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Introduction

We study here a class of ideals of a Cohen-Macaulay ring {R, n}
somewhat intermediate between complete intersections and general Cohen-
Macaulay ideals. Its definition, while a bit technical, rapidly leads to the
development of its elementary properties. Let I = (x, ---,x,) = (x) be
an ideal of R and denote by H,(x) the homology of the ordinary Koszul
complex K,(x) built on the sequence x. It often occurs that the depth
of the module H,, i > 0, increases with i (as usual, we set depth (0) = o).
We shall say that I satisfies sliding depth if
(SD) depth H(x) > dim(R) —n+1i, i>0.

This definition depends solely on the number of elements in the sequence
x. This property localizes (cf. [9]) and is an invariant of even linkage
(cf. [10)).

An extreme case of this property is given by a complete intersection.
A more general instance of it is that where all the modules H; are Cohen-
Macaulay, a situation that was dubbed strongly Cohen-Macaulay ideals
(cf. [11]).

These ideals have appeared earlier in two settings:

(i) The investigation of arithmetical properties of the Rees algebra

of I
S=21)=1I°,

and of the associated graded ring
G=gr(R)=@I /I

It was shown in [7], [8] and [16] that for ideals satisfying (SD) and
such that for each prime P containing I, height (P)=ht (I) > v(I,) =
minimum number of generators of the localization I,, both S and G are
Cohen-Macaulay. In addition, if R is a Gorenstein ring, G will be Goren-
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stein precisely when I is strongly Cohen-Macaulay ([9, (6.5))).

(i1) The other context is that of a generalization and corrections by
Huneke ([11]) of a result of Artin-Nagata on residual Cohen-Macaulayness
([1]), i.e. conditions under which for a subideal J — I, J:I is Cohen-
Macaulay, (J:I) N I=¢J and ht((J:I) + I) > ht (I). It connects with
the notion of linkage—when < is a complete intersection—by requiring
that I be a strongly Cohen-Macaulay ideal. In turn our extension shows
that the assertions of the theorem are intertwined with the sliding depth
condition.

Our goals here are the following:

(i) In Section 1 we demark more precisely the distinction between
strongly Cohen-Macaulay ideals and ideals with (SD). This is more con-
veniently done if I is generated by a d-sequence——for ideals with (SD) this
is essentially equivalent to requiring that v(I,) < ht (P), for prime ideals
P > I If one further assumes that R is Gorenstein, and v(I,) < ht(P) — 1
for primes with ht (P) > ht (I) + 2, then I is strongly Cohen-Macaulay.
This was proved by Huneke ([11]) using the duality of [6]. We reinforce
this result by replacing the last inequality by v(I,) < ht(P). It still
follows from [6] but depends on some quirks of the Koszul complex. The
next case—i.e. v(I,) < ht (P)—is however critical. What precisely over-

comes it is not well-known. Some conditions we impose involve the
conormal module I/I%

(ii) In Section 2 we discuss examples of Cohen-Macaulay prime
ideals of codimension three in a regular local ring R, that have (SD), but
are not strongly Cohen-Macaulay. It will rely on properties of the divisor
class group of R/I. In particular we shall see that if I is the ideal
generated by the n — 1 sized minors of a generic, symmetric, n X n matrix
then I is syzygetic (cf. [7]). For n = 3 we have the desired example. Its
Rees algebra Z(I) is even integrally closed.

We also record an extension of a result of Serre asserting that
Gorenstein ideals of codimension two are complete intersections. More
generally, one can show that if I is a Cohen-Macaulay of codimension two,
then the canonical module of R/I cannot have 2-torsion.

(iii)) In Section 3 the generalization of Huneke’s theorem to ideals
with sliding depth is given. Some of its elements may be used to con-

struct ideals with sliding depth of a fixed height and various projective
dimensions.
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§1. Strongly Cohen-Macaulay ideals

The rings considered throughout will be Noetherian, commutative
with an identity. For notation, terminology and basic results—especially
those dealing with Koszul complexes and Cohen-Macaulay rings—we shall
use [13].

