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On the efficacy of surface-attached air bubbles as
thermal insulators for pressure-driven internal
flow
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There exists much research examining the role of surface-attached air bubbles in drag
reduction. Most of this literature considers isothermal flows and so ignores temperature
differences, e.g. with the solid boundary. Here, we relax this assumption and ask whether
surface-attached air bubbles may prove useful as thermal insulators, e.g. when the solid
temperature differs from that of the cargo liquid (water). Theoretical and numerical
solutions, e.g. for the variation of the Nusselt number with bubble thickness, are presented
for cases characterized by a uniform surface heat flux (USF). We examine channel and
pipe flow geometries, and consider instances where the net mass flow rate within the
(continuous) air bubble is zero or non-zero. When the thermal boundary condition is
changed to uniform surface temperature (UST), our analysis limits attention to numerical
solutions. We identify and discuss a remarkable connection between the drag reduction
problem and the USF thermal insulation problem: the proportional change of water
temperature with bubble thickness is identical to the proportional change of drag. Also,
and although our analysis is conducted in the ‘perfect plastron limit’, we can, e.g. by
evaluating hydrodynamic and thermal slip lengths, contrast our work against related
studies where heat transfer occurs through the ridges or pillars that affix the air layer
in place. This comparison indicates that the oft-applied adiabatic interface assumption
may prove restrictive in some regions of the parameter space. We conclude by examining
the implications of our work in the context of UST micro-channels, which are relevant to
various lab-on-a-chip technologies.
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1. Introduction

Recent decades have witnessed an explosion of interest in the development, utilization
and optimization of superhydrophobic materials. Such materials enjoy wide-ranging
applications, e.g. in the fabrication of surfaces that are self-cleaning (Nakajima et al. 2000;
Wang et al. 2016) or resistant to ice accretion (Varanasi et al. 2010). In other respects,
superhydrophobic materials are used in the more general context of water repellency,
e.g. water-shedding fabrics (Zimmermann et al. 2008), or in the development of materials
classified as anti-reflection (Manca et al. 2009) or corrosion-resistant (Zhang et al. 2008).
In no small number of cases, engineering designs at the microscale are inspired by Nature,
the lotus leaf representing the classical example (Reyssat 2007). Elsewhere in Nature, the
superhydrophobic character of the integument of many species of insects and arachnids
allows these animals to carry integument-attached bubbles underwater (Thorpe 1950;
Gittelman 1975; Hinton 1976; Flynn & Bush 2008). Although the function of such bubbles
(or ‘plastrons’) is, for most species, to facilitate underwater breathing, insects such the
intertidal midge Clunio use integument-attached bubbles to shield themselves from the
violent surf of their natural habitat (Neumann & Woermann 2009).

Further to the seminal studies of Fukuda et al. (2000), Daniello, Waterhouse & Rothstein
(2009), Vakarelski et al. (2011) and many others, the last example of the previous
paragraph highlights the important role that surface-attached air bubbles may play in
drag reduction. This topic was the subject of the theoretical investigation of Busse et al.
(2013), who studied different manifestations of Couette and Poiseuille flow. They thereby
characterized the impact of air layer thickness on drag reduction e.g. by defining, for
different flow geometries and configurations, the optimal thickness dopt such that drag
is minimized. As with the precursor investigation of McHale, Flynn & Newton (2011),
calculations were performed in the ‘perfect plastron’ limit and therefore considered a
scenario in which the (continuous) air layer is maintained without reference to the ridges
(Rosengarten, Stanley & Kwok 2008; Teo & Khoo 2009; Woolford et al. 2009; Costantini,
Mollicone & Battista 2018) or pillars (Kim & Rothstein 2017; Nasser et al. 2020; Xia et al.
2021) that characterize superhydrophobic surfaces at the microscale.

Motivated by the elegance of the Busse et al. (2013) analytical solutions, we wish
to revisit their derivations but now in the context of a transfer of thermal energy
rather than of momentum. To this end, and further to the laboratory experiments and
numerical simulations reported in Rosengarten et al. (2008), the current paper is devoted
to addressing the following question: can surface-attached air bubbles serve as effective
thermal insulators when considering pressure-driven internal flow? Despite the breadth of
the application space (e.g. lab-on-a-chip devices) or its extrapolation to biological systems
(e.g. Brock 1970), this topic has garnered only modest attention, at least compared to
the voluminous literature on drag reduction. Among available studies, some focus on
phase change, e.g. the possibility that superhydrophobic surfaces might slow evaporation
(Fernandes, Vainsten & Brito 2015). A separate line of inquiry has focused on sensible
heat transfer; however, among theoretical/numerical investigations, the flow that develops
within the air bubbles is typically disregarded (e.g. Ng & Wang 2014) or else the air–water
interface is modelled as adiabatic (e.g. Maynes et al. 2013; Enright et al. 2014; Maynes
& Crockett 2014; Cheng, Xu & Sui 2015; Cowley, Maynes & Crockett 2016; Kirk, Hodes
& Papageorgiou 2017; Karamanis et al. 2018; Game et al. 2018; Tomlinson et al. 2024).
Though certainly reasonable when air bubbles are interspersed within a dense, thermally
conductive forest of roughness elements (e.g. micro-pillars or -ridges) that are good
conductors of heat, it remains unclear whether such motions in the gas phase should be
omitted when bubble volumes are comparatively large and/or the solid consists of material
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2H

Water Water

Air Air

R

δ
δ

(a) (b)

Figure 1. Schematics of the flow geometries: (a) rectilinear channel (CHSYM), (b) axisymmetric pipe (PIPE).
The regions occupied by the water and air are indicated in blue and grey, respectively. For mathematical
simplicity, our analysis will idealize the channel as being very wide (and very long) relative to the vertical
distance 2H.

