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A classification of anomalous actions
through model action absorption
Sergio Girón Pacheco
Abstract. We discuss a strategy for classifying anomalous actions through model action absorption.
We use this to upgrade existing classification results for Rokhlin actions of finite groups on
C∗-algebras, with further assuming a UHF-absorption condition, to a classification of anomalous
actions on these C∗-algebras.

1 Introduction

Connes’ classification of automorphisms on the hyperfinite II1 factorR [7, 8] paved the
way toward a classification of symmetries of simple operator algebras. Over the next
decade, this was followed by V. F. R. Jones’ [29] classification of finite group actions
on R and Ocneanu’s [36] classification of actions of countable amenable groups on R.
To achieve these classification results, an important role is played by adaptations of
Connes’ noncommutative Rokhlin lemma, which yields that outer group actions on R

satisfy a condition often called the Rokhlin property that is analogous to properties of
ergodic measure preserving actions of amenable groups on probability spaces [38, 42].
In the C∗-setting, the analogous property is not automatic. However, there has been
substantial progress in the classification of those group actions on C∗-algebras that
satisfy the Rokhlin property [12, 16, 18–20, 22, 23, 35]. Very recently, groundbreaking
results toward a classification of group actions without the need for the Rokhlin
property have appeared [15, 25, 26].

Connes, V. F. R. Jones, and Ocneanu also classify group homomorphisms G →
Out(R) up to outer conjugacy [8, 29, 36]. Such a homomorphism is called a G-kernel
on R. The classification of G-kernels on injective factors was completed by Katayama
and Takesaki [31]. These can be understood as the first classification results for
quantum symmetries of R which do not arise as group actions. Quantum symmetry
is a broad term that encapsulates generalized notions of symmetry that appear in
topological and conformal field theories. These symmetries are often encoded through
the action of a higher category equipped with a product operation such that the
category weakly resembles a group. In the case of G-kernels, these can be understood
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as actions of 2-groups or tensor categories [13, 27]. The study of quantum symmetries
of R was developed through the subfactor theory of Jones [30] culminating in Popa’s
classification of subfactors N ⊂ R with amenable standard invariant [40].

In comparison to the success in understanding the existence and classification
of G-kernels on von Neumann algebras, the study of G-kernels on C∗-algebras has
up to recently been underdeveloped. In [27], C. Jones studies the closely related
notion of ω-anomalous action.1 In his paper, C. Jones provides a C∗-adaptation of
V. F. R. Jones’ work [28], laying out a systematic way to construct anomalous actions
on C∗-crossed products. C. Jones also establishes existence and no-go theorems for
anomalous actions on abelian C∗-algebras. In [13], Evington and the author lay out
an algebraic K-theory obstruction to the existence of anomalous actions on tracial
C∗-algebras. Recently, Izumi [24] has developed a cohomological invariant for
G-kernels. This invariant introduces new obstructions to the existence of G-kernels
which also apply in the non-tracial setting. Further, Izumi uses this invariant to classify
G-kernels of some poly-Z groups on strongly self-absorbing Kirchberg algebras
satisfying the universal coefficient theorem (abbreviated as UCT).

This paper provides a classification of anomalous actions with the Rokhlin property
on C∗-algebras where K-theoretic obstructions vanish. The Rokhlin property for finite
group actions was first systematically studied by Izumi [22, 23]. In his work, Izumi
uses the Rokhlin property to boost existing classification results of Kirchberg algebras
in the UCT class [32, 39] and unital, simple, separable, nuclear, tracially approximate
finite-dimensional (TAF) algebras in the UCT class [34] by their K-theory, to a
classification of finite group actions with the Rokhlin property on these classes of
C∗-algebras by the induced module structure on K-theory [23, Theorems 4.2
and 4.3].2

The strategy of this paper is to bootstrap Izumi’s classification of G actions with the
Rokhlin property, for finite groups G, to achieve analogous classification results for
anomalous actions. To do this, we will assume that our C∗-algebra A satisfies a UHF
absorbing condition. To be precise, that the A is stable under tensoring with the UHF
algebra M∣G∣∞ ≅ ⊗i∈N M∣G∣. This property is considered, for example, in [2, 16] and
in some cases follows immediately from the existence of Rokhlin G actions on A ([23,
Theorems 3.4 and 3.5], [16, Theorem 5.2]). Further assuming the Rokhlin property, we
will establish a model action absorption result (Proposition 4.5). Second, we will use
the model action absorption combined with a trick, that builds on ideas of Connes in
the cyclic group case [8, Section 6]. This trick lets us use the existence of anomalous
action on the UHF-algebra M∣G∣∞ to reduce the classification of anomalous actions to
the classification of cocycle actions. We may not apply this method by replacing M∣G∣∞
by Z or O∞ due to the obstruction results of [13, Theorem A] and [24, Theorem 3.6].
This argument allows us to prove the following.

Theorem A (cf. Theorems 5.2 and 5.3) Let G be a finite group, and let A ≅ A⊗ M∣G∣∞
be either a Kirchberg algebra in the UCT class or a unital, simple, separable, nuclear

1In the case that a C∗-algebra A has trivial center, the study of ω-anomalous actions on A is equivalent
to the study of G-kernels on A [27, Section 2.3].

2TAF algebras are C∗-algebras that may be locally approximated by finite-dimensional C∗-algebras
in trace (see [33, Definitions 1 and 2]).
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TAF algebra in the UCT class. If (α, u), (β, v) are anomalous G actions on A with the
Rokhlin property, then (α, u) is cocycle conjugate to (β, v) through an automorphism
that is trivial on K-theory if and only if K i(αg) = K i(βg) for all g ∈ G and the anomalies
of (α, u) and (β, v) coincide.

Similarly, we can boost Nawata’s classification of Rokhlin G actions on W (see [35])
to a classification of anomalous actions on W.
Theorem B (cf. Theorem 5.4) Let G be a finite group, and let (α, u), (β, v) be anoma-
lous G actions on W with the Rokhlin property, then (α, u) is cocycle conjugate to (β, v)
if and only if the anomalies of (α, u) and (β, v) coincide.

As a consequence of the results of [16], we may also apply this strategy to classify
anomalous actions with the Rokhlin property on C∗-algebras that arise as inductive
limits of one-dimensional non commutative CW complexes (see Theorem 5.6).

The procedure utilized for the proof of Theorem A can be expected to work in more
generality. The reason we restrict to unital, simple, nuclear TAF algebras in the tracial
setting is due to the need to apply classification results for (cocycle) group actions.
With more novel stably finite classification results in hand [5], and using similar
techniques to [22, 23], a classification of finite group actions with the Rokhlin property
on simple, separable, nuclear, Z-stable C∗-algebra satisfying the UCT through the
induced module structure on the Elliott invariant is plausible. A strategy to approach
this classification problem has been proposed by Szabó in private communications.
With such a result in hand, one could apply the abstract Lemma 5.1 to yield the
equivalent to Theorem A in the generality of simple, separable, nuclear, M∣G∣∞-stable
C∗-algebras satisfying the UCT.

Recent advances in the classification of more general symmetries on C∗-algebras
pave the way toward a classification of quantum symmetries. Significant results in this
direction are the classification of AF-actions of fusion categories on AF-algebras [6],
as well as Yuki Arano’s announcement of an adaptation of Izumi’s techniques in [22]
to actions of fusion categories with the Rokhlin property. In the final section of
this paper, we connect our results to the work in [6]. We demonstrate the existence
of an AF ω-anomalous G-action with the Rokhlin property on M∣G∣∞ which we
denote by θω

G . This has structural implications for anomalous actions with the Rokhlin
property on any AF-algebra A. Indeed, combined with Theorem A, the existence of θω

G
implies that every anomalous action on A with the Rokhlin property, that consists of
automorphisms that act trivially on K-theory, is automatically AF (see Corollary 6.3).
Under some assumptions on the anomaly, an application of the classification results
of [6] establishes the converse (see Corollary 6.3). This partial converse exhibits
a difference in behavior between anomalous actions and group actions (see the
discussion following Corollary 6.3).

The paper is organized as follows. In Section 2, we recall some necessary back-
ground on anomalous actions. Section 3 recalls the construction of model anomalous
actions on UHF algebras. In Section 4, we prove a model action absorbing result for
finite group anomalous actions. In Section 5, we set out an abstract lemma for the
classification of anomalous actions (Lemma 5.1) which we use to prove our main
results. Finally, in Section 6, we discuss an application of the classification result to
AF-actions.
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2 Preliminaries

Throughout, A and B will be used to denote C∗-algebras and G , Γ, K will be used to
denote countable discrete groups. We let T ⊂ C be the circle group. We denote the
multiplier algebra of A by M(A). Any automorphism α ∈ Aut(A) extends uniquely
to an automorphism of M(A), we denote this extension also by α. For a unitary u ∈
M(A), we write Ad(u) for the automorphism a ↦ uau∗ of A and the group of inner
automorphisms on A by Inn(A). Recall that a G-kernel of A is a group homomorphism
G → Aut(A)/Inn(A) = Out(A). We now recall the definition of an anomalous action
from [27, Definition 1.1]. In the case that A has trivial center, this notion coincides with
a lift of a G-kernel into Aut(A).

