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We investigate the dynamics of an oscillatory boundary layer developing over a bed of
collisional and freely evolving sediment grains. We perform Euler–Lagrange simulations
at Reynolds numbers Reδ = 200, 400 and 800, density ratio ρp/ρf = 2.65, Galileo number
Ga = 51.9, maximum Shields numbers from 5.60 × 10−2 to 2.43 × 10−1, based on smooth
wall configuration, and Keulegan–Carpenter number from 134.5 to 538.0. We show that
the dynamics of the oscillatory boundary layer and sediment bed are strongly coupled
due to two mechanisms: (i) bed permeability, which leads to flow penetration deep inside
the sediment layer, a slip velocity at the bed–fluid interface, and the expansion of the
boundary layer, and (ii) particle motion, which leads to rolling-grain ripples at Reδ = 400
and Reδ = 800. While at Reδ = 200 the sediment bed remains static during the entire cycle,
the permeability of the bed–fluid interface causes a thickening of the boundary layer. With
increasing Reδ , the particles become mobile, which leads to rolling-grain ripples at Reδ =
400 and suspended sediment at Reδ = 800. Due to their feedback force on the fluid, the
mobile sediment particles cause greater velocity fluctuations in the fluid. Flow penetration
causes a progressive alteration of the fluid velocity gradient near the bed interface, which
reduces the Shields number based upon bed shear stress.

Key words: boundary layer structure, sediment transport, particle/fluid flows

1. Introduction
In shallow areas of the ocean, the seafloor may be subject to large oscillating pressure
gradients and strong shear forces. This causes sediment to become suspended and
transported to new locations, where it is deposited as the shear force oscillates. A model
flow often used to investigate this process is the oscillatory boundary layer (OBL) problem.
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Stokes (1855) was amongst the first to address this problem, specifically in the limit where
viscous effects dominate and where the bottom surface is represented as a smooth flat
wall. Under these assumptions, Stokes (1855) derived analytical solutions that show the
establishment of a boundary layer with characteristic thickness δ = √

2ν/ω, where ν is
the fluid kinematic viscosity, and ω is the angular frequency of the oscillations. Due to
the assumption of dominating viscous effects, these solutions apply only in the limit of
very small Reynolds numbers Reδ = U0δ/ν, where U0 is the velocity amplitude of the
oscillations. Later, many researchers investigated the dynamics of OBLs over smooth
and rough walls at larger Reynolds numbers, including when the Reynolds number is
sufficiently high for turbulence to emerge (Hino, Sawamoto & Takasu 1976; Akhavan et al.
1991b; Sarpkaya 1993; Vittori & Verzicco 1998; Costamagna, Vittori & Blondeaux 2003;
Salon, Armenio & Crise 2007; Carstensen et al. 2010, 2012; Pedocchi, Cantero & García
2011; Ozdemir, Hsu & Balachandar 2014; Ghodke & Apte 2016, 2018; Mazzuoli et al.
2016, 2020; Mazzuoli & Vittori 2019; Vittori et al. 2020; Fytanidis, García & Fischer
2021). However, it is unclear whether these results are applicable to seafloors. Unlike
the previously studied configurations with impermeable and fixed smooth or rough walls,
seafloors are made of sediment particles that together form a porous bed. Depending on
the details of the flow over it, the bed may be static, with or without bedforms, and may
even evolve dynamically as sediment particles saltate or become suspended by the flow
(Finn, Li & Apte 2016). In this paper, we investigate how the dynamics of an OBL couple
with those of a bottom collisional and freely evolving sediment bed at increasingly large
Reynolds numbers.

There has been significant effort devoted to the characterisation of the boundary layer
that develops over a smooth or rough wall under the action of an oscillatory forcing.
Depending on the Reynolds number Reδ , different regimes have been identified (as
detailed in Akhavan et al. 1991a; Vittori & Verzicco 1998; Pedocchi et al. 2011; Ozdemir
et al. 2014; Fytanidis et al. 2021). To summarise, an OBL developing over an impermeable
wall may exhibit four different regimes. The laminar regime occurs in smooth, rough and
wavy wall OBLs at Reδ � 85. In this regime, the flow is laminar throughout the oscillation
cycle (Blondeaux & Seminara 1979; Akhavan et al. 1991a; Vittori & Verzicco 1998),
and is well described by the analytical solutions of Stokes (1855). For 85 � Reδ � 550,
the flow is in the disturbed laminar regime (Hino et al. 1976; Jensen, Sumer & Fredsøe
1989). The latter is characterised by the appearance of small-amplitude perturbations
superimposed upon the Stokes flow (Vittori & Verzicco 1998). Fytanidis et al. (2021)
found that the Reynolds number thresholds for this regime depend strongly on background
disturbances. For 550 � Reδ � 3460, the flow enters the intermittent turbulent regime,
and is characterised by sudden turbulence eruption during the decelerating portion of the
oscillatory period before relaminarising again. Finally, the turbulent regime occurs for
Reδ � 3460. In this regime, Jensen et al. (1989) show that the OBL presents sustained
velocity fluctuations and a logarithmic layer for at least 90 % of the cycle.

Note that with a bottom rough wall, the Reynolds number thresholds between the
different regimes may vary considerably, as the flow characteristics depend on additional
roughness parameters, such as the Keulegan–Carpenter number K C = U0/(ωdp), where
dp represents the roughness size. Jensen et al. (1989) showed that disturbances caused
by fixed sandpaper roughness lead to a thicker boundary layer and increased turbulence
intensity. Similarly, Xiong et al. (2020) found that a flow disturbance created by a wall-
mounted obstacle leads to earlier transition to turbulence, thereby lowering the threshold
Reδ compared to that found for a smooth wall OBL. Additional studies of roughness effects
can be found in Ghodke & Apte (2016, 2018) and Mazzuoli & Vittori (2019).
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Permeability may also have a significant effect on the structure of an OBL developing
over a particle bed. Conley & Inman (1994) performed experiments with a ventilated OBL,
i.e. an OBL with periodic transpiration over a permeable wall. They found that the wall
shear stress decreases during suction and increases during injection. For a permeable wall,
the no-slip condition may no longer hold, as observed by Liu, Davis & Downing (1996) and
Breugem, Boersma & Uittenbogaard (2006). By comparing simulations of an OBL with
experimental data, Meza-Valle & Pujara (2022) showed that a mixed boundary condition
at the surface best captures the flow over a permeable wall. A permeable bed allows flow
penetration, which in turn creates a Kelvin–Helmholtz instability and an inflection point in
the fluid velocity within the boundary layer (Sparrow et al. 2012; Voermans, Ghisalberti &
Ivey 2017). All these modifications caused by the bed permeability make it difficult to
estimate the bed shear stress beforehand (Yuan & Madsen 2014).

The studies discussed thus far considered fixed porous beds. In the case of mobile
beds, particle transport may further alter the bed–fluid interface. Particle motion leads
to the emergence of new regimes, as discussed by Finn & Li (2016), who proposed a
regime map for sediment–turbulent interactions. In the no-motion regime, the bed remains
stationary and acts as previously described. In the bedform regime, ripples emerge in the
particle bed as particles saltate over the surface. The study of Mazzuoli, Kidanemariam &
Uhlmann (2019), by means of particle-resolved direct numerical simulations (PR-DNS),
illustrates this regime. The authors showed the emergence of rolling-grain ripples in an
OBL developing over a sediment bed at Reδ ∼ 100, density ratio ρp/ρf ∼ 2.5, and Galileo
number Ga ∼ 10. The latter represents the relative effect of gravitational and viscous
forces exerted on sediment grains. An earlier study showed that ripples emerge from the
interaction between particle rows and recirculation zones in the OBL (Mazzuoli et al.
2016). In the sheet flow regime, the bed–fluid interface recedes due to the formation of
a layer of suspended particles (Hsu, Jenkins & Liu 2004; O’Donoghue & Wright 2004).
Mazzuoli et al. (2020) showed that the eruption of turbulence plays a role in the sediment
resuspension. Further, at relatively low values of the Shields number, sediment transport
may depend on both Shields number and flow acceleration.