Analysis
Identifier Description method(s) Figures

CHSYM1 Symmetric pressure-driven channel flow;
ṁa > 0, uniform surface heat flux

Theoretical and
numerical

2, 12(a), 14(a), 15(a), 16(a)

PIPE1 Axisymmetric pressure-driven pipe flow;
ṁa > 0, uniform surface heat flux

Theoretical and
numerical

3, 12(b), 14(b), 15(b), 16(b)

CHSYM2 Symmetric pressure-driven channel flow;
ṁa = 0, uniform surface heat flux

Theoretical and
numerical

2, 12(a), 14(a), 15(a), 16(a)

PIPE2 Axisymmetric pressure-driven pipe flow;
ṁa = 0, uniform surface heat flux

Theoretical and
numerical

3, 12(b), 14(b), 15(b), 16(b)

CHSYM3 Symmetric pressure-driven channel flow;
ṁa > 0, uniform surface temperature

Numerical 2, 13(a), 14(c)

PIPE3 Axisymmetric pressure-driven pipe flow;
ṁa > 0, uniform surface temperature

Numerical 3, 13(b), 14(d)

CHSYM4 Symmetric pressure-driven channel flow;
ṁa = 0, uniform surface temperature

Numerical 2, 13(a), 14(c), 17, 18

PIPE4 Axisymmetric pressure-driven pipe flow;
ṁa = 0, uniform surface temperature

Numerical 3, 13(b), 14(d)

Table 1. Classification of the flow/thermal forcing regimes considered in this study. When ṁa > 0, we assume
that the horizontal/axial pressure gradients driving the water and air flows are identical. By contrast, when
ṁa = 0, there is no net flow of air in the streamwise direction. For future reference, note that uniform surface
heat flux (uniform surface temperature) cases will be referred to as USF (UST).

with a very low thermal conductivity. Therefore, following in the footsteps of Busse et al.
(2013), and motivated by a desire to derive analytical (if somewhat unwieldy) solutions,
our exposition will likewise examine the ‘perfect plastron’ limit. In this way, our solutions
represent an upper bound for the thermal insulation efficacy of surface-attached bubbles.
Our solutions also represent an opposite bookend to those (as or more detailed) studies that
prioritize heat transfer along roughness elements. In this way, we hope to provide helpful
guidance as to when the adiabatic interface assumption is most applicable.

As with Busse et al. (2013), roughly equal attention will be devoted to channel versus
pipe flow – see figure 1. More specifically, and borrowing the nomenclature adopted
in Busse et al. (2013), we plan to investigate each of the flows enumerated in table 1.
A review of the entries in this table reveals that not all scenarios are, in fact, amenable
to an analytical solution. Thus we adopt a numerical approach when characterizing the
behaviour of the flows labelled CHSYM3, PIPE3, CHSYM4 and PIPE4, or the relevance
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of these idealized flows to a real superhydrophobic surface. Numerical simulations are
likewise deployed when studying the complementary cases CHSYM1, PIPE1, CHSYM2
and PIPE2; here, however, the primary purpose of the numerical output is to validate the
accuracy of the associated theoretical solutions.

The rest of the paper is organized as follows. In § 2, analytical solutions are derived
for cases labelled in table 1 as CHSYM1, PIPE1, CHSYM2 and PIPE2. The theoretical
exposition begins with a description of the velocity field, and progresses to a description
of the energy field. In § 3, our complementary numerical simulations are described.
Numerical output is compared against the theoretical predictions in §§ 4 and 5. The
latter of these sections characterizes the thermal insulation efficacy of surface-attached
air bubbles, e.g. by showing the variation of the Nusselt number with the thickness of the
air layer. Numerical simulations are also performed for the purposes of contextualizing our
results vis-à-vis real micro-channels; the output and discussion in question appears in § 6.
Finally, in § 7, we present a series of conclusions for the work as a whole.

2. Theory

2.1. Assumptions
In order to make the mathematical treatment tractable, a series of simplifying assumptions
must be applied, as follows. (i) The air bubble that appears along the inside boundary is
a ‘perfect plastron’. Stated differently, and excepting the discussion of § 6, we suppose
that the bubble is maintained in place without reference to micro-topological elements. In
a related vein, we suppose that the bubble maintains a uniform depth. So as to provide
a fulsome comparison with Busse et al. (2013), we consider a range of bubble depths
that spans the entire channel depth. In other words, and in the context of figure 1, we
examine 0 < δ/H, δ/R < 1. Note, however, that there are practical limitations associated
with stabilizing a thick surface-attached bubble, particularly when the bubble thickness
exceeds the capillary length. As such, our most significant results apply to the cases of
relatively small δ/H or δ/R. (ii) Insofar as the fluid flows interior and exterior to the
bubble are concerned, we assume that these flows of air and of water are steady, laminar,
parallel and therefore fully developed. Note that the assumption of a fully developed flow
applies when considering both thermal as well as hydrodynamic effects. (iii) Air and water
share the properties of incompressibility and immiscibility. Meanwhile, properties such
as density, viscosity and gas solubility are supposed to exhibit negligible variations with
temperature. Assumptions (i)–(iii) provide the robust foundation needed to study the eight
different configurations of table 1.