Definition 2.1 An anomalous action of a countable discrete group G on a C∗-algebra
A consists of a pair (α, u) where

α ∶ G → Aut(A),

u ∶ G × G → U(M(A))
are a pair of maps such that

αg αh = Ad(ug ,h)αgh , for all g , h ∈ G ,(2.1)

αg(uh ,k)ug ,hku∗gh ,ku∗g ,h ∈ T ⋅ 1M(A) , for all g , h, k ∈ G .(2.2)

First, note that in (2.1) and (2.2), we have used the subscript notation αg and
ug ,h instead of α(g) and u(g , h) for g , h ∈ G. We will use this throughout when
notationally convenient.

As shown in [10, Lemma 7.1], the formula in (2.2) defines a circle valued 3-cocycle,
i.e., an element of Z3(G ,T). We will call this the anomaly of the action and denote it by
o(α, u). For ω ∈ Z3(G ,T), we say (α, u) is a (G , ω) action on A to mean that (α, u) is
an anomalous action of G on A with anomaly ω.3 If ω = 1, then we call (α, u) a cocycle
action. Note that any anomalous action (α, u) induces a G-kernel when passing to the
quotient group Out(A), we denote its associated G-kernel by α. For any G-kernel α
on A, we denote by ob(α) ∈ H3(G , Z(U(M(A)))) its 3-cohomology invariant (see,
e.g., [13, Section 2.1]).

The reader should be warned that there is a slight variation in Definition 2.1 to the
definitions of anomalous actions in [13, 27]. Given our conventions in Definition 2.1,
a (G , ω) action induces an ω anomalous action as in [27, Definition 1.1], this is seen
by taking mg ,h = u∗g ,h .

Throughout this paper, we will denote the algebra of bounded sequences of A
quotiented by those sequences going to zero in norm by A∞. For a ∗-closed subset S
of A∞, we may consider the commutant C∗-algebra A∞ ∩ S′ = {x ∈ A∞ ∶ [x , S] = 0}
and the annihilator A∞ ∩ S⊥ = {x ∈ A∞ ∶ xS = Sx = 0}. We may then denote Kirch-
berg’s sequence algebra by

F(S , A∞) = (A∞ ∩ S′)/(A∞ ∩ S⊥).

3In [27], the anomaly ω is carried as part of the data. We prefer to see the anomaly as an invariant
of the pair (α, u).
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In the case that S is the C∗-algebra of constant sequences in A∞, we denote this simply
by F(A) = F(A, A∞) and F(A) the central sequence algebra of A. Note that F(A) is
a unital C∗-algebra whenever A is σ-unital. Indeed, the unit is given by h = (hn) for
any sequential approximate unit hn for A.

Any automorphism θ ∈ Aut(A) induces an automorphism θ of A∞ through
(an) ↦ (θ(an)) for any (an) ∈ A∞.4 If a subset S of A∞ is invariant under both θ and
θ−1, then so are A∞ ∩ S′ and A∞ ∩ S⊥ and θ induces an automorphism of F(S , A∞).

Definition 2.2 For an anomalous action (α, u) of a group G on a C∗-algebra A and
a ∗-closed subset S ⊂ A∞, we say S is (α, u)-invariant if αg(S) ⊂ S for all g ∈ G and
ug ,h S + Sug ,h ⊂ S for all g , h ∈ G.

Note that whenever S is (α, u)-invariant, then the automorphisms Ad(ug ,h) also
preserve S for all g , h ∈ G and so α−1

g = Ad(ug ,g−1)αg preserve S for all g ∈ G.

Remark 2.1 When A is equipped with a (G , ω) action (α, u), it induces a (G , ω)
action on A∞. In fact, α induces a group action on F(A) as Ad(u)(x) − x ∈ A∞ ∩ A⊥
for any x ∈ A∞ ∩ A′ and u ∈ U(M(A)). Similarly, if S = S∗ is an (α, u) invariant sub-
set of A∞, then α induces a group action on F(S , A∞) (see [45, Remarks 1.8 and 1.10]).

We will be interested in anomalous actions with the Rokhlin property. This notion
was introduced in [22, Definition 3.10] for actions of finite groups on unital C∗-
algebras and later generalized by Nawata and Santiago for non-unital C∗-algebras (see
[35, 43]). Its definition in the setting of anomalous actions is ad verbatim, we will only
require it for σ-unital C∗-algebras.

Definition 2.3 An anomalous action (α, u) of a finite group G on a σ-unital C∗-
algebra A is said to have the Rokhlin property, if there exist projections pg ∈ F(A) for
g ∈ G such that:
(1) ∑g∈G pg = 1,
(2) αg(ph) = pgh .

Remark 2.2 The Rokhlin property also makes sense for G-kernels. In this case, a G-
kernel α of a finite group G on a σ-unital C∗-algebra A satisfies the Rokhlin property
if for any/some lift (α, u) of α there exists a partition of unity of projections pg ∈ F(A)
for g ∈ G such that αg(ph) = pgh for all g , h ∈ G.

Our main goal is to classify anomalous actions with the Rokhlin property. To make
sense of this question, we first need to introduce equivalence relations for anomalous
actions. Before we do so, we start by introducing some notation that will allow us to
streamline future definitions.

Definition 2.4 Let (α, u) be an anomalous action of a group G on a C∗-algebra A. If
vg ∈ U(M(A)) for g ∈ G, then the pair (αv , uv) with

αv
g = Ad(vg)αg , g ∈ G ,

uv
g ,h = vg αg(vh)ug ,hv

∗
gh , g , h ∈ G

is an anomalous action. We say that (αv , uv) is a unitary perturbation of (α, u).

4Note the abuse of notation.
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It is a straightforward that o(α, u) = o(αv , uv) for any map v ∶ G → U(M(A)).

Definition 2.5 Let A, B be C∗-algebras, let (α, u) be an anomalous G action on A,
and let (β, v) be an anomalous action on B. Then we say that:

(i) (α, u) is conjugate to (β, v) if there exists an isomorphism θ ∶ A → B such that
αg = θβg θ−1 and vg ,h = θ(ug ,h) for all g , h ∈ G.

(ii) (α, u) is cocycle conjugate to (β, v) if there exist unitaries sg ∈ U(M(A)) for g ∈
G such that (αs , us) is conjugate to (β, v). We denote this by (α, u) ≃ (β, v).

(iii) If A and B are equal and (α, u) ≃ (β, v) with the conjugacy holding through an
automorphism θ such that K i(θ) = idK i(A) for i = 1, 2, we say (α, u) and (β, v)
are K-trivially cocycle conjugate. We denote this by (α, u) ≃K (β, v).

Finally, recall the definition of a unitary one cocycle.

Definition 2.6 Let α be a (G , ω) action on a C∗-algebra A. We call a map v ∶ G →
U(M(A)) such that vg αg(vh) = vgh an α-cocyle.

3 Model actions

Given a finite group G and ω ∈ Z3(G ,T) a normalized 3-cocycle, [13, Theorem C]
constructs a (G , ω) action on M∣G∣∞ . This result is based on a construction of C. Jones
in [27] which in turn is based on a construction of V. F. R. Jones in the setting of von
Neumann algebras [28].

In this section, we recall this construction as we will need its specific form to deduce
properties of the action. First, recall that a 3-cocycle ω ∶ G×3 → T is called normalized
if ω(g , h, k) = 1 whenever either g , h or k are the identity. In [27], C. Jones shows that
if ω is a normalized 3-cocycle and one has the following data:
• a group Γ and a surjection ρ ∶ Γ ↠ G such that ρ∗(ω) is a coboundary,
• a normalized 2-cochain c ∶ Γ × Γ → T such that ρ∗(ω) = dc,
• a C∗-algebra B and an action π ∶ Γ → Aut(B),
one can induce a (G , ω) action on the twisted reduced crossed product B ⋊r

π ,c K, with
K = ker(ρ) (see [4] for a reference on twisted crossed products).5 The automorphic
data of this (G , ω) action are given by

θ g (∑
k∈K

akvk) = ∑
k∈K

c ĝ k ĝ−1 , ĝ−1 c ĝ ,k π ĝ(ak)v ĝ k ĝ−1 ,(3.1)

for ak ∈ B, vk the canonical unitaries in M(B ⋊r
π ,c K), g ∈ G and g ↦ ĝ a choice of

set-theoretic section to ρ ∶ Γ → G.6 In fact, given an arbitrary finite group G, C. Jones
constructs a finite group Γ, a surjection ρ, and a 2 cochain c with the conditions needed
above and additionally c∣ker(ρ) = 1. Additionally, to Γ and c, the extra data considered
in [13, Theorem C] are:
• B = ⊗i∈NB(l 2(Γ)),
• π = Ad(λΓ)⊗∞,

5For c ∈ C2(G,T), we denote by c the 2-cochain given by cg ,h = cg ,h for g , h ∈ G.
6Note that (3.1) is different to the formula in [27, Lemma 3.2]. This is due to our change of

conventions when defining anomalous actions.
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with λΓ the left regular representation and Ad(λΓ)γ(T) = λΓ(γ)TλΓ(γ)∗ for all
T ∈ B(l 2(Γ)) and γ ∈ Γ. In this case, the crossed product B ⋊r

π K is shown to be
isomorphic to the UHF algebra M∣G∣∞ . C. Jones’ construction then yields a (G , ω)
action on M∣G∣∞ through (3.1) for any ω ∈ Z3(G ,T), we denote it by (sω

G , uω
G).