Several computational methods can be leveraged to study the dynamics of an OBL
over a sediment bed. The PR-DNS, in which the boundary layer around each sediment
grain is fully resolved, provides the highest fidelity since it requires little to no modelling
(Uhlmann 2005; Apte, Martin & Patankar 2009; Breugem 2012; Kempe & Fröhlich 2012;
Kasbaoui & Herrmann 2025). However, this results in very high computational cost, as
seen from the PR-DNS of Mazzuoli et al. (2019). While using smaller computational
domains and shorter integration times may reduce computational cost, it also introduces
numerical artefacts. For example, the domain considered in the PR-DNS of Mazzuoli et al.
(2020) was too small to allow the natural formation of ripples in the sediment bed. Even
with this restrictive domain size, the high cost of the PR-DNS of Mazzuoli et al. (2020)
limited the integration time to the first 1–4 cycles of the OBL, which may not be enough to
reach a statistically quasi-periodic state. In contrast, the Euler–Lagrange method provides
a good balance between computational cost and fidelity (Capecelatro & Desjardins 2013a;
Finn et al. 2016). In this approach, flow features and bed dynamics on scales larger than the
particle size are well resolved, while the flow on the scale of the particle is modelled. This
makes it possible to simulate the dynamics on length and time scales much larger than
those accessible in PR-DNS. Earlier studies showed that this approach can reproduce with
high fidelity the dynamics of dense fluidised beds (Capecelatro & Desjardins 2013a) and
dense slurries (Capecelatro & Desjardins 2013b; Arolla & Desjardins 2015), including
in sheet flow and bedform regimes. More recently, Rao & Capecelatro (2019) showed
that predictions with the Euler–Lagrange method for the evolution of sediment bed under
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both laminar and turbulent shear flow match very well with PR-DNS (Kidanemariam &
Uhlmann 2014) and experiments (Aussillous et al. 2013).

In this paper, we study the interplay between an OBL and a sediment bed made of
collisional and freely evolving particles from the laminar regime to the onset of turbulence
using Euler–Lagrange simulations. The structure of the paper is as follows. In § 2, we
provide the governing equations that dictate the evolution of the flow and sediment
particles. In § 3, we provide details on the computations and parameters used in this study.
Next, we analyse statistics of the fluid and solid phases in § 4, highlighting how sediment
bed dynamics couple with those of the OBL. Finally, we give concluding remarks in § 5.

2. Governing equations
We use the volume-filtering approach of Anderson & Jackson (1967) and the Euler–
Lagrange methodology of Capecelatro & Desjardins (2013a) to describe the dynamics
of the sediment-laden flow. The carrier phase is an incompressible fluid with density ρf
and viscosity μf . The volume-filtered Navier–Stokes equations read

∂

∂t
(αf ρf ) + ∇ · (αf ρf uf ) = 0, (2.1)

∂

∂t
(αf ρf uf ) + ∇ · (αf ρf uf uf ) = ∇ · (τ + Rμ

)+ αf ρf g − Fp + A, (2.2)

where αf is the fluid volume fraction, uf is the volume-filtered fluid velocity, τ = −p I +
μ[∇uf + ∇uT

f − (2/3)(∇ · uf )I] is the resolved fluid stress tensor (Capecelatro &
Desjardins 2013a), p is pressure, which includes the hydrostatic contribution, g is the
gravitational acceleration, and Fp is the momentum exchange between the particles and
the fluid. The tensor Rμ represents the so-called residual viscous stress tensor. This
term arises from filtering the pointwise stress tensor. It includes sub-filter scale terms
that require closure. This term is believed to be responsible for the apparent enhanced
viscosity observed in viscous fluids containing suspended solid particles. For this reason,
Capecelatro & Desjardins (2013a) proposed a closure using an effective viscosity, which,
when combined with the effective viscosity model of Gibilaro et al. (2007), leads to an
expression for the residual viscous stress tensor:

Rμ = μf (α
−2.8
f − 1)

[
∇uf + ∇uT

f − 2
3
(∇ · uf )I

]
. (2.3)

We do not use an eddy viscosity model since none of the cases that we discuss here leads
to fully developed turbulence.

In order to study the dynamics of an OBL, we drive the flow using the last term in (2.2),
expressed as

A = αf ρf U0ω cos(ωt) ex . (2.4)

This represents a harmonic pressure gradient forcing with angular frequency ω and
velocity amplitude U0. Here, x is the coordinate in the streamwise direction along the
unitary vector ex , y is the coordinate in the wall-normal direction, and z is the coordinate
in the spanwise direction.

The particles are described in the Lagrangian frame. Following Maxey & Riley (1983),
the equations of motion of a particle i are given by

dxi
p

dt
(t) = ui

p(t), (2.5)
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mp
dui

p

dt
(t) = f h,i

p + f c,i
p , (2.6)

Ip
dωi

p

dt
(t) = T c,i

p , (2.7)

where xi
p, ui

p, ωi
p, mp and Ip are the particle position, velocity, angular velocity, mass and

moment of inertia, respectively. Here, f h,i
p represents the hydrodynamic force, which is

modelled as (Van Doren & Kasbaoui 2024)

f h,i
p (t) = Vp ∇ · τ |xi

p
+ mp fd

uf (xi
p, t) − ui

p

τp
+ f am,i

p + f li f t,i
p , (2.8)

where Vp = πd3
p /6 is the particle volume. The first term on the right-hand side of (2.8)

represents the effect of the undisturbed flow field (Maxey & Riley 1983). The second term
represents the drag force exerted on a particle. Note that τp = ρpd2

p /(18μ) is the particle
response time, and fd is a drag correction factor. We use the one by Tenneti, Garg &
Subramaniam (2011), derived from PR-DNS, which accounts for both inertial and high
particle volume fraction effects. The last two terms on the right-hand side of (2.8) represent
the added mass and Saffman lift (Saffman 1965) forces,

f am,i
p = 1

2
αf ρf Vp

(
Duf (xi

p, t)

Dt
− dui

p

dt

)
, (2.9)

f li f t,i
p = 1.615Jμf dp |ui

s |
√

d2
p |ωi | αf ρf

μf

ui
s × ωi

|ui
s | |ωi | , (2.10)

where ωi = ωf (xi
p, t) is the fluid vorticity at the particle location, ui

s = uf (xi
p, t) − ui

p is
the slip velocity, and J is a lift correction, which is equal to 1 in the model from Saffman
(1965).

The term f c,i
p represents the collisional force exerted on the particle due to particle–

particle and particle–wall collisions. These collisions are modelled using the soft-sphere
model, as detailed in Capecelatro & Desjardins (2013a). Briefly, the force exerted on
particle a due to a collision with particle b, denoted f c,b→a

p , is decomposed into normal
and tangential components. The normal component f c,b→a

p,n is modelled as a linearised
spring–dashpot system, i.e.

f c,b→a
p,n =

⎧⎨
⎩−kδabnab − ηuab,n if

∣∣∣xa
p − xb

p

∣∣∣< 0.5
(

da
p + db

p

)
+ λ,

0 otherwise,
(2.11)

where δab = 0.5(da
p + db

p ) − |xa
p − xb

p | is the overlap between particles a and b, nab is the
unit normal vector between the particles, and uab,n is the normal relative velocity. The
parameters k and the η are the spring stiffness and damping factor, respectively.