2.2. Velocity profile
The determination of the velocity profile using the Navier–Stokes equations is a crucial
first step in characterizing the thermal insulation efficacy of surface-attached air bubbles
via the energy equation. For this purpose, we borrow the analytical solutions of Busse
et al. (2013). The equations in question are extensions of the classical Poiseuille solution
to two immiscible phases, and are derived by balancing the forces associated with the
pressure gradient and viscous shear. As we document below, different formulations apply
depending on the duct geometry and on whether or not the net mass flow rate of air, ṁa,
vanishes. On the other hand, whether ṁa = 0 or ṁa > 0 does not change the hydrodynamic
boundary conditions. With reference to the schematics of figures 1–3 and the length scales
defined therein, these boundary conditions read as follows. (i) Zero air velocity (ua = 0)
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z
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2H

Gas: AirGa

Gw

dx

Ga

δ

Gas: Air

Liquid: Water

Interface

Centreline

δ

C.V.

Figure 2. Schematic showing 2-D symmetric pressure-driven channel flow with air and water as the working
fluids. (C.V. indicates control volume.)

r

x

2R

Gas: AirGa

Gw

dx

Ga

δ

Gas: Air

Liquid: Water

Interface

Centreline

δ

C.V.

Figure 3. Schematic showing 2-D axisymmetric pipe flow with air and water as the working fluids.

along the wall, i.e. at z = H for the channel of figure 2, and at r = R for the pipe of figure 3.
(ii) Zero (water) vertical/radial velocity gradient along the centreline, i.e. (duw/dz)z=0 = 0
for the channel, and (duw/dr)r=0 = 0 for the pipe. (iii) Along the air–water interface,
we require continuity of velocity and of shear stress. Expressed symbolically, we write
ua(z = H − δ) = uw(z = H − δ) and μa(dua/dz)H−δ = μw(duw/dz)H−δ for the channel,
and ua(r = R − δ) = uw(r = R − δ) and μa(dua/dr)R−δ = μw(duw/dr)R−δ for the pipe.
Here, μw and μa respectively denote the dynamic viscosities of water and air. In the
material to follow, the above boundary conditions are combined with relevant governing
equations to derive expressions for the velocity distribution and the average velocity of the
water and air for the flow geometries depicted in figures 1–3.

2.2.1. Equal pressure gradient (ṁa > 0)
The first problems of interest are ones where the pressure gradient forcing the flow of air
matches the pressure gradient forcing the flow of water. In symbols, the pressure gradient
of air is −∂Pa/∂x (> 0), but for notational convenience, we will henceforth write this
term as Ga. Likewise, the pressure gradient of water is −∂Pw/∂x, but for notational
convenience, we will henceforth write this term as Gw. In this equal pressure gradient
scenario, Ga = Gw and ṁa > 0. Consistent with table 1, calculations are performed for
two different geometries, namely rectilinear (corresponding to symmetric channel flow,
CHSYM) and axisymmetric (corresponding to pipe flow, PIPE).
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We begin by considering symmetric pressure-driven channel flow (CHSYM1 and
CHSYM3). A schematic of a two-dimensional (2-D) pressure-driven channel flow is
shown in figure 2. The cargo fluid is water; however, a uniform layer of air appears along
the top and bottom surfaces such that direct contact of the liquid with the solid boundary
is avoided.

According to our assumptions, the simplified Navier–Stokes equation in rectilinear
coordinates is given by

∂2ui

∂z2 = −Gw

μi
, (2.1)

where the subscript i may designate water (w) or air (a). Thus we find that

uw = −Gwz2

2μw
+ c1z + c2 (2.2)

and

ua = −Gwz2

2μa
+ c3z + c4, (2.3)

where c1, c2, c3 and c4 are constants to be resolved by application of the aforementioned
boundary conditions. Accordingly, it can be shown that

uw(z) = GwH2

2μw

[
Cμ(2d − d2) − z2

H2 + (1 − d)2
]

, −H + δ ≤ z ≤ H − δ, (2.4)

and

ua(z) = GwH2

2μa

[
1 − z2

H2

]
, {−H ≤ z ≤ −H + δ} ∪ {H − δ ≤ z ≤ H}, (2.5)

where δ and H are defined in figure 2. In the former equation, d ≡ δ/H and Cμ ≡ μw/μa.
With uw and ua to hand, it is straightforward to evaluate corresponding average velocities
(V̄w for water, V̄a for air):

V̄w = 1
H − δ

∫ H−δ

0
uw dz = GwH2

6μw
[3Cμ(2d − d2) + 2(1 − d)2], (2.6)

V̄a = 1
δ

∫ H

H−δ

ua dz = GwH2

6μa
(3d − d2). (2.7)

The analogue axisymmetric pipe flow (PIPE1 and PIPE3) is similar, so much so that
the schematics of figures 2 and 3 are almost identical. In this spirit, a similar procedure
may be applied for solving for the velocity distributions of water and air. In the interests
of brevity, we omit derivational details and instead present the final solutions, which read
as follows:

uw(r) = GwR2

4μw

[
(1 − d)2 − r2

R2 + Cμ(2d − d2)

]
, 0 ≤ r ≤ R − δ, (2.8)

ua(r) = GwR2

4μa

(
1 − r2

R2

)
, R − δ ≤ r ≤ R, (2.9)
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V̄w = 2
(R − δ)2

∫ R−δ

0
uwr dr = GwR2

8μw
[2Cμ(2d − d2) + (1 − d)2], (2.10)

V̄a = 1
δ(R − δ)

∫ R

R−δ

uar dr = GwR2

8μa
(2d − d2). (2.11)

In the above equations, the parameter d has been redefined as d ≡ δ/R.

2.2.2. Zero mass flow rate of air (ṁa = 0)
In contrast to the analysis of § 2.2.1, which assumed that the air and water layers were
driven by the same pressure gradient, one may alternatively consider a case where the net
mass flow rate of air, ṁa, vanishes. Such an assumption more closely mimics the trapped
air bubbles that are affixed in place by the micro-structures of a superhydrophobic surface.
Thus we find that the air layer exhibits an S-shaped velocity distribution where, close to
the wall, the flow is directed opposite to that of the cargo fluid. Accordingly, the pressure
gradient for the air layer is different from that of the water layer and must be calculated
from the condition ṁa = 0. All other assumptions remain the same as in § 2.2.1.