It is convenient to rephrase the condition (SD) for an ideal I in terms
of the depths of the cycles and boundaries of the associated Koszul com-
plex. Assume that R is a Cohen-Macaulay local ring of dimension d and
that I is generated by the sequence x = {x,, ---,x,}; put g = ht(l).
Denote by Z, and B, the modules of cycles and boundaries of the associated
Koszul complex K,. If one uses the defining exact sequences

0—2Z,,,—> K,,,—> B,—>0
0—B,—Z,—>H,—>0
the depth conditions (SD) and (SCM = strongly Cohen-Macaulay) translate
as follows:
in{d, d — -+ 1}, for (SD
depth (Z) > {mT“{ nbitly, for (5D)
min{d, d — g + 2}, for (SCM).
We look at the case i = n — g to examine the role of duality. From
now on we assume that R is a Gorenstein ring.

ProrositioN 1.1. Let R be a Gorenstein local ring of dimension d and

I be a Cohen-Macaulay ideal of height g generated by n elements. Then
depth (Z,_,) > min{d,d — g + 2}.

Proof. If g=0, Z, = 0:1 = Hom, (R/I, R) is Cohen-Macaulay since
R/I is a Cohen-Macaulay module and R is Gorenstein.
If g = 1, the exact sequence

0—B, ,—>Z, ,—>H, ,—>0
yields (*E denotes the R-dual Hom (E, R)):
0—>Z¥ —> Bf, —> Ext'(H,_,, R)—> Ext'(Z,_,, R)——>0

Since B¥,= R and Ext'(H,_,, R) = R/I by duality, we get an exact
sequence
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0—> R/Z*,— s RIT—> Ext' (Z,_, R) —>0.

Since Z,_, is a second syzygy module, the last module has support at
primes of height greater than two. In the identification B}, = R, ¢
maps ZF,; maps exactly onto I: To see this it suffices to localize at any
prime P (necessarily of height 1) associated to either Z}, or I. Thus ¢
is essentially the multiplication of R/I into itself via a regular element
of the Cohen-Macaulay ring R/I. By the remark above on the support
of Ext'(Z,_,, R), ¢ is an isomorphism. '
If g > 1, consider the sequence

0—B, ,—Z%Z, ,—>H, ,—>0.

Here B,_, has depthd — g+ 1 while H,_ , has depthd — g being the
canonical module of R/I. The exact sequence says that depth(Z,_,) >
d — g. We now test the vanishing of the modules Ext‘(Z,_., R) for i =
g, g — 1. From above we obtain the homology sequence

Ext*-'(H,_,, R) —> Ext*"'(Z,_,, R) —> Ext*"' (B,_,, R) —>

Ext* (H,_,, R) —> Extf (Z,_,, R) —> Ext* (B, _,, R).
Here Ext?~'(B,_,, R) = R/I from the exactness of the tail of the Koszul
complex. On the other hand Ext?(B,_,, R) = Ext*~'(H,_,, R) = 0, while
Ext¢ (H,_,, R) = R/I since R is a Gorenstein ring. Thus we have the
exact sequence ;

0—> Ext*' (Z, ,, R)—> R/I—*> RII — > Ext*(Z,_,, B) —>0.

Localizing at primes of height g and g + 1, we get that ¢ is an isomorphism
since Z,_, is a second syzygy module and the desired assertion follows. [

CoroLLARY 1.2 (see [2]). Let I be a Cohen-Macaulay ideal of height g
that can be generated by n = g + 2 elements. Then I is strongly Cohen-

Macaulay.

Remark. If n = g 4+ 3 even the condition (SD) may fail to hold; see
Section 2.

CoroLLARY 1.3. Let I be an ideal satisfying (SD). If R|I satisfies
Serre’s condition S,, then I is Cohen-Macaulay.

Proof. (SD) implies that the canonical module of R/I, H,_,, is Cohen-
Macaulay. But the argument above shows that R/I = Ext¢ (H,_,, R) given
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the condition S,. 0
The main result of this section is the following criterion for (SCM).