Note that the governing equations (2.1) and (2.2) for the fluid phase are solved in both
simulations with particles and without. In the latter case, αf = 1 throughout the domain,
which recovers the standard Navier–Stokes equations.

The solid phase dynamics is coupled with the fluid phase dynamics through the
momentum exchange field Fp, and the volume fraction fields, αf and αp. We calculate
these fields using
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Cases Reδ ρp/ρf Ga KC dp/δ θmax

1 200 2.65 51.9 134.5 0.7435 5.60 × 10−2

2 400 2.65 51.9 269.0 0.7435 1.12 × 10−1

3 800 2.65 51.9 538.0 0.7435 2.43 × 10−1

Table 1. Summary of the non-dimensional parameters for the present runs of an OBL over a sediment bed.
The maximum Shields number is determined a priori from the smooth wall shear stress as described in § 4.2.

Fp(x, t) =
N∑

i=1

f h,i
p (t) g(‖x − xi

p‖), (2.12)

αp(x, t) =
N∑

i=1

Vp g(‖x − xi
p‖), (2.13)

αf (x, t) = 1 − αp(x, t). (2.14)

In these equations, g represents a Gaussian filter with width δf = 5dp. We study the
influence of filter width on fluid statistics in Appendix A, and show that the statistics are
converged with respect to filter width at δf = 5dp. Additional details on the computation
of these terms and validation of the computational strategy, can be found in Capecelatro &
Desjardins (2013a,b), Capecelatro, Pepiot & Desjardins (2014) and Rao & Capecelatro
(2019), and in our recent work (Kasbaoui 2019; Kasbaoui, Koch & Desjardins 2019;
Shuai & Kasbaoui 2022; Shuai et al. 2022; Dave & Kasbaoui 2023; Shuai, Roy &
Kasbaoui 2024; Van Doren & Kasbaoui 2024). In Appendix D, we further demonstrate the
ability of this approach to capture sediment transport accurately. This is done by comparing
sediment flow rates obtained with this method in laminar channel flows at varying
Shields numbers with those obtained from PR-DNS (Kidanemariam & Uhlmann 2014)
and laboratory experiments (Aussillous et al. 2013). Based on the excellent agreement
shown in Appendix D, we conclude that this Euler–Lagrange method is well suited for
this study.

3. Numerical experiments

3.1. Configuration
We consider the dynamics of an OBL over a cohesionless particle bed at three Reynolds
numbers, Reδ = 200, 400 and 800. A summary of the relevant non-dimensional parameters
for each run is given in table 1. In order to provide a baseline for comparisons with the
sediment-laden cases, we also carry out companion simulations at the same Reynolds
numbers but with a bottom smooth and impermeable wall instead of a particle bed (see
Appendix A). Note that without the particle bed, the flow at Reδ = 200 and 400 is in
the laminar regime (see Appendix A). We do not observe a disturbed laminar regime
in these simulations due to the wall being smooth and flat, and the absence of any
external disturbances. Without small pertubations, the disturbed laminar regime would
take much longer to emerge than the simulations that we performed. The flow at Reδ = 800
falls in the intermittent turbulent regime. Comparing the simulations with and without a
bottom particle bed helps to elucidate the impact of sediment motion, bedforms and bed
permeability on the flow statistics.

In addition to the Reynolds number Reδ , the presence of particles introduces additional
dimensionless parameters. These are:
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Lx

Lz

Hb

Hf

Figure 1. Schematic of the configuration with a bottom sediment bed. The latter is generated in precursor runs
where the particles are seeded towards the middle of the domain and allowed to settle on the bottom boundary.

(i) the density ratio ρp/ρf ,
(ii) the Galileo number Ga = dp

√
(ρp/ρf − 1)gdp/ν,

(iii) the Keulegan–Carpenter number K C = U0/ωdp.

Although not an independent number, the Shields number θmax = τb,max/((ρp −
ρf )gdp), where τb,max is the maximum bed shear stress, is also an important non-
dimensional number to consider. The values for each case are shown in table 1. From
a dimensional perspective, these cases may correspond to an oscillating flow with period
T = 1.75 s, velocity amplitude varying from U0 = 0.134 m s–1 to U0 = 0.536 m s–1, and
sand particles with diameter 550 µm.

Finn et al. (2016) suggest that the regimes of particle transport are determined by
the combination of Shields numbers and Galileo numbers. Based on their work and
the combination of the present parameters, case 1 (Reδ = 200) falls into the ‘no-motion
regime’. Cases 2 (Reδ = 400) and 3 (Reδ = 800) fall in the gravitational settling regime.
We expect particle motion in both of these cases, with notably higher suspended
sediment concentration in case 3 compared to case 2. In all these cases, the Keulegan–
Carpenter number is very large, which suggests that inertial forces on particles caused
by the unsteady flow oscillations are negligible compared to the drag force due to the
instantaneous slip.

Figure 1 shows a schematic of the computational domain that we use for the present
simulations. Table 2 gives a summary of the computational parameters. The domain has
length 250δ in the streamwise direction, and 50δ in the spanwise direction. The domain
height in the normal direction is Hf + Hb, where Hf = 61.9δ is the height of the clear
fluid column, and Hb = 16.7δ is the initial bed height. We chose the latter sufficiently
deep (Hb ∼ 22dp) to accurately account for the flow intrusion within the bed. This gives a
total number of particles N = 6.09 × 105.

To discretise the governing equations, we use a uniform grid with spacing �x = dp/2,
which provides a high resolution of the momentum coupling between particles and
fluid. This results in a grid of size 672 × 211 × 134. In Appendix C, we conduct a grid
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Cases Nx Ny Nz Lx/δ Lz/δ Hf /δ Hb/δ

With bed 672 211 134 250 50 61.9 16.7
Without bed 64 256 64 50 25 40 0

Table 2. Summary of domain parameters.

convergence study and show that this discretisation is sufficient for Reδ = 800. The time
step �t is such that �t/T = 1.79 × 10−5. This restrictive time step is imposed by the
requirement in the soft-sphere collision model that the bottom layer of the particles must
support the weight of the particle bed above it. This is satisfied by ensuring that the spring
stiffness in the collision model is sufficiently large to maintain a realistic volume fraction
0.63 for a poured bed (Scott & Kilgour 1969; more details in Capecelatro & Desjardins
2013a). We use periodic boundary conditions in the streamwise and spanwise directions.
In the wall-normal direction, we use far-field boundary conditions at the top, and a no-slip
condition at the bottom. Note that the bottom layer of particles is held fixed, whereas all
other particles are free to move according to the evolution equations (2.5)–(2.7). Following
Charru et al. (2016), the particle restitution coefficient is maintained at 0.8, and the particle
friction coefficient at 0.4. Note that Kidanemariam & Uhlmann (2014) showed that the
precise value of the friction coefficient does not have a significant impact on sediment
transport.

The protocol to initialise the simulations and gathering statistics is as follows. We
perform precursor simulations to generate a realistic poured bed as described in § 3.2.
Then we carry out simulations initialised from quiescent flow. We run the simulations for
several periods until the flow reaches a periodic state and loses the effect of the initial
conditions. This takes approximately two periods. After this, we run the simulations for
additional eight periods to collect and compute phase-averaged statistics. We ensure that
the statistics are converged by confirming that adding data from additional periods does
not change the phase-averaged statistics.