By adopting the previous methodology to the CHSYM2 and CHSYM4 cases, it is
straightforward to derive the following velocity distributions for the water and air layers,
respectively:

uw(z) = GwH2

2μw

[
2Cμ(d − d2) + (1 − d)2 − z2

H2

]
+ GaH2d2

2μa
,

−H + δ ≤ z ≤ H − δ, (2.12)

ua(z) = H2

2μa

(
1 − z

H

) [
2Gw (1 − d) + Ga

(
2d + z

H
− 1

)]
,

{−H ≤ z ≤ −H + δ} ∪ {H − δ ≤ z ≤ H}. (2.13)

Because ṁa = 0, the average velocity in the air layer is likewise zero, i.e.

V̄a = 1
δ

∫ H

H−δ

ua dz = 0. (2.14)

By substituting (2.13) in the above integral, it can be shown that

Ga = − 3
2d

(1 − d)Gw. (2.15)

Applying (2.15) in (2.12) and (2.13), these expressions for the velocity profiles can be
correspondingly simplified, i.e.

uw(z) = GwH2

4μw

[
Cμ(d − d2) + 2(1 − d)2 − 2

z2

H2

]
, −H + δ ≤ z ≤ H − δ, (2.16)

ua(z) = GwH2

4dμa

[
(1 − d)

(
1 − z

H

) (
3 − 2d − 3

z
H

)]
,

{−H ≤ z ≤ −H + δ} ∪ {H − δ ≤ z ≤ H}. (2.17)

In turn, averaging (2.16) over the vertical distance −H + δ ≤ z ≤ H − δ indicates that

V̄w = GwH2

12μw
(1 − d)(3Cμd − 4d + 4). (2.18)
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q̇s p dx

q̇in p dx
ṁa Cpa Tma ṁa Cpa (Tma + dTma)

ṁw Cpw (Tmw + dTmw)ṁw Cpw Tmw

Q̇ = 0

Water

dx

Air

C.V.

Figure 4. Thermal energy balance for the control volume (C.V.) indicated in figures 2 and 3.

As with the CHSYM2 case, we utilize the condition ṁa = 0 for axisymmetric pipe
flow (PIPE2 and PIPE4) to solve for Ga in terms of Gw. With this relationship to hand,
simplified expressions for the velocity distributions in the water and air layers may be
obtained. In particular, uw is given by

uw(r) = GwR2

4μa

[
r2

R2 − σ 2
1 − 2Cμdσ 2

1 (1 + σ1)[σ2 + (σ 2
1 + 1) log σ1]

σ3

]
,

0 ≤ r ≤ R − δ, (2.19)

where

σ1 = 1 − d, σ2 = 2d − d2 and σ3 = 4σ 4
1

[
log σ1 − 3

4

]
+ (2σ1)

2 − 1. (2.20a–c)

Conversely, ua is given by

ua(r) = GwR2σ 2
1

2μa

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

r2

R2 − 1
)

[2σ 2
1 log σ1 + σ2] + σ 2

2 log
(

R
r

)
σ3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

R − δ ≤ r ≤ R. (2.21)

2.3. Thermal energy balance with USF
For either of the geometries considered in § 2.2, the heat fluxes associated with a
(steady-state) thermal energy balance are as indicated schematically in figure 4. The
control volume indicated in figure 4 is the same as that indicated by the red dashed lines
in figures 2 and 3.

The rate of heat addition from the boundary is q̇sAs, where q̇s is surface heat flux, and
As = pL represents the surface area. In this study, it is assumed that the perimeter of the
control volume for rectilinear channel flow is p = 1, and for axisymmetric pipe flow is
p = 2πR. Also, the length of the control volume is L = dx. For future reference, we note
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On the efficacy of air bubbles as thermal insulators

that the surface heat flux can be expressed via Newton’s law of cooling as

q̇s = hs(Ts − Tmw), (2.22)

where Ts is the (x-dependent) surface temperature, and hs is the (surface) convective heat
transfer coefficient. Ultimately, we will show the variation of hs, or its non-dimensional
analogue, the Nusselt number, with the air layer thickness (among other variables).

In figure 4, energy flows are represented generically as Ė = ṁCpTm, where Cp is the
specific heat capacity, Tm is the depth-integrated mean temperature (defined below), and
the mass flow rate is ṁ = ρV̄Ac. Here, ρ is the density, and Ac is the cross-sectional area.
(Note that the mass flow rate of air may be zero.) In figure 4, there is, by symmetry,
no energy transfer along the bottom of the control volume. For the steady conditions of
interest here, and considering the control volume as a whole, thermal energy inflows must
balance thermal energy outflows. Alas, such a balance does not apply to the individual
fluid layers because of the possibility of heat transfer along the air–water interface. We
denote this interfacial heat flux by q̇in.

In the following subsubsections, the above thermal energy balance will be combined
with heat transfer considerations for both the rectilinear and axisymmetric geometries.
Calculations will be performed assuming an equal pressure gradient in the air and water,
and also assuming zero air mass flow rate.

2.3.1. CHSYM1 and PIPE1
When the water and air flows are driven by an equal pressure gradient, ṁa > 0. Results
pertinent to this case are listed below where we distinguish between the two fluid phases.