THEOREM 1.4. Let R be a Gorenstein local ring and let I be a Cohen-
Macaulay ideal. If I satisfies (SD) and v(I,) < max {ht(I), ht (P) — 1} for
each prime ideal P D I, then I is strongly Cohen-Macaulay.

Proof. Since (SD) and the other conditions localize (cf. [9]), we may
assume that I is (SCM) on the punctured spectrum of R. By adding a set
of indeterminates to R and to I, we may assume the height g of I is larger
than n — g + 1, n = minimum number of generators of the new ideal.
This clearly leaves the Koszul homology and (SD) unchanged. The net
effect however is that we have a Koszul complex K, whose acyclic tail is
longer than the remainder of the complex. ‘

(1) In the conditions above, H,_,_; is the H,_,-dual of H; [11]; to
use the theorem of duality of [6]—see also [11]—one has to verify that the
left hand side of the inequality

depth () + depth(H, , ) >d —n+ i)+ (d—n+n—g—i
—(d—g) +d—n)

exceeds (d — g) + 1. If, therefore, n < d — 1, it will follow that each H,
is Cohen-Macaulay.

(ii) To set the tone of the argument in case n = d — 1, we examine
H, Here depth(H,_,_,) >d — g — 1 and depth (H,) > 2; we will strengthen
the first inequality. Suppose it cannot be done and consider the exact
sequence

0—8B,,,—Z, ,,—H, ., ,—>0.

By (1.1) depth(B,_,_;) >d — g + 1 so that if depth(H, ,.)=d —g—1
then depth (Z,_,.) = d — g — 1 as well. It will follow that depth (B,_,_.)
=d—g—2 A similar sequence for i = n — g — 2, again by duality,
says that depth(H,_,_,) =d — g or d — g — 2. In either case we get that
depth(Z,_,_,) = d — g — 2. We repeat this argument until we get

depth (B) = depth (B, , (n.yr) =d—g—(n—g—1)=d—n+1=2.

Since depth(Z)) =d — g + 2> 2, we get a contradiction.
(iii) To set up the induction routine, suppose we have shown that H,
and H,_,_, are Cohen-Macaulay; we show that depth(Z,_,.,) >d —g + 2.
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The argument is similar to (1.1). We have the exact homology sequence

0—> Exts"'(Z,_,_«, R)—> Ext*'(B,_,_, R) —> Ext*(H,_,_, R)
—> Ext*(Z,_, ., R)—> 0,
since depth(B,_, ;) >d — g+ 1, by induction. But we also have the
isomorphisms Ext#~'(B,_,_ ., R) = Ext**(Z,_,_;.., B) = Ext*"*(B,_,_;.1, R)
= ... = Ext¢~*'(B,_,, R). (This is possible by our ‘increase’ in g.) This
last module however, from the self-duality in the Koszul complex, is
nothing but H,. Since Ext¢(H,_,_,, R) is also a Cohen-Macaulay module,
as in (1.1) we conclude that depth(Z,_,_,) >d — g+ 2. 0

It is clear that one only needs this strengthened (SD) to hold in the
lower half range of i. In this regard we have

CoRrOLLARY 1.5. Let I be a Cohen-Macaulay ideal with (SD). If I is
a syzygetic ideal and I[I* is a torsion-free R/I-module then H, is a Cohen-
Macaulay module.

Proof. The syzygetic condition on I (cf. [15]) simply means that the
natural sequence
H, —— (R/)* —> I[I* —>0
is exact on the left. In such case H, satisfies S,, and the argument above

goes through. [

Remark. If R is not a Gorenstein ring (1.5) does not always hold.

