivided claws, and also
motivates the approach taken in Section 5.
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Figure 4. An (infinite family of) E-free but not fork-free graph(s).

graphs that contain induced copies of S1,1,t for arbitrarily large t. (An instance of a fork is picked
out in red in Fig. 4.) So, by excluding E, we have escaped from the constraints of Corollary 6 into
new, apparently interesting families of graphs.

It is worth recording the fact that there is no analogue of Corollary 6 for the sequence of S1,2,t-
free graph classes. For example, suppose we construct a graphG as a disjoint union of an E together
with a path of arbitrary length, with endpoints a and b, and then add edges from a to all vertices in
the E. We claim that G is skew-star-free (i.e. S1,2,3-free). Suppose to the contrary that G contains
an induced skew star. This induced graph would have to include vertex a together with at least one
edge e from the E. But the endpoints of e together with a induce a triangle, which is a contradiction.
So there are infinitely many skew-star-free graphs of degree at most 7 that are not E-free.

At this point we skip the class of E-free graphs and proceed directly to the larger class of
skew-star-free graphs as these have been analysed in detail by Lozin [22] in his ‘Decomposition
Theorem’. He showed that a connected bipartite skew-star-free graph is of one of four kinds.
Three of these are of bounded size, while the fourth is composed of blow-ups of paths and cycles.
(A blow-up of a graph H is obtained by replacing each vertex of H by an independent set, and
each edge by a complete bipartite graph connecting the corresponding independent sets.) As the
unbounded components are still ‘linear’, we continue to have spectral independence and optimal
mixing of Glauber dynamics. The only change to the proof of Corollary 9 lies in the analysis of the
level sets Li generated by the BFS: we now have |Li| ≤ 2(�− 1) rather than |Lj| ≤ 2.

Corollary 11. Suppose that �≥ 3 and λ > 0. If G is a skew-star-free graph of maximum degree �

and v ∈V(G), then W1(μ(v,0)
G,λ ,μ(v,1)

G,λ )=O(1).

Corollary 12. For any �≥ 3 and λ > 0, Glauber dynamics at fugacity λ has optimal (i.e.
O(n log n)) mixing time on the class of skew-star-free (and hence E-free) graphs of maximum
degree �.

As we saw earlier, there is no direct analogue of Lemma 5 with S1,2,2 replacing S1,1,1, and S1,2,t
replacing S1,1,t . But if we add the condition of bipartiteness we do have:

Lemma 13. Suppose that G is a connected bipartite graph of maximum degree �, and that t≥ 3. If
|V(G)|> vol (�, t+ 2) and G contains an induced S1,2,2, then G contains an induced S1,2,t .

This may be proved in a similar way to Lemma 5, but we omit the proof as it is not on the direct
line to the main result.

Corollary 14. For any �≥ 3, λ > 0, and t≥ 2, Glauber dynamics at fugacity λ has optimal (i.e.
O(n log n)) mixing time on the class of S1,2,t-free graphs of maximum degree �.
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Sketch proof. The cluster containing v is bipartite, and hence, by Lemma 13 and Lozin’s decom-
position theorem, is either of bounded size or is the blow-up of a path or cycle. The layers Li
created by the BFS of Algorithm 1 are of bounded size, so the depth of the search is again bounded
by a geometric random variable. �

We have seen that in the case of S1,1,t-free graphs and S1,2,t-free graphs the cluster generated
by Algorithm 1 is either of bounded size, or is ‘linear’ (in this case a blow-up of either a path or a
cycle). We may suspect that this remains true for graphs excluding larger subdivided stars. While
this is morally true, it is difficult to provide a suitable definition of ‘linear’ that meshes with the
coupling argument. We therefore slightly change our approach.

5. S2,2,2-free graphs and beyond
Instead of trying to analyse the structure of bounded-degree bipartite graphs excluding a large
subdivided claw, we will analyse the BFS procedure of Algorithm 1 directly. Recall the layers Li
that are produced by the search. The key observation is that these layers do not grow large.

Lemma 15. If G is St,t,t-free then |Li| ≤ 2 vol (�, 2t), for all i ∈N for which Li is defined.

Proof. Suppose to the contrary that |Li|> 2 vol (�, 2t). Choose vertices a, b, c ∈ Li with the prop-
erty that dG(a, b), dG(a, c) and dG(b, c) are all greater than 2t. This is always possible: select a
arbitrarily, and eliminate from consideration the at most vol (�, 2t) vertices in Li that are within
distance 2t from a; choose b from the remaining vertices and eliminate the vertices in Li that are
within distance 2t from b; at least one choice for c remains.