Air layer. A balance of the thermal energy inflows and outflows for the air layer shows
that

q̇sp dx − q̇inp dx = ṁaCpa(Tma + dTma) − ṁaCpaTma, (2.23)

from which we conclude that

q̇sp dx = ṁaCpa dTma + q̇inp dx ⇒ dTma

dx
= (q̇s − q̇in)p

ṁaCpa

. (2.24)

Adapting (2.22) yields

Ts − Tma = q̇s

hs
⇒ ∂Ts

∂x
= ∂Tma

∂x
. (2.25)

This last equality follows from the fact that q̇s/hs is constant by assumption. Also constant
in the thermally fully developed region is, by definition, the following ratio of temperature
differences: (Ts − Ta)/(Ts − Tma). Symbolically, we write

∂

∂x

(
Ts − Ta

Ts − Tma

)
= 0 ⇒ 1

Ts − Tma

(
∂Ts

∂x
− ∂Ta

∂x

)
= 0, (2.26a)

i.e.
∂Ts

∂x
= ∂Ta

∂x
, (2.26b)

demonstrating that the streamwise temperature gradient is the same whether measured
along the solid surface or at any depth through the air layer. From (2.24), (2.25) and
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(2.26b), we therefore conclude that

∂Ts

∂x
= ∂Tma

∂x
= ∂Ta

∂x
= (q̇s − q̇in)p

ṁaCpa

. (2.27)

Water layer. In similar fashion to the air layer, the thermal energy balance for the water
layer can be written as

q̇inp dx = ṁwCpw(Tmw + dTmw) − ṁwCpwTmw, (2.28)

implying that

q̇inp dx = ṁwCpw dTmw ⇒ dTmw

dx
= q̇inp

ṁwCpw

. (2.29)

Analogous to (2.27), it can be shown that

∂Tin

∂x
= dTmw

dx
= ∂Tw

∂x
= q̇inp

ṁwCpw

, (2.30)

in which Tin is the temperature measured along the air–water interface. Whereas this
last result establishes the equality of the streamwise temperature gradients ∂Tin/∂x and
∂Tw/∂x, it must also be true that ∂Tin/∂x = ∂Ta/∂x. Therefore, and by combining (2.27)
and (2.30),

q̇inp
ṁwCpw

= (q̇s − q̇in)p
ṁaCpa

. (2.31)

Solving this last result for the interfacial heat flux indicates that

q̇in = q̇s(ṁwCpw)

ṁaCpa + ṁwCpw

. (2.32)

Finally, substitution of (2.32) into (2.27) and (2.30) gives

∂Tmw

∂x
= ∂Tma

∂x
= ∂Tw

∂x
= ∂Ta

∂x
= q̇sp

ṁaCpa + ṁwCpw

, (2.33)

which shows that, relative to the streamwise coordinate x, the air and water temperatures
change in an identical manner.

2.3.2. CHSYM2 and PIPE2
As noted in § 2.2, the mass flow rate for air vanishes (ṁa = 0) for the cases labelled as
CHSYM2 and PIPE2. This fact simplifies the process of balancing thermal energy inflows
and outflows: we find that

q̇sp dx = ṁwCpw dTmw ⇒ dTmw

dx
= q̇sp

ṁwCpw

. (2.34)

Furthermore, the streamwise temperature distribution in the air and water layers can be
recovered from the derivatives

∂Tmw

∂x
= ∂Tma

∂x
= ∂Tw

∂x
= ∂Ta

∂x
= q̇sp

ṁwCpw

. (2.35)

Unfortunately, (2.35) is incomplete (and likewise for the analogue expression 2.33):
although the streamwise variation of e.g. Ta or Tw is well-characterized, we have no
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information concerning temperature variations in the cross-stream direction. In order to
infer such information, we turn from the thermal energy balances of the present subsection
to the energy equation of §§ 2.4 and 2.5. Consistent with figure 4, the former subsection
considers USF; meanwhile, the latter subsection considers a case omitted in the current
subsection, namely UST.

2.4. Energy equation (USF)

2.4.1. CHSYM1
Complementing (2.1), we write the (steady) thermal energy equations as

∂2Ta

∂z2 = ua(z)
αa

(
∂Ta

∂x

)
and

∂2Tw

∂z2 = uw(z)
αw

(
∂Tw

∂x

)
, (2.36)

for the air and water phases, respectively. Thermal diffusivities are defined as αi =
ki/(ρiCpi), in which k is the fluid thermal conductivity, ρ is the fluid density, and
i stands for a or w. Boundary conditions corresponding to (2.36) are as follows:
(i) (∂Tw/∂z)z=0 = 0, which enforces symmetry across the channel centreline; (ii) Tw(z =
H − δ) = Ta(z = H − δ), which enforces temperature equality at the air–water interface;
(iii) −ka(∂Ta/∂z)z=H−δ = −kw(∂Tw/∂z)z=H−δ , which enforces continuity of conductive
heat flux across the air–water interface; and (iv) Ta(z = H) = Ts, which enforces
temperature equality at the wall. As regards the latter boundary condition, recall that USF
thermal forcing demands that Ts = Ts(x). Thus the functional dependence of Ts remains
to be determined from q̇s; calculation details are given below.