While the computational cost of these Euler–Lagrange simulations is high, nevertheless
they remain achievable with today’s supercomputing resources. Each case requires
approximately 400 000 CPU-hours on AMD EPYC 7742 CPUs. This is equivalent to
approximately 15 days of run time on 1152 CPUs. The total cost is 1.2M CPU-hours for
the three cases with sediment beds.

In contrast, the cost of doing PR-DNS of these cases largely exceeds computing
resources afforded to most academic researchers, if not being completely intractable.
Taking a typical discretisation of 16 grid points per diameter (�x = dp/16)
(Kidanemariam & Uhlmann 2014; Mazzuoli et al. 2019; Kasbaoui & Herrmann 2025),
PR-DNS require 512 times more grid points than an Euler–Lagrange simulation of the
same case. Thus we estimate the computational cost to be 614.4M CPU-hours to complete
all three cases. This puts the simulation run time at approximately 21 years per case on
1152 CPUs.

3.2. Bed formation and the bed–fluid interface
To form the sediment bed, we perform precursor simulations that serve to generate
a realistic bed volume fraction that matches the volume fraction of a poured bed,
approximately 63 % (Scott & Kilgour 1969). In these runs, the oscillatory forcing is turned
off, and the particles are initially uniformly distributed towards the middle of the domain
at average volume fraction 40 % and with small random velocity fluctuations. We then

1022 A46-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
80

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10809


Journal of Fluid Mechanics

(b)

(c)

0

5

10

15

20

25

30

y/
δ

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

〈αp〉xz

Figure 2. The particle bed is initialised by letting particles settle onto the bottom wall. (a) This procedure
results in a volume fraction profile that is consistent with that of a poured bed. (b,c) The isosurface αp = 0.2
represents a good indicator of the location of the bed–fluid interface.

integrate the governing equations (2.1), (2.2), (2.5), (2.6) and (2.7) until the particles fully
settle down. Particle–particle collisions and fluid-mediated particle–particle interactions
lead to the formation of the poured bed in figure 1.

Figure 2(a) shows the average particle volume fraction 〈αp〉xz profile as a function of the
wall-normal distance. Note that here and hereafter, the notation 〈·〉xz refers to ensemble
and spatial averaging over the streamwise (x) and spanwise (z) directions. As anticipated,
the volume fraction within the bed matches the random poured packing (Scott & Kilgour
1969). It smoothly transitions to zero away from the bed. Further, we conduct the
simulations with particle beds that are sufficiently deep to ensure that the interaction
between the particle bed and the turbulent flow above is captured without interference from
the bottom boundary. In the present study, the sediment bed has thickness approximately
22 particle diameters, which corresponds to ∼16.7δ.

At this point, we must address the way in which we define the bed–fluid interface.
We follow the approach of Kidanemariam & Uhlmann (2014), and define the bed–fluid
interface using an isosurface of the particle volume fraction αp = αp,b < 0.63. This is
also similar to the experimental approach of Aussillous et al. (2013), where black/white
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thresholding of side view frames of the bed are used to detect the bed interface. However,
it is important to recognise that the choice of the isosurface αp,b demarcating the bed–
fluid interface is somewhat arbitrary since the computation of the volume fraction field αp
depends on numerical choices. For example, the shape and size of the filter kernel used
to compute αp control the width of the transition region in figure 2(a). With the filtering
described in § 2, the isosurface αp,b = 0.2 provides a good indicator of the approximate
location of the bed–fluid interface. We determine this by verifying that this surface lies
right on top of the particles, as shown in figures 2(b,c).

4. Characteristics of an OBL over a cohesionless particle bed
Before proceeding further, we refer the reader to Appendix A for a review of the flow
features observed when the OBL develops over a smooth and impermeable wall at
Reδ = 200, 400 and 800. These characteristics provide a benchmark for comparison in
what follows. Having reviewed these dynamics, we now analyse the changes that occur
when the OBL develops over a cohesionless particle bed.

4.1. Overview of the dynamics
The presence of a sediment bed leads to notable flow disturbances, even at low Reδ for
which DNS of OBLs over smooth and impermeable walls show flow fields devoid of any
fluctuations. At Reδ = 200, small imperfections in the bed–fluid interface are responsible
for flow disturbances. This is shown in figure 3, depicting the instantaneous spanwise
vorticity in a wall-normal plane at different phases of the cycle. To highlight the bedform,
figure 3 also shows the volume fraction contour αp = αp,b = 0.2 that demarcates the
sediment bed–fluid interface. The small imperfections in the bed–fluid interface are the
result of the initial bed generation as described in § 3.2. At Reδ = 200, the bed shear
stress is too low to induce any significant motion of the particles. Thus the initial bedform
persists throughout the simulation. The resulting flow fluctuations are reminiscent of the
fluctuations described by Vittori & Verzicco (1998) in the disturbed laminar regime,
where the bottom wall has small waviness. Since a smooth and impermeable wall does
not generate such fluctuations at Reδ = 200 (see Appendix A), this suggests that flow
disturbances induced by asperities in the bed–fluid interface are the driving mechanics
at this Reynolds number.

At Reδ = 400, the particles in the bed’s top layers become mobile. This leads to a
dynamically evolving bed–fluid interface and greater flow disturbances, as shown in
figure 4. Flow disturbances are strongest around phases 90◦ and 120◦, i.e. from the
maximum fluid velocity, and into the decelerating portion of the period. The vortex
structures observed at these phases show chaotic behaviour, whereby larger structures spin
off and break down into smaller ones. However, the range of scales is limited compared
to what may be expected for a fully turbulent flow. The bed–fluid interface, marked by
the black line in figure 4, changes dynamically with phase. This is due to particles being
transported in the top layers of the bed, which couples the bedform dynamics to that of the
flow over it.

We also note that bed permeability is significant at Reδ = 400. Whereas the extent of
the flow intrusion below the bed–fluid interface is of the order of one Stokes thickness δ at
Reδ = 200, the vortices generated at Reδ = 400 penetrate down by up to 4δ, judging from
figures 3 and 4. Owing to the bed permeability, these vortices push fluid into and out of
the bed. This plays an important role in the dynamic evolution of the bed–fluid interface,
as flow exiting the bed exerts an upward drag force on the particles that helps to suspend
or set into motion particles in the bed’s top layers (Jewel, Fujisawa & Murakami 2019).
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Figure 3. Zoomed-in views of the instantaneous spanwise vorticity and bed–fluid interface (solid line) at
Reδ = 200. Small ripples in the bedform cause flow disturbances and fluctuations associated with the disturbed
laminar regime.

1022 A46-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
80

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10809


J.S. Van Doren and M.H. Kasbaoui

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

y/
δ

y/
δ

y/
δ

y/
δ

y/
δ

y/
δ

0 50 100 150 200 250

x/δ

ωt = 0°

ωt = 30°

ωt = 60°

ωt = 90°

ωt = 120°

ωt = 150°

−0.50 0.50−0.25 0.250
ωz × δ/U0

Figure 4. Zoomed-in views of the instantaneous spanwise vorticity and bed–fluid interface (solid line) at Reδ =
400. Increasing Reynolds number leads to greater flow disturbances and a dynamically evolving bed–fluid
interface.
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At Reδ = 800, figure 5 shows significant increase in flow disturbances over the bed, bed–
fluid interface corrugations, and flow intrusion within the bed. The fluctuations’ intensity
and spatial extent largely exceed those due to intermittent turbulence in the case of an
OBL over a smooth and impermeable wall. The flow intrusion within the particle bed
is also much greater at Reδ = 800 compared to Reδ = 400. This likely contributes to the
increased corrugation of the bed–fluid interface at this Reynolds number. Further, the bed–
fluid interface is most corrugated around phases 60◦, 90◦ and 120◦, which correspond to
the phases with largest flow intrusion.