Proposition 3.1 Let G be a finite group and ω ∈ Z3(G ,T), then (sω
G , uω

G) has the
Rokhlin property.

Proof We use the notation set up in the previous paragraphs. Furthermore, denote
by r i ∶ B(l 2(Γ)) → B the unital embedding into the ith tensor factor. As A = B ⋊π K
is unital, F(A) coincides with A∞ ∩ A′, so it suffices to find a partition of unity pg ∈
A∞ ∩ A′ for g ∈ G such that αg(ph) = pgh for all g , h ∈ G.

Let eK in B(l 2(Γ)) be the projection onto l 2(K), that is,

eK
⎛
⎝∑γ∈Γ

μγγ
⎞
⎠
= ∑

γ∈K
μγγ

for any complex scalars μγ . Let pn = rn(eK) for n ∈ N. Note that the projection
p = (pn) ∈ B∞ commutes with any constant sequence of elements in B. Moreover,
p commutes with the subalgebra C∗(K) ⊂ (B ⋊ K)∞. Indeed, eK is invariant under
Ad(λΓ)k for any k ∈ K and therefore for any n ∈ N and k ∈ K,

vk pnv∗k = Ad(λΓ)⊗∞k (rn(eK))
= rn(Ad(λΓ)k eK))
= rn(eK)
= pn .

Therefore, p ∈ A∞ ∩ A′.
We claim that the projections pg ∶= sω

G(g)(p) = (sω
G(g)(pn))n∈N form a set of

Rokhlin projections. We start by showing that the sum ∑g∈G sω
G(g)(p) = 1. Let n ∈ N

and g ∈ G, then as the cochain c is normalized, it follows from (3.1) that

sω
G(g)(pn) = π ĝ(pn)(3.2)

= Ad(λΓ)⊗∞ĝ (pn)
= Ad(λΓ)⊗∞ĝ (rn(eK))
= rn(Ad(λΓ) ĝ(eK)).

The maps rn are unital, so it suffices to show that ∑g∈G Ad(λΓ) ĝ(eK) = 1B(l 2(Γ)). To
see this, let γ ∈ Γ, g ∈ G, and δγ ∈ l 2(Γ) the point mass at γ, then

Ad(λΓ) ĝ(eK)(δγ) = λΓ(ĝ)eK λΓ(ĝ−1)(δγ)(3.3)
= λΓ(ĝ)eK(δ ĝ−1 γ)

=
⎧⎪⎪⎨⎪⎪⎩

δγ , if γ ∈ ĝK ,
0, otherwise.

The left K cosets are pairwise disjoint and cover the whole group Γ. There-
fore, it follows that ∑g∈G Ad(λΓ) ĝ(eK)(δγ) = δγ for every γ ∈ Γ. As the operators
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∑g∈G Ad(λΓ) ĝ(eK) and idB(l 2(Γ)) coincide on a spanning set of l 2(Γ), these operators
are equal.

It remains to show that for g , h ∈ G the projections sω
G(g)ph = pgh . This fol-

lows as sω
G(g)ph = sω

G(g)sω
G(h)p = Ad(uω

G(g , h))sω
G(gh)p = Ad(uω

G(g , h))pgh = pgh
where the last equality in the chain holds as pgh commutes with A. ∎

4 Absorption of model actions

In this section, we show that any Rokhlin anomalous action of a finite group G, on an
M∣G∣∞-stable C∗-algebra, absorbs the action

sG =
∞

⊗
i=0

Ad(λG)

up to cocycle conjugacy.7 This result is similar in nature to (i) ⇒ (iii) of [16, Theorem
5.2]. The methods utilized in this chapter are an adaptation of V. F. R. Jones’ work [29]
to the C∗-setting.

In his work [44–46], Szabó establishes the theory of strongly self-absorbing C∗-
dynamical systems as an equivariant version of strongly self-absorbing C∗-algebras
that were introduced in [47]. We recall the main definition below.

Definition 4.1 Let G be a locally compact group. A group action γ on a unital,
separable C∗-algebra D is called strongly self-absorbing if there exists an equivariant
isomorphism φ ∶ (D, γ) → (D⊗D, γ ⊗ γ) such that there exist unitaries un ∈ U(D⊗
D) fixed by γ ⊗ γ with

lim
n→∞

∥φ(a) − un(a ⊗ 1D)u∗n∥ = 0

for all a ∈ D. That is, the maps φ and idD⊗1D are approximately unitarily equivalent
or in short φ ≈a .u idD⊗1D.

The relevant example of a strongly self-absorbing action for this paper is sG . That
sG is strongly self-absorbing follows as a consequence of [45, Example 5.1].

In [45, Theorem 3.7], Szabó shows equivalent conditions for a cocycle action to
tensorially absorb a strongly self-absorbing action. Although Szabó’s theory only treats
the case of cocycle actions absorbing a given strongly self-absorbing group action,
many of the arguments follow in exactly the same way when replacing cocycle actions
by anomalous actions that may have nontrivial anomaly. The proofs of [45, Lemma 2.1
and Theorem 2.6] and [45, Theorem 3.7 and Corollary 3.8], for example, make no use
of the anomaly associated with (α, u) and (β, w) being trivial. Under this observation,
we can state a specific case of [45, Corollary 3.8].

Theorem 4.1 (cf. [45, Theorem 2.8]) Let A and D be separable C∗-algebras, and let G
be a finite group. Assume that (α, u) ∶ G ↷ A is an anomalous action. Let γ ∶ G ↷ D be
a group action such that (D, γ) is strongly self-absorbing. If there exists an equivariant

7Note that for G finite the C∗-algebras M∣G∣ and B(l2(G)) are canonically isomorphic, we identify
them throughout this paper.
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and unital ∗-homomorphism

(D, γ) → (F(A), α),

then (A, α, u) is cocycle conjugate to (A⊗D, α ⊗ γ, u ⊗ 1D) through a map φ ∶ A →
A⊗D that is approximately unitarily equivalent to idA ⊗1D.

We still require a few more results before we can achieve the model action
absorption. These are based on known results in the setting of finite group actions on
unital C∗-algebras. These generalize line by line to anomalous actions of finite groups
on unital C∗-algebras, we adapt the arguments also for non-unital C∗-algebras.

Lemma 4.2 (cf. [21, Theorem 3.3]) Let A be a C∗-algebra, let G be a finite group, and
let (α, u) be an anomalous action of G on A with the Rokhlin property. If B = B∗ is
a separable (α, u)-invariant subset of A∞ and there exists a unital ∗-homomorphism
M → F(B, A∞) for some separable, unital C∗-algebra M, then there exists a unital ∗-
homomorphism M → F(B, A∞)α .

Proof Fix a unital homomorphism ψ ∶ M → F(B, A∞) and choose a linear lift ψ0 ∶
M → A∞ ∩ B′. Then one has that:

(i) (ψ0(m)ψ0(m′) − ψ0(mm′))b = 0, ∀m, m′ ∈ M , b ∈ B,
(ii) (ψ0(m∗) − ψ0(m)∗)b = 0, ∀m ∈ M , b ∈ B,

(iii) ψ0(1)b − b = 0, ∀b ∈ B.
Let S = B ∪g∈G αg(ψ0(M)) ∪g∈G αg(ψ0(M))∗, so S = S∗. By the Rokhlin property
followed by a standard reindexing argument, there exist positive contractions fg ∈
A∞ ∩ S′ such that:

(iv) (αg( fh) − fgh)a = 0, ∀g , h ∈ G , a ∈ S ,
(iiv) (∑g∈G fg)a − a = 0 ∀a ∈ S ,

(iiiv) fg fh a − δg ,h a = 0 ∀g , h ∈ G , a ∈ S .
Now consider the linear mapping φ ∶ M → A∞ ∩ B′ given by

φ(m) = ∑
g∈G

αg(ψ0(m)) fg .

First, for m, m′ ∈ M and b ∈ B, it follows from (i) and (iiiv) that

φ(m)φ(m′)b = ∑
g ,h∈G

αg(ψ0(m)) fg αh(ψ0(m′)) fhb

= ∑
g ,h∈G

αg(ψ0(m))αh(ψ0(m′)) fg fhb

= ∑
g∈G

αg(ψ0(m))αg(ψ0(m′))b fg

= ∑
g∈G

αg(ψ0(mm′))b fg

= ∑
g∈G

αg(ψ0(mm′)) fg b

= φ(mm′)b.
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Also for k ∈ G , m ∈ M and b ∈ B it follows using (iv) that

αk(φ(m))b = ∑
g∈G

αk (αg(ψ0(m))) αk( fg)b

= ∑
g∈G

Ad(uk ,g)(αk g(ψ0(m))) fk g b

= ∑
g∈G

Ad(uk ,g)(αk g(ψ0(m)))b fk g

= φ(m)b.