The boundary conditions given in the previous paragraph are used to resolve the
constants of integration that result from integrating (2.36) in z. Of course, before such
integrations can be performed, it is first necessary to substitute into (2.36) the previously
derived expressions for uw in (2.4), ua in (2.5) and ∂Ta/∂x = ∂Tw/∂x in (2.33), which
in turn requires application of ṁw = ρwV̄w(H − δ) and ṁa = ρaV̄aδ. By applying the
substitutions and boundary conditions in question, it can ultimately be shown that

Ta = Cpwρw(1 − d)[Tska − q̇s(H − z)]β1 + CμCpaρa[q̇sβ2 + Tskad2(3 − d)]
ka[Cpwρw(1 − d)β1 + CμCpaρad2(3 − d)]

, (2.37)

where
β1 = 3Cμd(2 − d) + 2(1 − d)2 (2.38)

and

β2 = H − z
4

[
4d3 − 12d2 + 3 − 5

( z
H

)
+

( z
H

)2 +
( z

H

)3
]
. (2.39)

In similar fashion,

Tw = Cpwρw[q̇sH{β4 + kwd(1 − d)β1} − Tskakw(1 − d)β1] − kwβ3β5

−kakw[Cpwρw(1 − d)β1 + (3 − d)β3]
, (2.40)

where

β3 = CμCpad2ρa, (2.41)

β4 = ka

4

[( z
H

)2 − (1 − d)2
] [( z

H

)2 − 5(1 − d)2 − 6Cμd(2 − d)

]
(2.42)
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and

β5 = Tska(3 − d) − q̇sHd
(

2 − 3d
4

)
. (2.43)

In interpreting (2.37) and (2.40), note that Ta and Tw inherit a dependence on x from the
surface temperature Ts.

From (2.37) and (2.40), it is useful to evaluate the mean temperatures of air (Tma)
and water (Tmw), respectively. Although the mean temperature is independent of z by
construction, Tma and Tmw must obviously vary with x. With reference to the thermal
energy equation of either air or water, mean temperatures can be calculated from

Tm =
ρCpi

∫ z2

z1

Ti(z) ui(z) dz

ρV̄Cpi(z2 − z1)
= 1

V̄(z2 − z1)

∫ z2

z1

Ti(z) ui(z) dz, (2.44)

where z2 − z1 indicates the thickness of the layer in question. On the basis of (2.44), we
conclude that

Tma = 1
V̄aδ

∫ H

H−δ

uaTa dz, (2.45)

and therefore

Tma =
CμCpad2ρa

[
Tska(3 − d)2 − Hdqs

(
9d2

14
− 7d

2
+ 24

5

)]
+ 1

4
(Cpwρwβ1β6)

ka(3 − d)[Cpwρw(1 − d)β1 + CμCpad2ρa(3 − d)]
.

(2.46)
Here,

β6 = (1 − d)[4Tska(3 − d) − q̇sHd(8 − 3d)]. (2.47)

Similarly,

Tmw = 1
V̄w(H − δ)

∫ H−δ

0
uwTw dz, (2.48)

therefore

Tmw = 1
β7

{[
Cpwρw

(
Hq̇s(1 − d)2β8

35kwβ1
− Ts(1 − d)β1

)]
− [TsCμCpad2ρa(3 − d)]

+
[

Hdq̇s

4ka
(4Cpwρwβ1 + CμCpaρad2(8 − 3d))

]}
. (2.49)

Here,
β7 = −[Cpwρw(1 − d)β1 + CμCpad2ρa(3 − d)] (2.50)

and

β8 = 68(1 − d)4 − 168Cμ(1 − d)2[(1 − d)2 − 1] + 105C2
μd2(2 − d)2. (2.51)

Equation (2.33) provides a second means of evaluating the mean water temperature, i.e.

∂Tmw

∂x
= q̇s

ṁaCpa + ṁwCpw

⇒ Tmw = q̇sx
ṁaCpa + ṁwCpw

+ Tmw0, (2.52)

where Tmw0 is the upstream water temperature as measured at x = 0, the critical distance
at which the flow becomes hydrodynamically and thermally fully developed.
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Because calculating the surface temperature as a function of x is a prerequisite for
estimating the temperature profile of either phase, the next step of the derivation consists
of equating (2.48) and (2.52) then solving for Ts for a prescribed value of Tmw0. On this
basis, and after considerable algebra, we find that

Ts = Tmw0 − μwq̇sH

{[
6x

H4Gwβ7

]
+

[
Cpwρwβ8(1 − d)2

35kwμwβ1β7

]

+
[

Cpwρwd{(2 − 2d)3 + 12Cμ(1 − d)[1 − (1 − d)2]} + CμCpaρad3(8 − 3d)

4kaμwβ7

]}
.

(2.53)

With Ts and Tmw to hand, determination of the temperature difference Ts − Tmw is
now straightforward. Such a calculation is necessary for the evaluation of the (surface)
convective heat transfer coefficient. By (2.22), hs is given by

hs = q̇s

Ts − Tmw
. (2.54)

(Note that hs is independent of x.) In turn, and from hs, we can make a theoretical estimate
of the Nusselt number Nu, which is defined as the ratio of the convective to the conductive
heat transfer across a boundary. Restricting attention to the water layer, we consider Nuw,
which is expressed as

Nuw = 2q̇s × 2(H − δ)

kw(Ts − Tmw)
. (2.55)

The former factor of 2 from the numerator is included because heat is supposed to be added
by both of the lower and upper solid surfaces. The latter factor of 2 is included because the
total water depth measures 2(H − δ) – cf. figure 2.

2.4.2. PIPE1
Changing the flow geometry from rectilinear to axisymmetric modifies (slightly) the form
of the equations to be solved but does not alter the overall solution methodology. For this
reason, we provide only a concise summary below.