4.2. Fluid statistics
Having established the qualitative dynamics of these flows in § 4.1, we now characterise
the fluid phase with quantitative measures.

Figures 6(a), 6(c) and 6(e) show vertical profiles of phase-averaged mean streamwise
fluid velocity 〈uf 〉xz from the cases with particle bed at Reδ = 200, 400 and 800. To better
appreciate the change caused by the particle bed, we also report data from the companion
runs with a bottom smooth and impermeable wall discussed in Appendix A. In this figure,
yb denotes the average bed height. We determine the latter by computing the average y
location of the isovolume α = αb = 0.2, which represents the bed–fluid interface.

At Reδ = 200, the average streamwise fluid velocity from the cases with a particle bed
and smooth impermeable wall are sensibly close and follow the laminar Stokes solution.
The notable differences include a marginally thicker boundary layer, a significant slip
velocity u f,I at the bed–fluid interface y = yb, which reaches up to u f,I 	 0.1 U0 at phase
60◦, and interstitial flow that decays quickly within 1.5δ of depth. These features are
characteristic of permeable interfaces (Voermans et al. 2017), although their net effect
on the average streamwise fluid velocity profiles at Reδ = 200 is limited.

With increasing Reδ , the differences between cases with particle bed and cases with
a smooth and impermeable wall accentuate as effects due to bed permeability effects
increase. Most notably, we note the increase of the boundary layer thickness, interfacial
slip velocity, and depth of the interstitial flow. At Reδ = 400, the interfacial slip velocity
peaks at u f,I 	 0.17 U0 at phase 60◦, while the flow extends below the bed–fluid interface
by up to 9δ. At Reδ = 800, the maximum slip velocity increases to u f,I 	 0.52 U0, and the
flow extends below the bed–fluid interface by up to 14 δ.

In addition to altering the mean velocity profiles, the presence of a particle bed leads
to greater velocity fluctuations than in the smooth wall cases. Figures 6(b), 6(d) and
6(f ) show the streamwise velocity fluctuations for each Reynolds number. While the root
mean square (rms) of the streamwise velocity fluctuations u f,rms in cases with a smooth
and impermeable wall at Reδ = 200 and 400 are identically zero, we note the existence
of significant fluctuations in the cases with particle bed and at matching Reynolds
numbers. For Reδ = 200, u f,rms peaks at approximately 13 % of the velocity amplitude
and approximately 1.4δ above the bed. At Reδ = 400, u f,rms peaks at 13 % of the velocity
amplitude U0 at phase 90◦ and approximately 1.5δ above the bed. At Reδ = 800, the u f,rms
profiles are widest, indicating that the flow disturbances extend to approximately 20δ–
30δ above the bed. The highest fluctuations occur at phase 90◦ and reach approximately
6.9 % of the velocity amplitude. It is important to note that at Reδ = 400 and 800, velocity
fluctuations are no longer homogeneous in the streamwise direction due to the waviness
of the bed–fluid interface. For Reδ = 400 and 800, the velocity fluctuations drop to below
0.1 % of the velocity amplitude (U0) at 60δ from the bed–fluid interface.

The particle bed leads to a different condition at the bed–fluid interface as compared
to a smooth wall. In the smooth wall case, no-slip applies at the wall, while the particle
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Figure 5. Zoomed-in views of the instantaneous spanwise vorticity and bed–fluid interface (solid line) at Reδ =
800. The bedform shifts into ripples at various phases. The shedding vortices create a large range of scales.
The eddies penetrate the bed interface.
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Figure 6. Statistics of the phase-averaged mean streamwise velocity at (a,b) Reδ = 200, (c,d) Reδ = 400, and
(e,f ) Reδ = 800. The lines correspond to phases ωt = 0◦ ( ), ωt = 30◦ ( ), ωt = 60◦ ( ), ωt = 90◦ ( ),
ωt = 120◦ ( ), and ωt = 150◦ ( ). The dashed lines correspond to the smooth wall simulations from
Appendix A.

bed is porous, which leads to a slip velocity at the bed–fluid interface. This causes the bed
shear stress to drop compared to the smooth wall case. Predicting the sediment transport
is dependent upon accurate values of the bed shear stress, or non-dimensionally, the
Shields number θ . The Shields number can be estimated a priori using the single-phase
wall shear stress, i.e. τw = μ (∂u/∂y)|y=0. We denote this Shields number as θwall =
τw/((ρp − ρf )gdp). Alternatively, the bed shear stress can be defined using the shear stress
conditioned on an isosurface corresponding to the bed–fluid interface αp = αp,b (Arolla &
Desjardins 2015). We evaluate this in two ways. The first way follows the calculation of
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Figure 7. The Reδ = 400 bedform height deviations. Small ripples rise and fall below the average bed height.

Arolla & Desjardins (2015), i.e.

τb = (μ + μ
)

〈
∂u

∂y

〉∣∣∣∣∣
yb

= μα−2.8

〈
∂u

∂y

〉∣∣∣∣∣
yb

. (4.1)

We denote the Shields number based on the expression above as θ
(1)
bed . Note that this

evaluation does not account for the waviness of the bedform. To deal with this, we carry
out an alternative computation of the bed shear stress by interpolating the deviatoric stress
tensor to the bed–fluid interface. Figure 7 shows an example of instantaneous isosurface
α = αb representing the bed–fluid interface. In this second approach, we determine the bed
shear τb using

τb =
∥∥∥∥ 1

AI

∫∫
SI

n · τ ′ dS

∥∥∥∥ , (4.2)

where SI represents the bed–fluid interface, AI is the total interfacial area, n is the normal
vector on the isosurface αp = αp,b, and τ ′ = μ[∇u + ∇uT − (2/3)(∇ · u)I] + Rμ is the
deviatoric stress tensor. With the closure of Gibilaro et al. (2007), this tensor reads

τ ′ = μα−2.8
f

(∇u + ∇uT − (2/3)(∇ · u)I
)
. (4.3)

We denote the resulting Shields number as θ
(2)
bed .

Figure 8 shows the evolution of θwall , θ
(1)
bed and θ

(2)
bed during a full cycle. We also

report the maximum Shields number obtained with each method in table 3. We note
close agreement between θ

(1)
bed and θ

(2)
bed at all Reynolds numbers. This indicates that the

bed waviness does not have a significant effect on the bed shear stress in these cases.
Regardless of the method used, the Shields number estimated using the bed shear stress
(θ(1)

bed and θ
(2)
bed ) is much lower than the Shields number based on single-phase wall shear

stress θwall , even at Reδ = 200. This was also noted by Kidanemariam & Uhlmann (2014)
in PR-DNS of laminar channel flow with a sediment bed. They observed a progressive
departure of the Shields number from the Poiseuille predictions with increasing fluid flow
rate, caused by the departure of the flow profile from a strictly parabolic profile at the bed
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Reδ θwall θ
(1)
bed θ

(2)
bed

200 0.0560 0.0296 0.0279
400 0.1121 0.0330 0.0423
800 0.2428 0.0504 0.0448

Table 3. Maximum values of the Shields number by method of computation.
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Figure 8. Variation of the Shields number with the phase: squares indicate θwall ; pentagons indicate θ
(1)
bed ;

diamonds indicate θ
(2)
bed . (a) Reδ = 200, (b) Reδ = 400 and (c) Reδ = 800.

interface. Likewise, flow intrusion through the sediment bed leads to lower gradients at
the bed as shown in figure 6, which in turn leads to lower bed shear stress.