Where in the last line we have used that B is u invariant and so the observation in
Remark 2.1 applies. Therefore, the map

m ↦ φ(m) + A∞ ∩ B⊥

defines a homomorphism from M into (F(B, A∞))α . This homomorphism is unital
through combining (iii) and (iiv) and ∗-preserving by (ii). ∎

In the next lemma, recall that if α is an action of a group G on a C∗-algebra A, an
α-cocycle is a family of unitaries vg ∈ U(M(A)) for g ∈ G such that vg αg(vh) = vgh .

Lemma 4.3 (cf. [19, Lemma III.1]) Let A be a separable C∗-algebra, and let G be a
finite group. Let (α, u) be an anomalous action of G on A with the Rokhlin property. Let
B = B∗ be a separable (α, u)-invariant subset of A∞. For any α-cocycle vg for the action
induced by α on F(B, A∞), there exists a unitary u ∈ F(B, A∞) with u∗αg(u) = vg .

Proof Let vg ∈ U(F(B, A∞)) be an α-cocycle. Choosing lifts v′g ∈ A∞ ∩ B′ for vg ,
one has:

(i) v′g(v′g)∗b − b = 0, ∀g ∈ G , b ∈ B,
(ii) (v′g)∗v′g b − b = 0, ∀g ∈ G , b ∈ B,

(iii) v′g αg(v′h)b − v′ghb = 0, ∀g , h ∈ G , b ∈ B.

Let S = B ∪ {αh(v′g), αh(v′g)∗ ∶ g , h ∈ G}. As in the previous lemma, one may apply
the Rokhlin property combined with a reindexing argument to get a family of positive
elements fg ∈ A∞ ∩ S′ such that:

(iv) (αg( fh) − fgh)a = 0, ∀g , h ∈ G , a ∈ S ,
(iiv) ∑g∈G fg a − a = 0, ∀a ∈ S ,

(iiiv) fg fh a − δg ,h a = 0 ∀g , h ∈ G , a ∈ S .
Let u = ∑g∈G v′g fg ∈ A∞ ∩ B′. Then, for any b ∈ B by (ii), (iiv), and (iiiv), it follows

that

u∗ub = ∑
g ,h∈G

fg(v′g)∗v′h fhb

= ∑
g ,h∈G

(v′g)∗v′hb fg fh

= ∑
g∈G

(v′g)∗v′g b fg

= b.
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Similarly, uu∗b = b for any b ∈ B. Moreover, (iii), (i), (iv) and (iiv) imply that for b ∈ B
and g ∈ G,

uαg(u∗)b = ∑
h ,k

v′h fh αg( fk)αg(v′k)∗b

= ∑
h ,k

v′h αg(v′k)∗b fh αg( fk)

= ∑
k

v′gk αg(v′k)∗b fgk

= ∑
k

v′g b fgk

= v′g b.

Therefore, by passing to the quotient, u defines a unitary in F(B, A∞) such that
uαg(u∗) = vg for all g ∈ G. ∎

For a finite group G, we denote by eg ,h ∈ B(l 2(G)) the canonical matrix units
defined by

eg ,h( f )(k) =
⎧⎪⎪⎨⎪⎪⎩

f (h), if k = g ,
0, otherwise,

for f ∈ l 2(G). The proof of the next lemma is based on the proof of [29, Proposition
3.4.1].

Lemma 4.4 Let G be a finite group, and let A be a separable C∗-algebra such that
A ≅ A⊗M∣G∣∞ . Let (α, u) be an anomalous action with the Rokhlin property of G on
A. Then there exists a G-equivariant unital embedding

(M∣G∣∞ , sG) → (F(A), α).

Proof To prove this, we inductively construct unital equivariant ∗-homomorphisms
ϕn ∶ (B(l 2(G)), Ad(λG)) → (F(A), α) for n ∈ N with commuting images. Then the
map defined by a1 ⊗ ⋅ ⋅ ⋅ ⊗ an ⊗ . . . '→ ∏i∈N ϕ i(a i) will induce an sG to α equivariant
map into F(A).

Suppose ϕ1 , ϕ2 , . . . , ϕn ∶ (B(l 2(G)), Ad(λG)) → (F(A), α) are equivariant maps
with commuting images and let ψ i ∶ B(l 2(G)) → A∞ ∩ A′ be linear lifts of ϕ i for 1 ≤
i ≤ n, then:
(i) ψ i(m)ψ j(m′)a − ψ j(m′)ψ i(m)a = 0, ∀a ∈ A, m, m′ ∈ B(l 2(G)), 1 ≤ i ≠

j ≤ n,
(ii) αg(ψ i(m))a − ψ i(λG(g)(m))a = 0, ∀a ∈ A, m ∈ B(l 2(G)), 1 ≤ i ≤ n, g ∈ G,
(iii) ψ i(m)∗a − ψ i(m∗)a = 0, ∀a ∈ A, m ∈ B(l 2(G)), 1 ≤ i ≤ n,
(iv) ψ i(1)a − a = 0, ∀ ∈ A, 1 ≤ i ≤ n.
Let

S = {ψ i(m)a ∶ m ∈ B(l 2(G)), a ∈ A, 1 ≤ i ≤ n}.

Then S is separable, S = S∗, and S is (α, u) invariant. We check that ug ,h S ⊂ S for all
g , h ∈ G, the remaining conditions follow similarly. For a ∈ A, m ∈ B(l 2(G)), and 1 ≤
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i ≤ n, letting m′ = Ad(λG)h−1 g−1(m), one has that

ug ,hψ i(m)a = ug ,hψ i(Ad(λG)gh(m′))a
(i i)= ug ,h αgh(ψ i(m′))a
= αg αh(ψ i(m′))ug ,h a
(i i)= ψ i(Ad(λG)gh(m′))ug ,h a ∈ S .

As A ≅ A⊗ M∣G∣∞ , pick a unital embedding from B(l 2(G)) into F(S , A∞). (As
A⊗M∣G∣∞ ≅ A, there exists a unital embedding of B(l 2(G)) into F(A) by [47,
Theorem 2.2]. Moreover, by reindexing, one can also choose a homomorphism as
stated.) It follows from Lemma 4.2 that there exists a unital embedding B(l 2(G)) →
F(S , A∞)α . Let (e′g ,h)g ,h∈G in F(S , A∞)α be the images of eg ,h under this unital
embedding. The permutation unitary vg = ∑h∈G e′gh ,h gives a unitary representation
of G on F(S , A∞)α and as αg(vh) = vh it follows that vg is an α-cocycle. Therefore,
by Lemma 4.3, there exists a unitary u ∈ F(S , A∞) such that uαg(u∗) = vg . Now,
fg ,h = u∗e′g ,hu for g , h ∈ G is a set of matrix units such that

αk( fg ,h) = αk(u∗)e′g ,h αk(u)
= u∗vk e′g ,hv∗k u

= u∗
⎛
⎝ ∑

h′ ,h′′∈G
e′kh′ ,h′ e

′
g ,h e′h′′ ,kh′′

⎞
⎠

u

= u∗(e′k g ,kh)u
= fk g ,kh .

Hence, the ∗-homomorphism

ϕn+1 ∶ B(l 2(G)) → F(S , A∞),
eg ,h ↦ fg ,h

defines an Ad(λG) to α equivariant ∗-homomorphisms. Moreover, the image of
ϕn+1 commutes with ϕ i for all 1 ≤ i ≤ n. Considering ϕn+1 as a unital equivariant
homomorphism into A∞ ∩ A′/A∞ ∩ A⊥, the induction argument is complete. ∎

We have collected all the necessary ingredients to prove the model action absorp-
tion.

Proposition 4.5 Let G be a finite group, and let A be a separable C∗-algebra such that
A ≅ A⊗M∣G∣∞ . Let (α, u) be a (G , ω) action on A with the Rokhlin property. Then
(α, u) and (α ⊗ sG , u ⊗ 1M∣G∣∞ ) are cocycle conjugate through an isomorphism that is
approximately unitarily equivalent to idA ⊗1M∣G∣∞ .

Proof By Lemma 4.4, there exists a G-equivariant unital embedding (M∣G∣∞ , sG) →
(F(A), α). Thus, the result follows from Theorem 4.1. ∎
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5 Classification

We now discuss the abstract approach to bootstrapping the classification of group
actions on a given class of C∗-algebras to a classification of anomalous actions. This
method is a generalization of that used by Connes in [8, Section 6], a similar strategy
was recently used in [24] to classify G-kernels of poly-Z groups on O2.