§2. Codimension three

We exhibit examples of Cohen-Macaulay ideals of height 3 in regular
local rings, generated by d-sequences, satisfying (SD) but not (SCM).
Since it 1s known that ideals in the linkage class of a complete intersec-
tion are (SCM) [10], we look at non-Gorenstein ideals. For an ideal I
with a presentation

0—>Z—> R —>1T—>0
one has the following exact sequences

0 —> Tor,(, R/I)—> Z|IZ —> (R/I)" —> I[I* —> 0
and
AT —> Tor, (I, R[I) —> o(I) —> 0
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where 6(I) is defined by the associated exact sequence

0> 6(I) —> H, —> (R/I) —> I/I* —> 0,

cf. [15]. As remarked, I is called syzygetic if 6(I) = 0. If 2 is invertible
in R, we can further add that Tor, (I, R/I) = A1 ® &(I).

THEOREM 2.1. Let R be a regular local ring of dimension at least 6
with 2R = R and let I be a Cohen-Macaulay ideal of height 3. Denote by
W the canonical module of R/I and let W* = Homy, (W, R/I). Assume
that I is syzygetic on the punctured spectrum of R. If W* has depth at
least 3, then I is syzygetic.

Proof. Let
0—>R YR SR T 50

be a minimal resolution of I. By assumption 6(I) is a module of finite
length so that we only have to show that Tor, (I, R/I) has depth at least
1. Denote by Z the first-order syzygies of I. We have the exact sequence

0—> Tor, I, RIT)—> (R YEEL (RiTy» —> Z/1Z—> 0.

On the other hand, W = coker (y*) = coker (+*®(R/I)), so that Tor,(, R/I)
is identified to W* (see [4, supplement] for general comparisons between
these two modules). It follows that Z/IZ—and Tor, (I, R/I) along with it—
has the required depth. |

For the next two corollaries the hypothesis 2R = R is in force.

CoRrOLLARY 2.2. Let I be the ideal generated by the (n—1)-sized (n>>1)
minors of a generic, symmetric n X n matrix. Then I is syzygetic.

Proof. The assumption is that R = k[[x,;]], where & = field and x,,
1< i,j < n,are indeterminates and the entries of a symmetric matrix = ¢.
The hypothesis on the punctured spectrum follows by induction and the
discussion in [12] of such ideals. On the other hand, Goto [3] proved that
R/I is integrally closed with divisor class group Z/(2), generated by the
class of W. O

Remark. Let I be the ideal generated by the 2 X 2 minors of a
generic 2 X 4 matrix. In view of the Pliicker relations, I is not syzygetic.
Since I is a complete intersection on the punctured spectrum of the corre-
sponding ring, W* must have depth 2.
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COROLLARY 2.3. Let I be the ideal generated by the 2 X 2 minors of a
generic, symmetric 3 X 3 matrix ¢.. Then:

(@) I is generated by a d-sequence, satisfies (SD) but not (SCM).

(b)  The Rees algebra of I, Z(I), is an integrally closed, Cohen-
Macaulay domain. ‘ ‘

(c) The associated graded ring of I, gr;(R), is a non-reduced, non-
Gorenstein, Cohen-Macaulay ring.

Proof. Let d be the determinant of the matrix ¢. It is easily verified
that dx;; ¢ I* for each entry of ¢; since d¢ I%, the class of d in I/I* is
annihilated by the maximal ideal of R. Since I is syzygetic by (2.2),
depth (H)) = 1. Furthermore, as d*e I*, gr,(R) is non-reduced.

(a) We compute the depths of the modules Z, i = 1,2 and 3, of the
Koszul complex on the canonical 6 generators of I. Since depth (H) = 1,
depth (Z,) = 1 + depth(B,) = 3. On the other hand, depth (Z,) = 5 by (1.1),
so that I satisfies (SD) but not (SCM).- Moreover, since I is also a com-
plete intersection on the punctured spectrum of R, the approximation
complex of I is acyclic and thus I is generated by a d-sequence (cf. [8]).