4.3. Particle statistics
Next, we analyse the characteristics of the particulate phase and how these relate to those
of the fluid phase.

At Reδ = 400, the particle bed is characterised by the periodic particle transport at
the ripple crests. This can be seen in figure 9(a), which depicts a top-down view of the
particle bed between ωt = 0◦ and ωt = 150◦, and where the particles are coloured by their
normalised streamwise velocities. At phase 0◦, most particles are immobile and within
the bed. From there, the rising fluid velocity initiates particle saltation at the ripple crests,
which are well visible at phase 60◦. These ripples are quasi-two-dimensional and display
wavelength approximately ∼ 60δ. The rolling ripples continue intensifying until phase
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Figure 9. Top-down views of the particle bed at phases 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ for (a) Reδ = 400 and (b)
Reδ = 800. The particles are coloured by their normalised streamwise velocity. The case at Reδ = 400 shows
periodic rolling ripples, whereas the case at Reδ = 800 exhibits a particle suspension layer, and may be evolving
towards a new bedform.

90◦. After that, the decrease in fluid velocity leads to a slow down of the particles until
all are immobile again by phase 150◦. This process occurs again, albeit in the reverse
direction, between phases 180◦ and 360◦.

With increasing Reδ to 800, the bed may be evolving towards a new bedform with
wavelength greater than Lx . As shown in figure 9(b), the rolling ripples noted at Reδ = 400
are no longer present at Reδ = 800. Instead, we note the periodic emergence and collapse
of a layer of suspended particles over the bed. At phase 0◦, most particles start at rest in the
bed. As the flow accelerates, particles in the top layer of the bed start saltating, which can
be seen at phase 30◦. As the fluid velocity continues increasing, more particles are set in
motion. At phase 60◦, we note that a large number of particles are suspended within the flu-
id column. The layer of suspended particles continues growing up to phase 120◦, by which
point the fluid velocity has begun decreasing. With the continued slowing down of the
flow, most particles redeposit in the bed by phase 150◦, while only few remain suspended.

Note that we do not present figures similar to figures 9(a) and 9(b) for the case at Reδ =
200 because particle motion is negligible in that case.

Figure 10 shows the bed surface interface averaged over the spanwise direction, for
Reδ = 400 and 800. The different lines correspond to the interface locations from periods
2–10. At Reδ = 400, the bed–fluid interface in figure 10(a) develops into a clear bedform
as the simulation progress. The wavelength associated with the ripples is λ/δ = 62.6. The
typical height of the ripples, measured from depression to peak, is approximately 4δ at
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Figure 10. Bed interfaces for (a) Reδ = 400 and (b) Reδ = 800. Darker lines indicate later periods. For Reδ =
400, rolling-grain ripples emerge and move through the domain, but the dominant wavelength does not change.
At Reδ = 800, the bed height becomes highly corrugated, and the bed–fluid interface breaks down.

phase 90◦. While sediment particles move along the bed at significant velocities, as seen
from figure 9(a), the bedform evolves on a much slower periodic time scale. At Reδ =
800, the bed surface displays a range of small-scale corrugations. However, the large-scale
ripples disappear. Figure 10(b) shows that the bed height deviations drop below 2δ. This
is because particle transport takes place primarily in a suspension layer.

Next, we report the vertical profiles of normalised particle velocity in figures 11(a) and
11(b). At Reδ = 400, the normalised particle velocity is small, as 〈αpup〉xz/U0 < 0.025
for all phases. This indicates that the rolling ripples move at a velocity much smaller
than the fluid velocity amplitude U0. The largest particle velocity occurs at phase 30◦, in
agreement with the qualitative observations from figure 9(a). We note that the particle
velocity is non-zero only in a region of width ∼ 8δ around the average bed height yb. The
width of this region is controlled by the height of the ripples, noted in figure 10(a), and
is not due to suspended particles, as the latter are negligible at Reδ = 400. In contrast,
the normalised particle velocity reaches significantly higher values and displays wider
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Figure 11. Normalised particle momentum profiles and mass fluxes at (a,c) Reδ = 400 and (b,d) Reδ = 800.
The lines in (a,b) correspond to phases ωt = 0◦ ( ), ωt = 30◦ ( ), ωt = 60◦ ( ), ωt = 90◦ ( ), ωt =
120◦ ( ), and ωt = 150◦ ( ). Significant particle momentum is seen near the bed interface, indicating
particle motion at approximately the bed interface.

distribution at Reδ = 800. At phase 150◦, the region of non-zero particle momentum is
approximately 18δ thick and peaks at approximately 0.08ρpU0. The widening of the profile
and the absence of large-scale deformations of the bed–fluid interface indicate that the
amount of suspended particles is significantly larger at Reδ = 800 compared to Reδ = 400.
This is also in agreement with the qualitative observations from figure 9(b).

With regards to the computational aspects, we note that the particle velocity is negligible
at approximately ∼ 10δ below the bed–fluid interface yb at all phases and Reδ considered.
This shows that the particle bed in our simulations, which has initial height Hb = 16.7δ, is
sufficiently tall to capture the dynamics near the bed–fluid interface without interference
from boundary conditions at the bottom of the domain.

Figures 11(c) and 11(d) show the evolution of the normalised sediment flow rate qs over
a half-period, for Reδ = 400 and 800. We compute qs by integrating the particle velocity
profiles over the vertical direction, i.e.

qs =
∫ L y

0
〈αpup〉xz dy. (4.4)

At Reδ = 400, the sediment volumetric flux peaks at 1.76 at phase ωt = 30◦. Notably, the
sediment transport is not symmetric for the accelerating and decelerating portions of the
periods. At Reδ = 800, the sediment flux is more than 12 times greater than at Reδ = 400.
The maximum normalised flux is 25.8 at phase 60◦. Here, too, we note an asymmetry
between the acceleration and deceleration portions of the period.
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5. Discussion and conclusions
In this study, we analyse data obtained from Euler–Lagrange simulations of an
oscillatory boundary layer (OBL) developing over a bed of collisional and freely moving
sediment grains with density ratio ρp/ρf = 2.65 and Galileo number Ga = 51.9. In these
simulations, we vary the velocity amplitude to yield Reynolds numbers Reδ = 200−800.
The maximum Shields number based on the smooth wall case also varies from 5.60 ×
10−2 to 2.43 × 10−1, and the Keulegan–Carpenter number varies from 134.5 to 538.0.
Companion simulations of an OBL over a smooth and impermeable wall show that the
boundary layer follows the laminar Stokes solution at Reδ = 200 and Reδ = 400, and
displays intermittent turbulence at Reδ = 800. However, the presence of a mobile bed alters
the flow characteristics and leads to a coupling of the dynamics of the OBL with that of
the sediment bed.

The coupled dynamics arise from two fundamental mechanisms. The first one relates
to the bed permeability. This is due to the porosity of the bed, which allows the flow
to penetrate within the sediment layers. The extent of the flow penetration depends on
the Reynolds number. In the case Reδ = 200, the flow penetration is of the order of the
Stokes thickness δ. With increasing Reδ , the flow penetration increases to approximately
9δ and 14δ at Reδ = 400 and Reδ = 800, respectively. Another consequence of the bed
permeability is the emergence of a slip velocity at the bed–fluid interface. At phase 30◦ of
the cycle, the interfacial slip velocity peaks at approximately 0.12U0 at Reδ = 200, 0.17U0
at phase 60◦ for Reδ = 400, and 0.52U0 at phase 90◦ for Reδ = 800. This significant slip
leads to a thickening of the boundary layer and reduction of the bed shear stress.