Before proceeding with the result, we set up notation. For a group G, we say
“(α, u) is an anomalous G-action on A” and “(A, α, u) is an anomalous G-C∗-
algebra” interchangeably. Let Λ be a functor whose domain category is the category
of C∗-algebras (denoted C*alg). We say Λ is invariant under approximate unitary
equivalence if Λ(α) = Λ(θ) whenever α ≈a .u θ (see Definition 4.1 for notation). We
also say that Λ restricted to a subcategory C ⊂ C*alg is full on isomorphisms, if
whenever Φ ∈ Hom(Λ(A), Λ(B)) is an isomorphism for A, B ∈ C, then there exists
an isomorphism φ ∶ A → B in C with Λ(φ) = Φ. The sort of functors with these
properties are those used in the classification of C∗-algebras. For example, the functor
K from the category of unital C∗-algebras into the category consisting of pairs of
an abelian group and a pointed abelian group defined at the level of objects by A ↦
K(A) = ((K0(A), [1A]), K1(A)) is invariant under approximate unitary equivalence.
The functor K is also full on isomorphisms when restricted to the category of unital
Kirchberg algebras satisfying the UCT (see [39]). Similarly, the functors KTu and
KTu of [5] are invariant under approximate unitary equivalence and are full on
isomorphisms when restricted to classifiable C∗-algebras.

If Λ is invariant under unitary equivalence, an anomalous action (A, α, u) induces
a G-action on Λ(A) through the automorphisms Λ(αg). If (A, α, u) and (B, β, v) are
anomalous actions, we say that the induced actions Λ(αg) and Λ(βg) are conjugate
if there exists an isomorphism Φ ∶ Λ(A) → Λ(B) with ΦΛ(αg)Φ−1 = Λ(βg) for all
g ∈ G. We denote this by Λ(α) ∼ Λ(β).

Let (A, α, u) and (A, β, v) be two anomalous G-C∗-algebras. We write (α, u) ≃Λ
(β, v) if (α, u) ≃ (β, v) through an automorphism θ with Λ(θ) = idΛ(A). This notion
recovers K-trivial cocycle conjugacy of Definition 2.5 when Λ is taken to be the functor
consisting of K0 ⊕ K1. Finally, ifR is a class of anomalous G-C∗-algebras, we will sayR
is closed under conjugacy, if whenever (A, α, u) ∈ R and φ ∶ A → B is an isomorphism
in C*alg then (B, φαφ−1 , φ(u)) ∈ R.

Lemma 5.1 Let G be a group, D a strongly self-absorbing C∗-algebra, and R a class of
anomalous G-C∗-algebras that is closed under conjugacy. Let Λ be a functor with domain
category the category of C∗-algebras such that Λ is invariant under approximate unitary
equivalence and is full on isomorphisms for C∗-algebras in R. Suppose further that:
(A1) there exists a G-action (D, sG , 1) such that if (A, α, u) ∈ R, then (A, α, u) ≃

(A⊗D, α ⊗ sG , u ⊗ 1) through an isomorphism that is approximately unitarily
equivalent to idA ⊗1D;

(A2) if there exists a (G , ω) action in R for some ω ∈ Z3(G ,T), then there exist a
(G , ω) and (G , ω) action (D, sω

G , uω) and (D, sω
G , uω), respectively, such that

(D, sω
G , uω) ⊗ (D, sω

G , uω) ≃ (D, sG , 1) and for any (G , ω)-action (A, α, u) ∈ R,
(A, α, u) ⊗ (D, sω

G , uω) ∈ R;
(A3) for cocycle actions (A, α, u), (B, β, v) ∈ R, Λ(α) ∼ Λ(β) if and only if α ≃ β.
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Then, if (A, α, u) and (B, β, v) in R, (A, α, u) ≃ (B, β, v) if and only if Λ(α) ∼ Λ(β)
and o(α, u) = o(β, v).

With the same hypothesis but replacing (A3) with the condition that
(A3’) for cocycle actions (A, α, u) and (A, β, v) inR, (A, α, u) ≃Λ (A, β, v) if and only

if Λ(αg) = Λ(βg) for all g ∈ G,
then if (A, α, u) and (A, β, v) in R, (A, α, u) ≃Λ (A, β, v) if and only if o(α, u) =
o(β, v) and Λ(αg) = Λ(βg) for every g ∈ G.

Proof First we show that if (A1)–(A3) hold and (A, α, u), (B, β, v) are anomalous
actions in R, then (A, α, u) ≃ (B, β, v) if and only if Λ(α) ∼ Λ(β) and o(α, u) =
o(β, v). If (A, α, u) ≃ (B, β, v), it is clear that o(α, u) = o(β, v) and also that Λ(α) ∼
Λ(β) as Λ is trivial when evaluated at inner automorphisms. We now turn to
the converse. Suppose Λ(α) ∼ Λ(β) and o(α, u) = o(β, v). First, note that this
implies that also Λ(α ⊗ idD) ∼ Λ(β ⊗ idD). Indeed, by (A1), let ϕA ∶ A → A⊗D

and ϕB ∶ B → B ⊗D be isomorphisms which are approximately unitarily equiv-
alent to the first factor embeddings and Φ ∶ Λ(A) → Λ(B) be an isomorphism
such that ΦΛ(αg)Φ−1 = Λ(βg) for g ∈ G. Note that Λ(αg ⊗ idD)Λ(ϕA) = Λ(αg ⊗
idD)Λ(idA ⊗1D) = Λ(αg ⊗ 1D) = Λ(ϕA)Λ(αg) (and similarly replacing A by B).
Hence, we compute that

Λ(αg ⊗ idD)Λ(ϕA)ΦΛ(ϕB)−1 = Λ(ϕA)Λ(αg)ΦΛ(ϕB)−1

= Λ(ϕA)ΦΛ(βg)Λ(ϕB)−1

= Λ(ϕA)ΦΛ(ϕB)−1Λ(βg ⊗ idD),

it follows that Λ(ϕB)ΦΛ(ϕA)−1 conjugates Λ(αg ⊗ idD) to Λ(βg ⊗ idD) for all g ∈ G.
Now, by hypothesis, we have that

(A, α, u) (A1)≃ (A⊗D, α ⊗ sG , u ⊗ 1D)
(A2)≃ (A⊗ (D⊗D), α ⊗ (sω

G ⊗ sω
G), u ⊗ (uω ⊗ uω))

= ((A⊗D) ⊗D, (α ⊗ sω
G) ⊗ sω

G , (u ⊗ uω) ⊗ uω)
(A3),(A2)≃ ((B ⊗D) ⊗D, (β ⊗ sω

G) ⊗ sω
G , (v ⊗ uω) ⊗ uω)(5.1)

= (B ⊗ (D⊗D), β ⊗ (sω
G ⊗ sω

G), v ⊗ (uω ⊗ uω))
(A2)≃ (B ⊗D, β ⊗ sG , v ⊗ 1D)
(A1)≃ (B, β, v).

Where in the third isomorphism we have used (A3) for the cocycle actions (A⊗
D, αg ⊗ sω

G , u ⊗ uω) and (B ⊗D, βg ⊗ sω
G , v ⊗ uω). The reason we may apply (A3) in

this setting is that sω
G is approximately inner and hence our previous computation

shows that Λ(αg ⊗ sω
G) = Λ(αg ⊗ idD) ∼ Λ(βg ⊗ idD) = Λ(βg ⊗ sω

G) as required for
the application of (A3).

Now suppose that we replace condition (A3) with (A3’). We will show that under
the hypothesis of the lemma, (A3’) implies (A3). Therefore, the cocycle conjugacies
in (5.1) still hold. Then we compute the isomorphisms that induce the cocycle
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conjugacies in (5.1) and show that their composition is the identity after applying
Λ. Let (A, α, u) and (B, β, v) be cocycle actions in R. Suppose Λ(α) ∼ Λ(β). There
exists an isomorphism Φ ∈ Hom(Λ(A), Λ(B)) such that ΦΛ(βg)Φ−1 = Λ(αg) for
all g ∈ G. As Λ is full on isomorphisms, there exists a ∗-isomorphism φ ∶ B → A
with Λ(φ) = Φ. Therefore, Λ(φβg φ−1) = Λ(αg) for all g ∈ G. By (A3’), one has that
(A, α, u) ≃Λ (A, φβφ−1 , φ(v)) ≃ (B, β, v).

Set A = B in (5.1). Reading from top to bottom in (5.1), denote by φ1, φ2, φ3, φ4, and
φ5 the isomorphisms inducing each of the conjugacies. Note that φ5 = φ−1

1 and φ4 =
φ−1

2 . By (A1), φ1 ≈a .u idA ⊗1D. Moreover, φ2 ≈a .u idA ⊗ idD⊗1D by [47, Corollary
1.12]. Denote by φ the isomorphism inducing the cocycle conjugacy from (A⊗D, α ⊗
sω

G , u ⊗ uω) to (A⊗D, β ⊗ sω
G , u ⊗ uω)which satisfies Λ(φ) = Λ(idA ⊗ idD). We may

use the functoriality of Λ and its invariance under approximate unitary equivalence
to see that

Λ(φ5φ4φ3φ2φ1) = Λ(idA ⊗1D ⊗ 1D)−1Λ(φ ⊗ idD)Λ(idA ⊗1D ⊗ 1D)
= Λ(idA ⊗1D ⊗ 1D)−1Λ(idA ⊗ idD⊗ idD)Λ(idA ⊗1D ⊗ 1D)
= idΛ(A) . ∎

We now prove our classification theorems.