(b) and (c) follow now from [9, (6.5)], for the Cohen-Macaulay asser-
tions. That Z(I) is integrally closed can be verified either by a direct
application of the Jacobian criterion—%(I) can be presented as a quotient
R[T,]/J, with J derived from the explicit resolution of I—or more rapidly
in the following manner. Since #Z(I) is Cohen-Macaulay, by Serre’s nor-
mality criterion it suffices to check the localizations at its height 1 primes.
Let P be such a prime and p = PN R. If p = m = maximal ideal of R
there is no difficulty since I, is a complete intersection. If p =m, P =
mR(I). Let @ be the corresponding prime of R[T)] — i.e. @ = mR[T,,].
Looking at the image of J in the vector space (Q/€"), one easily gets that
it has the desired rank 5. O

The crucial hypothesis of (2.2) never occurs in codimension two.

THEOREM 2.4. Let R be a regular local ring and let I be a Cohen-
Macaulay ideal of height 2 which is generically a complete intersection. If
the class of W in the divisor class monoid of R|I is 2-torsion, then I is a
complete intersection.

Proof. Let

0— R*! R I 0
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be a resolution of I. Tensoring over with R/I we obtain the exact
sequence

0 —>» Tor,(I, R/[I)—> (R/I)"'—> H,—>0,

since I is syzygetic (cf. [15]). As in the proof of (2.1), Tor, (I, R/I) = W*;
if the class of W is 2-torsion, we have the exact sequence

0—> W—us (R/D"'—>H, —>0.

Since H, is Cohen-Macaulay ([2]) and W is the canonical module of R/I,
this sequence will split—as it does so after reduction modulo a maximal
regular sequence of R/I. Therefore R/I will be a Gorenstein ring, and
hence a complete intersection by Serre’s criterion ([14]). O

§3. Residually Cohen-Macaulay ideals

We prove here .the naturality of sliding depth in a theorem of Huneke
([11]) on residual intersections. We also relate (SD) to various notions
of syzygetic sequences (cf. [7]).

In this section (R, nt) is a Cohen-Macaulay local ring of dimension d
with infinite residue field.

DEFINITION 3.1. Let I be an ideal of R and let x ={x,---,%,) be a
sequence of elements of I.satisfying: ‘

(1) ht((x):I) >s>g=ht(I).

(2) For all primes P D I will ht (P) < s, one has

(i) @,=1,;

(i) u((x,) < ht(P).
I is said to be residually Cohen-Macaulay if for any such sequence, one has:

(a) R/(x): Iis Cohen-Macaulay of dimension d — s;

(b) ((x: D) NI=(x);

(¢) ht({(x): ) > ht((x): I).

Remark 3.2. Let x = {x,, ---, x,} I be a sequence satisfying (1) and
(2) above. Then:

(a) ht(x) = ht(I);

(b) v((x),) < ht(P) for all primes P D (x).

Proof. (a): Let P be a minimal prime of (x). Suppose I P; then
((x): I), = (x),- It will follow from (1) that ht (P) > s > ht(I).
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(b): If ht (P) > s, the assertion is trivial; if ht(P)<s, the proof of
(a) shows that P D I and (2) applies.

THEOREM 3.3. If I satisfies the sliding depth condition, then I is re-
sidually Cohen-Macaulay.

THEOREM 3.4. Suppose v(I) < ht(P) for all primes PO 1. The follow-
ing conditions are equivalent:
(a) I satisfies the sliding depth condition.
(b) I is residually Cohen-Macaulay.
(¢) I can be generated by a d-sequence {x,, ---, x,} satisfying: (x,,
ooy X%y, -, x) is @ Cohen-Macaulay module of dimension d — i, for
i=0.---,n—1

Remark. The ideals occurring in the filtration of (3.4c) have the fol-
lowing homological properties. Assume that R is a regular local ring
and that I is a Cohen-Macaulay ideal of height g. Consider the sequences

0—I,—1I,,—Q,—>0

where I, = (x;, - -+, x,). We claim that the projective dimension of I, =
it — 1 for each i < n. Suppose one inequality holds; pick j largest with
pd(I;) <j—1. Note that j<n —1 since I=1, is assumed Cohen-
Macaulay and @,_, has projective dimension n — 1. Localize R at an
associated prime of @;; this implies that each @,., = 0 for >0, and thus
I,,,= ... =1, Consider the (localized) sequence

0—>I,—>1I,,,—> Q;—>0;

since pd(Q,) = j and—now—pd (I;,;) =0 or g — 1, we conclude pd(Il)) =
J — 1, which is a contradiction. O

The proofs of (3.3) and (3.4) require some technical lemmata on slid-

ing depth.
LEmmA 3.5. Let {x, ---, x,} be a regular sequence in I. Let *’'”
denote the canonical epimorphism R—R/(x, ---,x,). I satisfies (SD) if

and only if I’ satisfies (SD) (in R).