The second fundamental mechanism that couples the dynamics of the particle bed and
the OBL relates to particle motion. In the case Reδ = 200, the particles remain immobile
during the entire cycle. This is expected because the maximum Shields number based on
the shear stress at the bed–fluid interface in this case (θmax = 1.21 × 10−2) is below the
critical Shields number for incipient motion. Thus the only changes to the OBL in this
case are those due to permeability. At Reδ = 400 and 800, the particles become mobile
and lead to a dynamic evolution of the sediment bed. At Reδ = 400, the particles form
rolling-grain ripples. The latter emerge from small-scale corrugations in the bed–fluid
interface. These corrugations coarsen very quickly and lead to a bedform with height
4δ and wavelength approximately ∼ 60δ. Analysing the vorticity dynamics shows that
these ripples cause enhanced vortex shedding in the flow, which leads to fluid velocity
disturbances similar to those observed in the disturbed laminar regime. At Reδ = 800, the
intermittent turbulence leads to the formation of a particle transport layer. Between phases
60◦ and 120◦ of the half-cycle, the bed–fluid interface recedes slightly and a layer of
suspended particles forms. During the rest of the half-cycle, the suspended particles settle
into the bed and become nearly motionless at phase 0◦. Because of their large momentum
and their feedback force on the fluid, the suspended particles induce significant fluctuations
in the flow. This leads to further widening of the boundary layer and greater fluctuations
than is observed in the corresponding particle-free case.

In this work, we have also shown that the dynamics of sediment beds under a wide range
of oscillatory and unsteady flow conditions can be predicted at reasonable computational
cost using carefully designed Euler–Lagrange simulations. While PR-DNS require few to
no models, their large computational cost often makes them too restrictive. In comparison
with the PR-DNS of Mazzuoli et al. (2020), our simulations have domains 100 times
larger: approximately 10 times longer in the streamwise direction, approximately 4 times
wider in the spanwise direction, and about twice as tall. This allows us to capture bedforms,
which was not possible in Mazzuoli et al. (2020). Further, we were able to simulate 10
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cycles for each of our cases, compared to 1–4 cycles in Mazzuoli et al. (2020). The
computational cost of these simulations is approximately 400 000 CPU-hours per case
(equivalent to about 15 days of run time on 1152 CPUs), which is attainable for many
researchers with today’s computational resources.
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Appendix A. Structure of an OBL over a smooth wall
In this appendix, we present a detailed description of the flow characteristics at Reδ = 200,
400 and 800, where the bottom boundary is an impermeable smooth wall rather than a
sediment bed. The reasons for this are twofold. First, analytical solutions exist for the lam-
inar regime, which allows the validation of the computational approach. Second, these runs
serve as a benchmark to elucidate the changes to the flow in the presence of a sediment bed.

Figure 12 shows the normalised spanwise vorticity field at phases ωt = 0, 30,

60, 90, 120, and 150 degree for the case Reδ = 400. The solution for Reδ = 200 shows
vorticity structure similar to that of the Reδ = 400 solution, thus is not included here. The
vorticity in these low Reynolds number cases is organised into sheets in the near-wall
region. This indicates laminar flow, so the flow at Reδ = 200, 400 should obey the Stokes
solution

u f,x/U0 = cos(ωt) − e−y/δ cos(ωt − y/δ), (A1)
u f,y/U0 = 0. (A2)

To verify this, we compare the Stokes solution to vertical profiles of the phase-averaged
fluid velocity from the simulation at Reδ = 400 in figure 13. The agreement between the
simulated data and the analytical solution is excellent, showing that the flow is indeed
laminar at these Reynolds numbers. This also validates the computational approach for an
impermeable smooth wall OBL at low Reynolds numbers.

As an additional comparison, we compute the coefficient of friction Cf defined as

Cf = |τw|
(1/2)ρf U 2

0
, (A3)

where τw is the wall shear stress. Figure 14 shows the variation of the coefficient of friction
scaled by Reδ to cancel the Reynolds number dependence of the coefficient of friction. The
scaled coefficient is plotted over a period for the cases of an OBL over an impermeable
smooth wall at Reδ = 200 and 400, alongside the Stokes solution. Here, too, the agreement
between numerical and Stokes solution is excellent, which further demonstrates that the
OBL at these Reynolds numbers is fully laminar.

Unlike the lower Reynolds number cases, figure 15 shows significant vorticity
throughout the cycle for the case at Reδ = 800. Of particular interest is the range of
scales seen at phase 120◦, which is in the decelerating portion of the cycle. This eruption
of velocity fluctuations, followed by partial relaminarisation, is characteristic of the
intermittent turbulence regime. Similar observations were made by Jensen et al. (1989),
Vittori & Verzicco (1998) and Salon et al. (2007).

While the vorticity field for Reδ = 800 shows a range of eddies, strict wall-bounded
turbulence requires the existence of a logarithmic layer. To this end, we report in figure 16
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Figure 12. Normalised spanwise vorticity fields at Reδ = 400 for a smooth, impermeable wall, at phases 0◦,
30◦, 60◦, 90◦, 120◦, 150◦. The vorticity is arranged in laminae at all phases. (a) ωt = 0◦, (b) ωt = 30◦, (c)
ωt = 60◦, (d) ωt = 90◦, (e) ωt = 120◦ and (f ) ωt = 150◦.

vertical profiles of the spatially averaged streamwise velocity normalised using wall units,
i.e. the friction velocity uτ =√

τw/ρf as velocity scale, and ν/uτ as length scale. Since
none of the phases shows a strict logarithmic layer, we conclude that the flow at Reδ = 800
is not fully turbulent, despite presenting significant fluctuations.

In Euler–Lagrange simulations, the choice of filter width δf is an important modelling
consideration. To justify the point-particle approximation, δf must be much larger than
the particle size dp. Yet resolving the vortical structures requires δf to also be as small as
possible. For the present study, we chose δf = 5dp. As recently shown in Hausmann et al.
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Figure 13. Normalised streamwise velocity for the case of an OBL over an impermeable smooth wall at
Reδ = 400. Filled symbols correspond to the Stokes solution, while open symbols correspond to smooth
wall simulations. To differentiate the positive and negative portions of the period, we plot the positive half-
cycle in red, and the negative half-cycle in blue. The symbols indicate the phase: for ωt = 0◦, 180◦, for
ωt = 45◦, 225◦, for ωt = 90◦, 270◦, for ωt = 135◦, 315◦. The strong agreement between the simulated
data and the Stokes solution indicates that the flow is fully laminar in this case.
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Figure 14. Scaled coefficient of friction over one period at Reδ = 200 and 400, for a smooth, impermeable
wall. The black line correspond to the Stokes solution. Symbols correspond to the numerical solution: for
Reδ = 200, and for Reδ = 400. All cases collapse onto the Stokes solution.

(2024), this filter size reduces errors associated with the point-particle approximation,
while providing adequate resolution.

To show the impact of filter size on the fluid statistics, we performed additional
simulations of the case at Reδ = 800 with filter sizes δf = 3dp, 5dp and 7dp. Note that
δf = 3dp is generally considered to be too small to justify the point-particle approximation,
while δf = 5dp and δf = 7dp are values commonly used in the literature (Capecelatro &
Desjardins 2013a; Hausmann et al. 2024).
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Figure 15. Normalised spanwise vorticity field in DNS of an OBL over an impermeable smooth wall at
Reδ = 800, for a smooth, impermeable wall. The eruption of velocity fluctuations during the decelerating
portion of the cycle (120◦ and 150◦) indicates that this flow is in the intermittent turbulent regime. (a) ωt = 0◦,
(b) ωt = 30◦, (c) ωt = 60◦, (d) ωt = 90◦, (e) ωt = 120◦ and (f ) ωt = 150◦.