Now orient all edges away from v, so that each edge goes from level Lj to Lj+1 for some j. Choose
a minimum cardinality directed Steiner tree T connecting v (as root) to all of a, b, c. Consider the
graph T′ induced by V(T). Suppose that T′ has some edge not in E(T), say e= {uj, uj+1} where
uj ∈ Lj and uj+1 ∈ Lj+1. (Recall that T′ is bipartite, so there are no edges within a layer; also the
levels were constructed by BFS, so no edges of T′ skip a layer.)

First assume that T has a single vertex w such that either w �= v and deg (w)= 4 or w= v and
deg (w)= 3. Note that all vertices ofT other than v,w, a, b, c have degree 2. By adding e to E(T) and
removing the edges of T lying between w and uj+1 we would obtain a smaller tree, contradicting
minimality of T. (Notice that we must remove at least two edges.) So such an edge e does not exist.
By choice of a, b, c we know that dT(w, a), dT(w, b), dT(w, c)≥ t+ 1, so G contains an induced
St,t,t . (Note that we are measuring graph distances within the tree T here.)

Next assume that T has two vertices w and w′, with w′ in a higher numbered level than w,
and such that either (i) w �= v and and deg (w)= deg (w′)= 3 or (ii) w= v and deg (w)= 2 and
deg (w′)= 3. Note that all vertices of T other than v,w,w′, a, b, c have degree 2. Suppose, without
loss of generality, that a and b are descendants of w′. With two exceptions, we may add e to E(T)
and remove all the edges between uj+1 and w, or w′ as appropriate, to obtain a smaller tree, con-
tradicting minimality of T. Those exceptions occur when w′ ∈ Lj, that is, uj is in the same level
as w′. In that case, one edge is added and one removed and the size of the tree remains unchanged.
There are two candidate vertices for uj+1; these are the vertices in Lj+1 ∩V(T), say x and y, that are
adjacent to w′. Let x (respectively, y) be the vertex on the path in T from w′ to a (respectively b).
To summarise: The graph induced by V(T) is tree T, with the possible addition of one or two of
the edges {uj, x} and {uj, y}. (Refer to Fig. 5.)

By choice of a, b, c we know that dT(w′, a), dT(w′, b)≥ t+ 1. In the case that neither of the
exceptional edges is present, we have an induced St,t,t with its centre at w′ and with the path from
w′ to c routing via w. In the case of one exceptional edge, say {uj, x}, we have an induced St,t,t with
its centre at x and with the path from x to b routing via w′, and the path from x to c routing via
uj. In the case of two exceptional edges, we have an induced St,t,t with its centre at uj and with the
path from uj to a routing via x, and the path from uj to b routing via y.

As the above cases are exhaustive, we obtain a contradiction to G being St,t,t-free. �
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Figure 5. The two exceptional edges (shown red, dotted). The solid lines are edges and the dot-dashed lines are paths.

Corollary 16. Suppose that �≥ 3, λ > 0, and t ≥ 2. If G is a St,t,t-free graph of maximum degree �

and v ∈V(G), then W1(μ(v,0)
G,λ ,μ(v,1)

G,λ )=O(1).

Proof. The levels of the BFS remain bounded. There is a constant probability of the search
terminating at each iteration. �
Theorem 17. For any �≥ 3, λ > 0, and t≥ 2, Glauber dynamics for the hard-core distribution at
fugacity λ has optimal (i.e. O(n log n)) mixing time on the class of St,t,t-free graphs of maximum
degree �.

Proof. Follows immediately using Corollary 4. �
Naturally, the theorem also covers Si,j,k-free graphs by taking t=max{i, j, k}.