Theorem 5.2 Let G be a finite group and A be a unital Kirchberg algebra satisfying the
UCT with A ≅ A⊗M∣G∣∞ . If (α, u), (β, v) are anomalous actions of G on A with the
Rokhlin property, then (α, u) ≃K (β, v) if and only if o(α, u) = o(β, v) and K i(αg) =
K i(βg) for all g ∈ G and i = 0, 1.

Proof We check that the hypothesis of Lemma 5.1 is satisfied. Let D = M∣G∣∞ ,
Λ be the functor given by the pointed K0 group direct sum the K1 group, i.e.,
Λ(A) = ((K0(A), [1A]), K1(A)), and R the class of Rokhlin anomalous G-actions
on unital Kirchberg algebras satisfying the UCT that absorb M∣G∣∞ . That Λ is full
on isomorphisms follows from [39]. Condition (A1) follows from Proposition 4.5.
For any ω ∈ Z3(G ,T), we have actions (D, sω

G , uω) as discussed in Section 3. That
(D, sω

G , uω) ⊗ (D, sω
G , uω) ≃ (D, sG , 1) follows from [19, Theorem III.6] combined

with [22, Lemma 3.12] as the actions (D, sω
G , uω) have the Rokhlin property by

Proposition 3.1. Therefore, (A2) is also satisfied. Finally, (A3’) is satisfied by Izumi’s
classification result [23, Theorem 4.2] and that every cocycle action with the Rokhlin
property is a unitary perturbation of a group action [23, Lemma 3.12]. ∎

Theorem 5.3 Let G be a finite group and A be a unital, simple, nuclear TAF-algebra
in the UCT class such that A ≅ A⊗M∣G∣∞ and (α, u), (β, v) are anomalous actions on
A with the Rokhlin property, then (α, u) ≃K (β, v) if and only if o(α, u) = o(β, v) and
K i(αg) = K i(βg) for all g ∈ G and i = 0, 1.

Proof We apply Lemma 5.1 with D = M∣G∣∞ , R the class of Rokhlin anomalous
actions on M∣G∣∞-stable unital, simple, separable, nuclear TAF-algebras satisfying the
UCT and Λ the functor consisting of the ordered, pointed K0 functor direct sum K1.
First, Λ is full on isomorphisms by [34]. (A1) holds by Proposition 4.5. (A2) holds
for the same reason as in the proof of Theorem 5.2. Condition (A3’) follows from a
combination of [23, Theorem 4.3] and [22, Lemma 3.12]. ∎
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Similarly, one may classify anomalous actions with the Rokhlin property on the
Razak–Jacelon algebra W.

Theorem 5.4 Let G be a finite group and (α, u), (β, v) be anomalous G actions with
the Rokhlin property on W. Then (α, u) ≃ (β, v) if and only if o(α, u) = o(β, v).

Proof We check the conditions of Lemma 5.1 withD = M∣G∣∞ ,R the class of Rokhlin
anomalous actions onW and Λ the trivial functor. First, (A1) holds by Proposition 4.5.
Moreover, (A2) holds as in the proof of Theorem 5.2. Finally, (A3) follows from [35,
Corollary 3.7] as every cocycle action of a finite group on W is cocycle conjugate to a
group action (this follows as W ≅ W⊗ M∣G∣ and hence [15, Remark 1.5] applies). ∎

In light of [5, Theorem B], it follows from [22, Theorem 3.5] that all Rokhlin
anomalous actions of G on classifiable M∣G∣∞-stable C∗-algebras are classified up to
cocycle conjugacy by their induced action on the total invariant KTu (see [5, Section
3]) and their anomaly.

Corollary 5.5 Let G be a finite group. Let A be a unital, simple, separable, nuclear,
M∣G∣∞-stable C∗-algebra satisfying the UCT and (α, u), (β, v) be anomalous G-actions
with the Rokhlin property on A. Then (α, u) ≃ (β, v) if and only if KTu(α) ∼ KTu(β)
and o(α, u) = o(β, v).

Proof We apply Lemma 5.1 with D = M∣G∣∞ , R the class of Rokhlin anomalous
actions on M∣G∣∞-stable unital, simple, separable, nuclear C∗-algebras satisfying the
UCT and Λ = KTu . First, Λ is full on isomorphisms by [5, Theorem A]. (A1) holds by
Proposition 4.5. (A2) holds as in the proof of Theorem 5.2. It remains to show (A3).
By [22, Lemma 3.12], it suffices to show that for any two Rokhlin G-actions (A, α) and
(B, β) such that KTu(α) ∼ KTu(β) then α ≃ β. This has been shown for simple, unital
AH-algebras in [16, Theorem 3.8]. With [5, Theorem B] in hand, this also follows for
arbitrary unital, simple, separable, nuclear, Z-stable C∗-algebras satisfying the UCT.
Indeed, as KTu is full on isomorphisms, there exists an isomorphism θ ∶ A → B such
that KTu(θαg θ−1) = KTu(βg) for all g ∈ G. Therefore, it follows from [5, Theorem
B] that θαg θ−1 ≈a .u βg . Now, it follows immediately from [22, Theorem 3.5] that
α ≃ β. ∎

We illustrate another application of Lemma 5.1 to the classification of Rokhlin
anomalous actions on a class of non-simple C∗-algebras. Precisely, we can classify
Rokhlin anomalous actions on inductive limits of one-dimensional NCCW complexes
with trivial K1-groups as a consequence of the classification results of [16, Section
3.3.1].

Theorem 5.6 Let G be a finite group and A be a C∗-algebra that can be written as an
inductive limit of one-dimensional NCCW complexes with trivial K1 groups satisfying
A ≅ A⊗ M∣G∣∞ . If (α, u), (β, v) are anomalous actions of G on A, then (α, u) ≃ (β, v)
through an automorphism that is approximately inner if and only if o(α, u) = o(β, v)
and Cu∼(αg) = Cu∼(βg) for all g ∈ G.8

8See [16, Section 2.2] for the definition of the functor Cu∼.
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Proof We apply Lemma 5.1 with D = M∣G∣∞ , R the class of Rokhlin anomalous
actions on M∣G∣∞-stable C∗-algebras that can be written as an inductive limit of one-
dimensional NCCW complexes with trivial K1 groups and Λ = Cu∼. First, Λ is invari-
ant under approximate unitary equivalence. Moreover, it is full on isomorphisms by
[41, Theorem 1.0.1] (see also [41, Corollary 5.2.3]). Conditions (A1) and (A2) hold as in
the proof of Theorem 5.2. Condition (A3’) holds as a consequence of [16, Theorem 3.6]
(note also that M∣G∣(A) ≅ A so [15, Remark 1.5] applies). Now, it follows from Lemma
5.1 that any two Rokhlin anomalous actions (α, u), (β, v) of G on an inductive limit of
one-dimensional NCCW complex satisfy (α, u) ≃Cu∼ (β, v). But any automorphism
of an inductive limit of one-dimensional NCCW complexes with trivial K1 groups that
is the identity under Cu∼ is approximately inner by [41, Theorem 1]. ∎
Remark 5.7 Note that, by [16, Theorem 5.2], the UHF-stability assumption in Theo-
rem 5.6 is immediate for the following subclasses:

(i) unital C∗-algebras that can be written as inductive limits of one-dimensional
NCCW-complexes;

(ii) simple C∗-algebras with trivial K0-groups that can be written as inductive limits
of one-dimensional NCCW-complexes;

(iii) C∗-algebras that can be written as inductive limits of punctured-tree algebras.

We have shown a classification of anomalous actions on some classes of simple C∗-
algebras. Such a classification also implies a classification of G-kernels, we illustrate it
by using Theorem 5.2, the same argument may also be used to rewrite the results of
Theorem 5.4, Theorem 5.3, and Corollary 5.5. As in the case of group actions, we say
two G-kernels α and β on a C∗-algebra A are K trivially conjugate if there exists an
automorphism θ ∈ Aut(A) with K i(θ) = idK i(A) and θαg θ−1 = βg for all g ∈ G.

Corollary 5.8 Let A be a unital Kirchberg algebra satisfying the UCT with A ≅ A⊗
M∣G∣∞ and α, β be G-kernels with the Rokhlin property on A. Then α and β are K trivially
conjugate if and only if ob(α) = ob(β) and K i(αg) = K i(βg) for all g ∈ G and i = 0, 1.