Figure 17 shows the impact of varying the filter size on mean and rms fluctuations
of the streamwise velocity at phases 0◦, 90◦ and 150◦. We note that, as expected, δf =
3dp shows the largest deviation. The results at δf = 5dp and δf = 7dp are sensibly similar,
which justifies our choice of δf = 5dp for the remaining simulations.

The reader interested in further details on the role of filter size in Euler–Langrange
modelling is referred to Hausmann et al. (2024).
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Figure 16. Wall scaled mean velocity profiles for Reδ = 800, for a smooth, impermeable wall. No logarithmic
layer is observed. (a) ωt = 0◦, (b) ωt = 30◦, (c) ωt = 60◦, (d) ωt = 90◦, (e) ωt = 120◦ and (f ) ωt = 150◦.

Appendix B. Review of the soft-sphere collision model
The soft-sphere collision model is dependent upon the parameters k and η, which are the
spring stiffness and damping factor, respectively. They are related to the reduced mass
mab = (1/ma + 1/mb)

−1, collision time τcol , and coefficient of restitution e, as

k = mab

τ 2
col

(π2 + ln(e)2), (B1)

η = −2 ln(e)

√
mabk√

π2 + ln(e)2
. (B2)
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Figure 17. Statistics of the streamwise fluid velocity for filter widths δf = 3dp ( ), 5dp ( ) and 7dp
( ): (a,c,e) mean and (b,d,f ) rms fluctuations. There is little difference between results with δf = 5dp
and δf = 7dp , which indicates that either value isa good choice in Euler–Lagrange simulations. (a) ωt = 0◦,
(b) ωt = 30◦, (c) ωt = 60◦, (d) ωt = 90◦, (e) ωt = 120◦ and (f ) ωt = 150◦.

The radius of influence λ allows us to robustly handle high-speed collisions by initiating
the collision of high-speed particle pairs just before contact. Following Finn et al. (2016),
λ is calculated as

λ= λ0

2
(dp,a + dp,b)

(
CFLc

ab

CFLc
max

)
, (B3)

where the collisional CFL number is CFLc
ab = (2 |uab,n| �t)/(da

p + db
p ), and λ0 is the

maximum radius of influence permitted when the collision occurs at the maximum
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Figure 18. Profiles of mean fluid velocity and rms velocity fluctuations at Reδ = 800. Solid lines correspond to
the grid described in the main text, while dashed lines correspond to the refined grid. Lines colours correspond
to phases ωt = 0◦ ( ), ωt = 30◦ ( ), ωt = 60◦ ( ), ωt = 90◦ ( ), ωt = 120◦ ( ), and ωt = 150◦ ( ).
The agreement is close, showing that the simulation is grid converged.

collision CFL number, CFLc
max. The tangential collision force is modelled according to

a static friction model

f c,b→a
p,t = −μs | f c,b→a

p,t | tab, (B4)

where tab is the tangential direction, and μs is the static friction coefficient. Collisions
with walls are treated in the same way as above, but with the wall having infinite mass.

Appendix C. Grid convergence study
In order to demonstrate grid independence, we conduct a simulation at Reδ = 800 with grid
resolution Nx × Ny × Nz = 672 × 422 × 134, and compare the results to the simulation
with resolution Nx × Ny × Nz = 672 × 211 × 134, for one period. Thus the wall-normal
resolution is twice that in the coarser grid. Note that we do not refine the grid in the
streamwise and spanwise directions because the gradients are primarily in the wall-normal
direction, and the resolution in the streamwise and spanwise directions already exceeds
the requirements for an OBL over a smooth wall. That is, the resolutions in the smooth
wall case described in Appendix A are 0.78δ and 0.39δ in the streamwise and spanwise
directions, respectively, while the resolution is 0.37δ in all directions for the bed cases.

In figure 18, we compare the fluid streamwise velocity profile, streamwise velocity
fluctuations, and streamwise particle velocity. Increasing the resolution does not lead to
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Figure 19. Sediment transport in a laminar channel flow: (a) schematic of the configuration in our simulations,
and (b) variation of the normalised sediment flow rate with Shields number. The PR-DNS data are from
Kidanemariam & Uhlmann (2014). The experimental data are from Aussillous et al. (2013). Despite not
capturing flow features at the particle scale, our method captures the variation of sediment transport with
Shields number very well.

significant change in these statistics. This indicates that our resolution choice in this study
is adequate up to Reδ = 800.

Appendix D. Validation of the present Euler–Lagrange method for sediment
transport
To demonstrate the capability of the present model to capture accurate sediment transport,
we reproduce numerically the experiments of Aussillous et al. (2013) of bedload transport
in a channel flow.

Following earlier numerical effort in Kidanemariam & Uhlmann (2014), Charru et al.
(2016) and Rao & Capecelatro (2019), we set up our numerical analogue as shown
in figure 19(a). The sediment grains are monodisperse with diameter dp, restitution
coefficient e = 0.3, and friction coefficient μc = 0.4 (Kidanemariam & Uhlmann 2014).
The domain dimensions are 32dp in the streamwise direction, 32dp in the vertical direction,
and 16dp in the spanwise direction. We use a uniform grid with spacing �x = dp/2, the
same as in the main study.

The main non-dimensional numbers that control this problem are the bulk Reynolds
number Re = qf /ν, where qf is the fluid flow rate, Galileo number Ga, density ratio ρp/ρf ,
and Shields number θ . Following Kidanemariam & Uhlmann (2014), Charru et al. (2016)
and Rao & Capecelatro (2019), and to enable comparisons with Aussillous et al. (2013),
we define the Shields number based on the wall shear stress from a laminar Poiseuille flow.
As discussed by Kidanemariam & Uhlmann (2014), this results in the following expression
for the Shields number:

θ = 6 Re

Ga2

(
dp

Hf

)2

. (D1)

Note that we determine the fluid column height Hf using the same approach outlined in
Kidanemariam & Uhlmann (2014) and Rao & Capecelatro (2019).

Following Kidanemariam & Uhlmann (2014), we fix the bulk Reynolds number at Re =
375, density ratio at ρp/ρf = 2.5, and Galileo number at Ga = 8.56. We vary the Shields
number from 0.05 to 0.35 by varying the bed height Hb. Similar to the main study, we
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drive the flow using a pressure gradient forcing, which is constant here. The flow reaches a
steady state after approximately 200Hb/Ub, where Ub is the bulk velocity, at which point
we start collecting data.

Despite not resolving flow features at the particle scale, the methodology and
computational methods outlined in this paper are well capable of reproducing meso-scale
dynamics, including bedload sediment transport. This is well evidenced in figure 19(b),
which shows the variation of the normalised sediment qs/(Ga2ν) flux with Shields
number. The figure shows our data alongside data from the experiments of Aussillous et al.
(2013), PR-DNS of Kidanemariam & Uhlmann (2014), and their correlation qs/(Ga2 ν) =
1.6584 θ3.08. As is clearly shown in figure 19(b), the present methodology yields good
agreement with experimental and PR-DNS data. The variation of the normalised sediment
flow rate is well captured across three orders of magnitude. It follows a cubic law, similar
to the one determined by Kidanemariam & Uhlmann (2014) and noted in other studies
(Leighton & Acrivos 1986; Charru & Mouilleron-Arnould 2002; Charru et al. 2016). This
validates our approach for the problem in this study.
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