The reduced form of the thermal energy equation associated with the flow of figure 3
reads

u
∂T
∂x

= α

r
∂

∂r

(
r

∂T
∂r

)
, (2.56)

where x and r represent the axial and radial directions, respectively. Therefore, heat
transfers in the water and air phases are respectively governed by the equations

∂

∂r

(
r

∂Tw

∂r

)
= ruw

αw

∂Tw

∂x
and

∂

∂r

(
r

∂Ta

∂r

)
= rua

αa

∂Ta

∂x
. (2.57)

These equations are solved by integrating in r, where the right-hand-side axial temperature
gradients are given by (2.33), and the velocities uw and ua are given by (2.8) and (2.9),
respectively. Boundary conditions are the same as those of § 2.4.1 (see the discussion
following (2.36)) but with r replacing z, and R replacing H. From the so-determined
solutions for Tw and Ta, depth-integrated mean temperatures can be evaluated. Thereafter,
we calculate, in order, Ts, Ts − Tmw, hs and Nuw. Details are omitted in the interests of
brevity.
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2.4.3. CHSYM2 and PIPE2
Similar to the discussion from the start of § 2.4.2, the theoretical analyses corresponding
to the zero air mass flow rate cases CHSYM2 and PIPE2 are comparable to those
outlined in the last two subsubsections. More specifically, we employ the same thermal
energy equations and also the same boundary conditions. Now, however, axial temperature
gradients are given by (2.35) rather than (2.33). Likewise, we consider as the analytical
solution for uw either (2.16) or (2.19), and as the analytical solution for ua either (2.17)
or (2.21). By combining the relevant equations, our goal is to again solve for the surface
temperature Ts in terms of x so that theoretical estimates may be made for Ts − Tmw, hs
and ultimately Nuw. Corresponding details are again omitted owing to the complexity of
the resulting equations.

2.5. Energy equation (UST)
In the formulation where the surface temperature is uniform and therefore not a function of
the downstream coordinate, quantities such as ∂Tw/∂x and ∂Ta/∂x are no longer constant.
To confirm this statement, we adopt the generic expression for the surface heat flux under
UST conditions, i.e.

q̇s = hs(Ts − Tm)︸ ︷︷ ︸
/= constant

⇒ q̇s /= constant (2.58)

(Çengel & Ghajar 2021). Recall, however, that

q̇s dx = ṁCp dTm. (2.59)

Accordingly,

q̇s /= constant ⇒ ∂Tm

∂x
/= constant ⇒ ∂T

∂x
/= constant. (2.60)

The implications of this last inequality can be understood with respect to the thermal
energy equation as expressed for either phase in rectilinear coordinates, i.e.

∂2T
∂z2 = u(z)

α

(
∂T
∂x

)
. (2.61)

If the right-hand-side derivative depends on x, then one must either (i) impose a
temperature decay rate in the axial direction (see e.g. equation 5 of Sparrow, Baliga
& Patankar 1978), or (ii) solve a partial differential equation rather than the ordinary
differential equations considered until this point. Given the added complications of
deriving analytical solutions for Tw and Ta, we instead seek a numerical solution. Because
u(z) is decoupled from T(x, z), the simplest approach is to solve (2.61) subject to
appropriate boundary/matching conditions on Tw and Ta. On the other hand, we wish to
run computational fluid dynamics (CFD) simulations so as to validate USF solutions such
as those detailed in § 2.4.1. With this being the case, it needs relatively little additional
effort to resolve CHSYM3, PIPE3, CHSYM4 and PIPE4 using the same CFD algorithm,
and this is the approach that we prefer to follow here. Before showing the numerical
solutions in question, however, it is first necessary to describe the numerical methodology.
This is the topic of the next section.
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Inlet (air)

Symmetry

Inlet (water)
Outlet (water)

Outlet (air)InterfaceNo-slip wall

L
x

z (r)

H(R)

Uniform q̇s or Ts

δ

Figure 5. Schematic of the 2-D numerical domain corresponding to a rectilinear channel or an axisymmetric
pipe.

3. Numerical simulations

Steady, incompressible, laminar CFD simulations are performed using the commercial
software platform COMSOL. Our objectives are twofold: (i) to validate the accuracy of
the analytical solutions presented and discussed in § 2; and (ii) to derive novel results
for the UST cases, where no analytical solution is available. As regards (ii), not only do
we consider the perfect plastron cases summarized in table 1, we also examine select
superhydrophobic surfaces containing transverse micro-ridges. This latter category of
numerical simulations, described in § 3.3, is meant to shed light on the connection between
the solutions of § 2 and real microfluidic devices, e.g. from lab-on-a-chip devices.

3.1. Numerical set-up (flat superhydrophobic surface)
Figure 5 demonstrates the 2-D computational domain and boundary conditions used for
simulations of type CHSYM and PIPE. So as to characterize the thermal insulation
efficacy of the air layer, we vary the thickness δ of this layer. Moreover, to avoid a
tangential discussion of shear-driven flow instabilities or a capillary-induced deflection
of the air–water interface, we model this interface as a horizontal dividing line. Along the
upper surface, we apply either a uniform heat flux or a uniform temperature boundary
condition corresponding, respectively, to the states described in § 2 as USF and UST.
When we model the upper boundary as USF, we consider a value for the surface heat
flux of q̇s = 10 W m−1. Meanwhile, Ts = 330 K when we model the upper boundary
as UST. Moreover, we consider a horizontal/axial pressure gradient −∂p/∂x = 6.4 ×
10−6 Pa m−1, which is sufficiently small to avoid a transition to turbulent flow. For
instance, and for CHSYM1 and CHSYM3, we estimate that the Reynolds numbers vary
between approximately 30 and 1.2 × 103, depending on the value for d. Corresponding
ranges for CHSYM2/CHSYM4, PIPE1/PIPE3 and PIPE2/PIPE4 are 1 � Re � 2.4 × 102,
15 � Re � 6.0 × 102 and 1 � Re � 1.2 × 102.