Proof The forward direction is clear. To show the reverse direction, pick lifts
(α, u) of α and (β, v) of β such that o(α, u) = o(β, v). As (α, u) and (β, v) satisfy
the hypothesis of Theorem 5.2, it follows that (α, u) ≃ (β, v) and so α and β are
conjugate. ∎

6 Applications

We start this section by giving an alternative construction of a (G , ω) action on the
UHF algebra M∣G∣∞ which is visibly compatible with a Bratteli diagram of M∣G∣∞ .
This action is an AF-action in the sense of [11] and [6, Definition 4.8] (see also the
discussion in [17, Section 6.1]). The existence of an AF ω-anomalous action on M∣G∣∞
follows from an adaptation of the Ocneanu compactness argument to the C∗-setting
[37]. We build it explicitly below. Before we do so, let us recall the definition of an AF
anomalous action.

Definition 6.1 Let A be a unital AF-C∗-algebra and (α, u) be a (G , ω)-action on A.
We say (α, u) is an AF anomalous action if there exists an inductive limit (An , φn)
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consisting of finite-dimensional C∗-algebras An with unital connecting maps φn and
(G , ω) actions (αn , un) on An such that:
(1) φn αn = αn+1φn , ∀n ∈ N,
(2) φn(un) = un+1 ,∀n ∈ N,
(3) (A, α, u) is cocycle conjugate to lim0→(An , φn , αn , un),
where lim0→(An , φn , αn , un) is the C∗-algebra lim0→(An , φn) with the canonical anoma-
lous action induced by the sequence (αn , un) (see [17, Section 6.1] for more details).

Proposition 6.1 Let G be a finite group and ω ∈ Z3(G ,T), then there exists an AF ω-
anomalous G action with the Rokhlin property on M∣G∣∞ . We denote this action by θω

G .

Proof In this proof, we will use the symbols g , h, k, x , y, x i , y i , s i for i ∈ N to
denote elements of the group G. Let An = C(G) ⊗⊗n−1

i=1 B(l 2(G)) for n ∈ N, where
by convention A1 = C(G). For f ∈ C(G), let M f ∈ B(l 2(G)) be the multiplication
operator by f. Consider the ∗-homomorphisms φn ∶ An → An+1 defined by φn( f ⊗
T) = 1 ⊗ M f ⊗ T for f ∈ C(G) and T ∈ ⊗n−1

i=1 B(l 2(G)).
The inductive system (An , φn) has an inductive limit (we write the limit by A)

which is known to be isomorphic to M∣G∣∞ . Indeed, the Bratelli diagram of this AF-
algebra is easily seen to be the complete bipartite graph on ∣G∣-vertices, it is common
knowledge that this coincides with the UHF-algebra of type ∣G∣∞ (see [9, Example
III.2.4] for the case ∣G∣ = 2). We construct a (G , ω) action on each finite-dimensional
algebra An such that the actions commute with the inclusion maps φn . This will induce
an AF ω-anomalous G action on M∣G∣∞ by the universal property of the inductive limit
(see [17, Section 6.1]).

To be precise, we construct a family of maps θn ∶ G → Aut(An) and un ∶ G × G →
U(An) such that:
(1) θn(g)θn(h) = Ad(un(g , h))θn(gh),
(2) ωg ,h ,k = θn(g)(un(h, k))un(g , hk)un(gh, k)∗un(g , h)∗,
(3) φn(un(g , h)) = un+1(g , h),
(4) φn θn(g) = θn+1(g)φn ,
for all n ∈ N. To build this, we will consider the group actions θ′n ∶ G → Aut(An)
defined by θ′n(g) = λG(g) ⊗⊗n−1

i=1 Ad(λG)g where λG is the left regular representa-
tion of G. Note that φn θ′n(g) = θ′n+1(g)φn . To take into account the anomaly, we will
tweak θ′n by suitable diagonal operators dn ∈ Aut(An) and ensuring that (13) and (13)
hold. To define dn , we start by introducing some notation. Let δk ∈ C(G) be the point
mass at k, i.e.,

δk(g) =
⎧⎪⎪⎨⎪⎪⎩

1, if g = k,
0, otherwise.

We now let
θn(g) = dn(g)θ′n(g)

with dn(g) defined inductively

d1(g) = idA1 ,
d2(g)(δk ⊗ ex1 , y1) = ωx−1

1 ,g ,g−1 k ωy−1
1 ,g ,g−1 k(δk ⊗ ex1 , y1),
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and

dn(g)(δk ⊗ ex1 , y1 ⊗ ⋅ ⋅ ⋅ ⊗ exn−1 , yn−1)
= ωx−1

n−1 ,g ,g−1 xn−2 ωx−1
n−3 ,g ,g−1 xn−2 ωy−1

n−1 ,g ,g−1 yn−2 ωy−1
n−3 ,g ,g−1 yn−2

(dn−2(g)(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ exn−2 , yn−2 ⊗ exn−1 , yn−1)

for all n > 2 with the convention that x0 = y0 = k. As we have defined dn(g) on a
spanning set of An , dn(g) extend to linear maps from An to itself. In fact, each dn(g)
is an endomorphism of An . First, it is clear that they preserve the ∗-operation. To
show the multiplicativity, it is sufficient to check on a spanning set. We show this by
induction. For the case n = 2, it is only nontrivial to check that

d2(g)(δk ⊗ ex1 , y1)d2(g)(δk ⊗ ey1 , y2) = d2(g)(δk ⊗ ex1 , y2).

The left-hand side is given by

d2(g)(δk ⊗ ex1 , y1)d2(g)(δk ⊗ ey1 , y2)
= ωx−1

1 ,g ,g−1 k ωy−1
1 ,g ,g−1 k ωy−1

1 ,g ,g−1 k ωy−1
2 ,g ,g−1 k(δk ⊗ ex1 , y2)

= ωx−1
1 ,g ,g−1 k ωy−1

2 ,g ,g−1 k(δk ⊗ ex1 , y2),

which coincides with the right-hand side. To show that dn(g) is multiplicative, for
n > 2, it suffices to show that

dn(g)(δk⊗ex1 , y1 ⊗ ⋅ ⋅ ⋅ ⊗ exn−1 , yn−1)dn(g)(δk ⊗ ey1 ,s1 ⊗ .... ⊗ eyn−1 ,sn−1)
= dn(g)(δk ⊗ ex1 ,s1 ⊗ .... ⊗ exn−1 ,sn−1).

This follows immediately from the induction hypothesis and a direct computation of
the left-hand side (as in the case for n = 2). Notice that each dn(g) fixes elements of
the form δk ⊗ ex1 ,x1 ⊗ ex2 ,x2 ⋅ ⋅ ⋅ ⊗ exn−1 , yn−1 .

To construct a (G , ω) action on the first stage A1, we let u1(g , h)(k) = ωk−1 ,g ,h .
That (θ1 , u1) defines a (G , ω) action on C(G) is a straightforward computation (this
is computed in [3, Section 4]). We proceed to extend this action on A1 to all of M∣G∣∞
through the inductive limit. Let un(g , h) = φ1,n(u1(g , h)) and θn(g) = dn(g)θ′n(g).
For the remaining part of the proof, we check that (θn , un) satisfy (13)–(13) for all
n ∈ N. We will repeatedly use the 3-cocycle formula during the calculations, instead of
commenting on this every time, we will instead color-code the parts of our equations
to which we apply the 3-cocycle formula.

We start by showing (13). First,

θn(g)θn(h) = dn(g)θ′n(g)dn(h)θ′n(h)
= dn(g)θ′n(g)dn(h)θ′n(g)−1θ′n(gh)
= dn(g)[g ⋅ dn(h)]θ′n(gh),

denoting g ⋅ dn(h) = θ′n(g)dn(h)θ′n(g)−1. It is clear that (13) holds for all n ∈ N if
and only if dn(g)[g ⋅ dn(h)]dn(gh)−1 = Ad(un(g , h)) on An for all n ∈ N. This holds
trivially for n = 1. For n = 2, it follows from the 3-cocycle formula that
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d2(g)[g ⋅ d2(h)]d2(gh)−1(δghk ⊗ ex1 , y1)
= d2(g)[g ⋅ d2(h)](δghk ⊗ ex1 , y1)ωx−1

1 ,gh ,k ωy−1
1 ,gh ,k

= d2(g)(δghk ⊗ ex1 , y1)ωx−1
1 ,gh ,k ωy−1

1 ,gh ,k ωx−1
1 g ,h ,k ωy−1

1 g ,h ,k

= (δghk ⊗ ex1 , y1)ωx−1
1 ,gh ,k ωx−1

1 g ,h ,k ωx−1
1 ,g ,hk ωy−1

1 ,g ,hk ωy−1
1 ,gh ,k ωy−1

1 g ,h ,k

= (δghk ⊗ ex1 , y1)ωg ,h ,k ωx−1
1 ,g ,h ωg ,h ,k ωy−1

1 ,g ,h

= Ad(φ1(u1(g , h))(δghk ⊗ ex1 , y1).