Proof. Complete the sequence to a generating set x = {x,, - - -, x,} of
I. The condition follows from the fact that dim(R’) = d — k, and the iso-
morphism (see [13]):
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Hx, -, %,; R) = H(x4,,, -+, %33 R). |
LemMA 3.6. Suppose I:£0, and I, = 0 for all minimal primes P DO I.
Then
(a O:DNI=0;
(d) ht(©0:I)+ I)=1.
Moreover, if I satisfies (SD), then so does I*, and R/0: I is Cohen-Macaulay.
(Here *“ *” denotes the canonical epimorphism R—R/(0: I).)

Proof. (a) and (b) follow directly from the Abhyankar-Hartshorne
lemma ([5]).

To prove the second assertion of the lemma, we use the exact
sequences

0-)Li-—>Hi(xla sy Xy R)_—)Hl(xik’ ""x:f;R*)——_)O

of [11], where L, is a direct sum of copies of 0: I.
If I satisfies (SD), then depth(0: I = Z,) = d. From the sequences
we have

depth Hy(x¥, ---, x¥;R) >d —n+1i for i<n,
while by (b) ht (I*) = 1, and hence H, (x}, ---, x}; R*) = 0.

To see that R/0: I is Cohen-Macaulay, note that R/0: I = B,_,, where
n = v(I). The assertion then follows from the exact sequence

0 >B,_, >Z, , >H, _, >0

and the fact that Z,_, is Cohen-Macaulay, cf. Section 1. d

LEmMMA 3.7. Suppose I is a generated by a proper sequence x =
{x), «+-, x,} (cf. [7]). The following conditions are equivalent:

(a) I satisfies (SD).

(b) depthR/(x), ---,x)>d— 1, fori=20,---,n.

(¢) depth(x,, -, 2. )/(xy, -+, x)>d—1i, fori=0,---,n—1

Proof. Since x is a proper sequence, we have exact sequences
0—> Hy(xy, - -+, x]) —> H(x,, - -, xj+2) —> H, (x,, -, xj) —>0

for all i>1. If follows by descending induction that if x satisfies (SD),
then depth H,(x, ---,x)>d —i+1 for i=1, ..., n. It is also clear
that, conversely, this diagonal condition will imply that depth Hy(x, - --,
x,)>d—1i+1for i>1 We shall use this remark further in the proof.
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Denote M, = ((x,, - -+, x): % )/(%x;, -+, %) and @ = (x., - -+, xi)/(x,,
..+, x). We have exact sequences:

(1) 0—> Hy(x,, -, x)—> H(x,, -+, %) —> M, —>0
(2) 0—> M,—> R/(x), ---,x)—>Q,—> 0

and

(3) 0—> @ —> R/(x,, - -+, x)—> R/(x,, -+, %:::) —> 0.

(b) = (c): Follows from the exact sequence (3).

(c) = (a): Using the exact sequences (1), (2), (3) and the earlier re-
mark the assertion follows by induction on i.

(a) = (b): We show by induction on i that depth R/(x,, - - -, x,_;) > d —
n 4+ i. For i = 0 this is our assumption. Suppose the assertion has been
proved for j = n — i < n, and assume that

depth R/(x), -- -, %;_) =k <d—j+ 1.
Now by (1) we have depth M;_, >d — j + 1; hence the map
a: Ext*(R/m, R/(x,, - - -, x,_,)) —> Ext*(R/m, Q,_,)
induced by (2) is injective. On the other hand (3) gives rise to the
mapping
B: Ext*(R/m, @;_,) —> Ext* (R/m, R/(x,, - - -, x;_,))
that is injective as well. It follows that the composite pa is injective.