6. Exponential-timemixing of H-free graphs when H is neither a path nor a subdivided
claw

To complete the dichotomy, it only remains to show:

Theorem 18. Let H be a connected graph that is neither a subdivided claw nor a path. There exists
a fugacity λ and an infinite family G of H-free graphs of maximum degree 3 such that Glauber
dynamics for the hard-core distribution on these graphs has exponential mixing time on G.
Proof. Let α > 0 be sufficiently small. Given n, let G be a cubic bipartite graph on n+ n vertices
that is a 1+ α expander for sets up to size 2

3n. By this we mean the following. Let VL ∪VR =V(G)
be the bipartition of the vertex set of G. Then, every subset S⊂VL of size at most 2

3n is adjacent to
at least (1+ α)|S| vertices in VR, and the same is true with VL and VR interchanged. Such graphs
exist for some fixed α > 0 by a lemma due to Bassalygo [7]; see Alon [3, Lemma 4.1]. Let � be a
number and let G∗ denote the (2�+ 1)-stretch of G; that is, G∗ is obtained from G by subdividing
each edge by 2� new vertices. Fix � sufficiently large that G∗ contains no induced H. Let VL and
VR continue to denote the vertices in G∗ that are inherited from G.

Let I< ∪ I= ∪ I> = IG be the partition of the independent sets IG of G given by:
I◦ = {I ∈ I : |I ∩VL| ◦ |I ∩VR|},

where ◦ ∈ {<,=,>}. Note that, to pass from any independent set in I< to any independent set in
I>, Glauber dynamics must pass through an independent set in I=. To show an exponential lower
bound on mixing time it is enough to verify that wt (I=)≤ e−cn min{wt(I<), wt(I>)} for some
c> 0.4 This inequality implies that the ‘conductance’ of Glauber dynamics on G∗ is exponential
small, and hence that the mixing time is exponentially large [20, Claim 7.14].

Note that G∗ is bipartite, with a balanced bipartition, and having |V(G∗)| = (6�+ 2)n vertices.
By selecting all vertices on one side of the bipartition we obtain an independent set of size

4Here, we have extended wt( · ) from configurations to sets of configurations in the obvious way.

https://doi.org/10.1017/S0963548325100163 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100163


Combinatorics, Probability and Computing 11

(3�+ 1)n in I<, and by selecting all vertices in the opposite side an independent set of the same
size in I>. Just considering these two independent sets we see that

wt(I<), wt(I>)≥ λ(3�+1)n.
We will show that the independent sets in I= all have cardinality significantly less than

(3�+ 1)n. So if λ is sufficiently large, the total weight wt(I=) of independent sets in I= will be
exponentially smaller than wt(I<). So consider an independent set I with |I ∩VL| = |I ∩VR| = k.
In general, each of the paths of length 2�+ 1 in G∗ joining a vertex u in VL to a vertex v in VR
is able to support an independent set of cardinality � on its internal vertices (the vertices that are
neither in VL nor in VR). However, if u and v are both in I then the internal vertices can only
support an independent set of size �− 1.

By expansion, if n/(2+ α)≤ k≤ 2
3n, theremust be at least (2+ α)k− n of these deficient paths.

Thus, when 0≤ k≤ 2
3n, the cardinality of an independent set I in G∗ with |I ∩VL| = |I ∩VR| = k

is at most
|I| = 2k+ 3�n−max{(2+ α)k− n, 0}.

Themaximumof this expression is achieved at k= n/(2+ α) where it takes the value (3�+ 2/(2+
α))n. When k> 2

3n there is a simpler argument. There are 3k edges of G leaving the set I ∩VL and
at most 3(n− k) of these can be accommodated in VR \ I. So there are at least 6k− 3n deficient
paths and the cardinality of an independent set In G∗ in this range is at most 2k+ 3�n− (6k−
3n)= (3�+ 3)n− 4k. This expression is maximised at k= 2

3n, at which point it evaluates to (3�+
1
3 )n. Over the whole range of k, the maximum cardinality of an independent set in I= is bounded
by (3�+ 2/(2+ α))n.

As |V(G∗)| = (6�+ 2)n, the total weight of independent sets in I= is at most

wt(I=)≤ 2(6�+2)nλ(3�+2/(2+α))n,
and hence the ratio of wt(I=) to wt(I<) is at most

wt(I=)
wt(I<)

≤ (
26�+2λ2/(2+α)−1)n.

By setting λ sufficiently large in terms of � (which in turn is determined by H) we can ensure
that the above ratio is at most 2−n. Thus, Glauber dynamics on G∗ has exponentially small
conductance, and exponentially large mixing time. �
Proof of Theorem 1. The positive direction is immediate from Theorem 17. Now choose � suf-
ficiently large such that the stretched graph G∗ in the proof of Theorem 18 contains none of
the graphs H ∈H. The construction of Theorem 18 yields a fugacity λ and an infinite family of
graphs (both depending on �) on which Glauber dynamics requires exponential mixing time at
fugacity λ. �
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