We now proceed with an inductive argument for arbitrary n. We assume that (13) holds
for n − 2, preforming a similar computation to the case n = 2:

dn(g)[g ⋅ dn(h)]dn(gh)−1(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ eghxn−2 ,ghyn−2 ⊗ exn−1 , yn−1)
= (Ad(un−2(g , h))((δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ eghxn−2 ,ghyn−2 ⊗ exn−1 , yn−1)
ωx−1

n−1 ,gh ,xn−2 ωx−1
n−1 g ,h ,xn−2 ωx−1

n−1 ,g ,hxn−2 ωx−1
n−3 ,gh ,xn−2 ωx−1

n−3 g ,h ,xn−2 ωx−1
n−3 ,g ,hxn−2

ωy−1
n−1 ,gh , yn−2 ωy−1

n−1 g ,h , yn−2 ωy−1
n−1 ,g ,hyn−2 ωy−1

n−3 ,gh , yn−2 ωy−1
n−3 g ,h , yn−2 ωy−1

n−3 ,g ,hyn−2

= (Ad(un−2(g , h))((δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ eghxn−2 ,ghyn−2 ⊗ exn−1 , yn−1)
ωg ,h ,xn−2 ωx−1

n−1 ,g ,h ωg ,h ,xn−2 ωx−1
n−3 ,g ,h ωg ,h , yn−2 ωy−1

n−1 ,g ,h ωg ,h , yn−2 ωy−1
n−3 ,g ,h

= (Ad(un−2(g , h))(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ eghxn−2 ,ghyn−2 ⊗ exn−1 , yn−1)
ωx−1

n−1 ,g ,h ωx−1
n−3 ,g ,h ωy−1

n−1 ,g ,h ωy−1
n−3 ,g ,h

= (δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−1 , yn−1)ωx−1
n−1 ,g ,h ωy−1

n−1 ,g ,h

= Ad(un(g , h))(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ eghxn−2 ,ghyn−2 ⊗ exn−1 , yn−1).

For (13), it suffices to show that φndn(g) = dn+1(g)φn . For n = 1,

d2(g)φ1(δk) = ∑
r∈G

d2(g)(δr ⊗ ek ,k)

= (1 ⊗ ek ,k)
= φ1d1(g)(δk)

as d1 is the identity map. The case n = 2 follows too as

d3(g)φ2(δk ⊗ ex , y) = ∑
r∈G

d3(g)(δr ⊗ ek ,k ⊗ ex , y)

= (1 ⊗ ek ,k ⊗ ex , y)ωx−1 ,g ,g−1 k ωy−1 ,g ,g−1 k

= φ2d2(g)(δk ⊗ ex , y).

Assuming that the case n − 2 holds, we now argue, by induction,

dn+1(g)φn(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−1 , yn−1)
= dn+1(g)(φn−2(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ exn−2 , yn−2 ⊗ exn−1 , yn−1)
= (dn−1(g)φn−2(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ exn−2 , yn−2 ⊗ exn−1 , yn−1)
ωx−1

n−1 ,g ,g−1 xn−2 ωx−1
n−3 ,g ,g−1 xn−2 ωy−1

n−1 ,g ,g−1 yn−2 ωy−1
n−3 ,g ,g−1 yn−2

= (φn−2dn−2(g)(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−3 , yn−3) ⊗ exn−2 , yn−2 ⊗ exn−1 , yn−1)
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ωx−1
n−1 ,g ,g−1 xn−2 ωx−1

n−3 ,g ,g−1 xn−2 ωy−1
n−1 ,g ,g−1 yn−2 ωy−1

n−3 ,g ,g−1 yn−2

= φndn(g)(δk ⊗ ex1 , y1 ⋅ ⋅ ⋅ ⊗ exn−1 , yn−1).

Condition (13) is immediate. It remains to show that (13) holds for arbitrary n. This
follows from (13) for the case n = 1 and from (13). For n ∈ N,

θn(g)(un(h, k))un(g , hk)un(gh, k)∗un(g , h)∗

= θn(g)(φ1,n(u1(h, k)))φ1,n(u1(g , hk))φ1,n(u1(gh, k)∗)φ1,n(u1(g , h)∗)
= φ1,n(θ1(g)(u1(h, k))u1(gh, k)u1(g , hk)∗u1(g , h)∗)
= ωg ,h ,k φ1,n(1A1)
= ωg ,h ,k .

This completes the construction of the AF anomalous action θω
G .

To show that θω
G has the Rokhlin property, we construct a family of Rokhlin

projections. The projections δg ⊗ idB(l 2(G))⊗n−1 ∈ Z(An) satisfy θn(g)(δh ⊗
idB(l 2(G))⊗n−1) = δgh ⊗ idB(l 2(G))⊗n−1 and also ∑g∈G δg ⊗ idB(l 2(G))⊗n−1 = idAn .
Therefore, the projections pg ∈ A∞ with the nth coordinate given by
φn ,∞(δg ⊗ idB(l 2(G))⊗n−1) for g ∈ G satisfy the conditions of Definition 2.3. ∎
Remark 6.2 In the case that ω = 1, the construction in Proposition 6.1 greatly simpli-
fies. Indeed, dn(g) is the identity automorphism and un(g , h) is the unit for all g , h ∈
G and n ∈ N. Therefore, θ1

G restricts to the group action θn = λG ⊗⊗n−1
i=0 Ad(λG)

on each An with λG the left regular representation. This action coincides with the
infinite tensor product action sG (see Section 4). To see this, consider the inductive
system (Bn , ϕn)with B2n−1 = An , B2n = ⊗n

i=0 B(l 2(G)) and ϕ2n−1( f ⊗ T) = M f ⊗ T ,
ϕ2n(S) = 1 ⊗ S for all n ∈ N , f ⊗ T ∈ An , and S ∈ B2n . The even terms of the inductive
system (B2n , ϕ2n+1 ○ ϕ2n) coincide with the inductive limit (⊗n

i=1 B(l 2(G)), M ↦
idB(l 2(G))⊗M). The odd terms (B2n−1 , ϕ2n ○ ϕ2n−1) coincide with the inductive sys-
tem (An , φn) from the proof of Proposition 6.1. This allows to interpolate between
(⊗n

i=1 B(l 2(G)), M ↦ idB(l 2(G))⊗M) and (An , φn). It is immediate that θG and sG
are conjugate. Moreover, it follows from Theorem 5.3 that θω

G is cocycle conjugate to
sω

G for any ω ∈ Z3(G ,T).
We end this paper by studying to what extent Rokhlin anomalous actions on AF-

algebras are AF-actions and vice versa. To do this, we will require results of [6].
In [6], the authors associate an invariant with any AF-action F, of a fusion category C,
on an AF-algebra A. Vaguely, this invariant consists of the K0-groups of all Q-system
extensions of A by F and all natural maps between these extensions. The authors also
show that any two AF-actions on AF-algebras A and B are equivalent if and only if their
invariants are isomorphic. As observed in [6, Section 5.1], if the acting category C is
torsion-free (see [1, Definition 3.7]), the invariant of [6] simplifies to just the module
structure of K0(A) under the action of the fusion ring of C. We apply this when the
acting category is Hilb(G , ω) and the action is induced by an anomalous action (α, u)
as explained in [13, Proposition 5.6]. The fusion ring of Hilb(G , ω) is Z[G], and the
module structure of K0(A) is given by K0(αg).
Corollary 6.3 Let G be a finite group and A a simple, unital AF-algebra such that
A ≅ A⊗ M∣G∣∞ . Let (α, u) be a (G , ω)-action on A such that K0(αg) = idA for all g ∈ G.
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If (α, u) has the Rokhlin property, then (α, u) is an AF-action. Moreover, if [ω∣H] ≠ 0
for any subgroup H < G, then the converse holds.

Proof If (α, u) is a (G , ω)-action with the Rokhlin property on an AF-algebra A,
then by Theorem 5.3 it is cocycle conjugate to the AF ω-anomalous G-action idA ⊗ θω

G
on A. Therefore, (α, u) is AF.

We now consider the converse statement. An AF ω-anomalous G action (α, u)
induces an AF-action of the fusion category Hilb(G , ω) in the sense of [6] (to see how
a (G , ω)-action induces a Hilb(G , ω) action, see [13, Proposition 5.6], that this is AF is
discussed [17, Remark 6.1.7]). By the hypothesis on ω, the fusion category Hilb(G , ω)
is torsion-free, so as K0(αg) = idA and K0(idA ⊗ θω

G) = idA, then [6, Theorem A]
yields that the AF ω-anomalous G actions induced by (α, u) and idA ⊗ θω

G are cocycle
conjugate. So (α, u) has the Rokhlin property. ∎
Remark 6.4 One may drop the hypothesis that A ≅ A⊗ M∣G∣∞ in Corollary 6.3 if one
instead assumes that the anomaly ω of (α, u) is such that [ω] has order ∣G∣. Indeed, it
follows from [17, Corollary 5.4.4] that in this case A will automatically absorb M∣G∣∞ .
Also, note that under this assumption on [ω], it is automatic that [ω∣H] ≠ 0 for any
subgroup H < G.

The behavior observed in the converse of Corollary 6.3 is quite different from the
behavior of group actions. It was already observed in [14] that there exist AF-actions
of Z2 on M2∞ which do not have the Rokhlin property.
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