But this is a contradiction since fa is induced by multiplication by x,,
and is thus the null mapping. 0

Proof of (3.3): Suppose I satisfies (SD), ht(I) = g and {x, ---, x,},
s > q, is a sequence satisfying (1) and (2) of (38.1). All assertions depend
solely on the ideal (x,, - - -, x,); we may therefore switch to a different set
of generators. We use the general position argument of [1] (see [11]) to
obtain a system of generators {x,, ---, x,} such that for all primes PO I
with g < ht(P) = k < s we have

(*) (xh"'!xs)p:(xu"';xk)p

(see Remark (3.2b)).
We now proceed by induction on s. Let s =g. Since by (3.2a)
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ht (x,, ---,x,) = ht (I) = g, it follows that {x,, ---,x,} is a regular se-
quence. Denote by “’” the epimorphism R—R/(x,, ---, x,). According to
(8.5), I’ satisfies (SD) and therefore R’/(0: I') is Cohen-Macaulay of di-
mension d — g (cf. 3.6). But R/(x,, ---, x,): I = R'/(0: I'), and hence

condition (a) in (3.1) is realized. For the conditions (b) and (c), we have
by (8.6) that (0: 1) N I’ =0 and ht((0: I') + I’) > 0, which translate as
desired.

We now assume that s > g.

1. Case g > 0: This is immediate from (x) and the reduction to the
ring R’. I’ and {x}, - - -, x}} satisfy all the hypotheses of the theorem. By
induction the statements (a), (b) and (c) of (3.1) hold then and it is easily
lifted to R.

2. Case g = 0: Let “*” denote the canonical epimorphism R —R/0: L.
By (3.6) R* is Cohen-Macaulay of dimension d, I* and {x}, ---, x}}
satisfy (1) of (3.1). As for (2), we only have to check that ((x}, - - -, x¥):I*)
= ((x;, - - -, x,): )*. The inclusion O is obvious. Let a* be an element
of (x¥, ---,x¥): I*; then alcC (x,---,x,)+0:1 For x in I we can
therefore write ax =y + 2z, ye(x, ---,%x,), 2€0: I. It follows that z =
ax —yliesin I N 0: I = 0, by (3.6). Furthermore we now have ht(x¥,. - -, x¥)
= ht (I*) > 0 and I* satisfies (SD); we are then back in case 1. Therefore
{x¥, -+, x¥} and I* satisfy (a), (b) and (c) of (3.1); again it is easy to lift
back to R. O

Proof of (3.4): (a)=(b) is already proved more generally in (3.3).
(b)=>(c): Since v(I,) < ht(P) for all primes P D I, we may choose

generators {x,, ---, x,} of I such that
(1) (xy, -+, x)p = Ip, for all PO I, ht(P) < s, and
(ii) ht ((xh Tty xs): I) 2 S.

Since I is residually Cohen-Macaulay, we then have that for s > g =
ht (1), (a), (b) and (c) of (3.1) hold.

It is clear that {x,, ---, x,} is a regular sequence. Next we show that
X,,, is not a zero-divisor on R/(x,, ---,x,): I for g < s < n. It will then
follow that (x;, ---,x): I = (x,, ---, x,): x,,,. Together with condition (b)
this will imply that {x,, ---, x,} is a d-sequence. ,

Denote by “’” the canonical epimorphism R—R/(x, ---,x,): I (a)
and (c) imply the I’ contains a non-zero divisor z. Suppose x/,, is a zero
divisor. Let ye(x/,): I’; then zye (x],,). This shows that (x/,,): I’ con-
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sists of zero-divisors. Since R’ is Cohen-Macaulay, this implies that
ht ((x}.,): I’) = 0, contradicting (a). Since (x;, ---, x,,)/(x}, -+ -, x,) = R/
(%, -+, x); %, = R/(x,, ---, x,): I, the implication is proved.

(c)=>(a): Apply (3.7). a
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