Average inlet and outlet pressures are specified such that (i) the same pressure gradient
applies through both phases when ṁa > 0, or (ii) conditions within the air layer are
adjusted such that the average velocity vanishes when ṁa = 0. Furthermore, the inlet water
and air temperatures are set at 300 K. We solve a Graetz-type problem where, with the
benefit of the solutions for ua and uw given in § 2.2, the flow is hydrodynamically fully
developed for all x. By contrast, realizing a thermally fully developed state requires long
horizontal/axial distances, where the precise thermal entry length depends on d and the
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Figure 6. Section of the grid used for numerical simulations of type CHSYM and PIPE. Here, we consider
d = 0.2 though our numerical simulations span a large range of d values as documented in figures 12 and 13
below.
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PIPE

Mesh 1

Mesh 2
Mesh 3Mesh 4 Mesh 6Mesh 5

Mesh 1

Mesh 2
Mesh 3

Mesh 4 Mesh 6Mesh 5

(a) (b)

Figure 7. Mesh independence analysis: (a) rectilinear channel, and (b) axisymmetric pipe.

nature of the thermal forcing, e.g. USF versus UST. For consistency’s sake, the length
of the numerical domain is set to L/H = L/R = 1000, where the channel height (pipe
radius) is set to H = 0.2 m (R = 0.2 m). Finally, and for simplicity, we assume constant
thermophysical properties for water and air, the values of density, viscosity, and so on,
being only modestly influenced by temperature over the range of temperatures germane to
our simulations.

Numerical simulations are performed using a non-uniform structured grid that is
generated with local refinement in the vicinity of the wall and the air–water interface –
see figure 6. The maximum size of the grid elements is 0.03 m, with expansion ratio 1.01.

3.2. Grid independence
Grid independence tests were carried out by considering six different mesh sizes for
various d. Representative results, which consider both the rectilinear and the axisymmetric
geometries, and d = 0.2, are summarized in figure 7. We consider as the metric the
horizontal (axial) temperature gradient as measured along the interface at downstream
distance 995H (995R), by which point the flow is thermally fully developed. Figure 7
demonstrates that the largest divergence between the meshes labelled 4, 5 and 6 is less
than 1 %. We conclude, therefore, that mesh 5 has sufficient resolution to capture the flow
characteristics, all the while avoiding unreasonably long run times. Similar conclusions
apply for other values of d, so we do not show the data in question.
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H

Symmetry

Free-slip wall

Uniform Ts

No-slip wall
Air Solid

L

Inlet (water) Outlet (water)

w δ
λ

Figure 8. Schematic of the 2-D numerical domain corresponding to a rectilinear channel containing
transverse ridges.

Figure 9. Section of the grid used for numerical simulations of type CHSYM4, where the channel contains
transverse ridges. Here, we consider d = 0.2 though our numerical simulations span a large range of d values
as documented in figure 17 below.

3.3. Numerical set-up (textured superhydrophobic surface)
Further to the smooth-solid surface numerical simulations described in the last two
subsections, we additionally conducted a limited set of (2-D) channel flow simulations
employing the domain illustrated in figures 8 and 9. Similar to Maynes, Webb & Davies
(2008), these are of the UST variety and include transverse ridges that span the channel
breadth. Ridges are assumed to be made of PDMS such that the thermal conductivity ratio
kridge/ka is approximately 6.274. As illustrated in figure 8, the ridge width measures w,
and the centre-to-centre ridge spacing measures λ. Meanwhile, the ridge height matches
the depth of the air pockets that are entrapped between adjacent ridges. Air pockets are
assumed to be of uniform depth, i.e. we ignore the impact of meniscus curvature; cf.
Game et al. (2017, 2018) and Tomlinson et al. (2024). Because air pockets are isolated
one from the other, this new category of numerical simulations most closely resembles
flow/thermal forcing regime CHSYM4 from table 1. To this end, and relative to the
numerical simulations of § 3.1, we consider the same surface temperature, inlet/outlet
boundary conditions and Reynolds number range, where, in the latter case, the value
of −∂p/∂x is adjusted accordingly. Importantly, however, the free-slip hydrodynamic
boundary condition that we apply in studying flows relevant to figures 2 and 5 is now
replaced with a mixed free-slip/no-slip boundary condition.

Another important difference compared with the earlier numerical simulations concerns
the channel length. Just as we aspire to model more faithfully a real superhydrophobic
surface by adding transverse ridges, so too is it necessary to limit the channel dimensions
to values that are more typical of lab-on-a-chip devices. Thus we conduct two different
studies. In the first, we fix H = 0.2 mm and L/H = 180, then examine the impact of
changing d and w/λ. In the second, we specifically model the influence of L by running
numerical simulations in the range 30 ≤ L/H ≤ 1440.
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Figure 10. Velocity profiles measured for (a) a rectilinear channel, and (b) an axisymmetric pipe. Here, u0 is
defined as the inlet velocity, and in both cases, d = 0.2.

Owing to the aforementioned change of hydrodynamic boundary condition, a finer
mesh is required, as evidenced by a visual comparison of figures 6 and 9. This change
notwithstanding, a grid independency test was performed and results qualitatively similar
to those exhibited in figure 7 were obtained. In § 6, we present numerical results derived
from meshes containing approximately 1.6 × 106 elements.

4. Validation of the theoretical solutions

Before presenting our results in the next section, it is first necessary to confirm the
accuracy of the theoretical solutions. We do so by comparison with the numerical output.
This comparison begins with an assessment of the vertical flow profiles and the velocities
uw and ua. Figures 10(a,b) show the non-dimensional velocity profiles associated with
ṁa > 0 (CHSYM1/PIPE1) and ṁa = 0 (CHSYM2/PIPE2). The former figure corresponds
to the rectilinear geometry, whereas the latter corresponds to the asymmetric geometry.
Reassuringly, we observe very little difference between the theoretical predictions
(indicated by the blue and black curves) as compared to their numerical counterparts
(red and green curves). A separate analysis (not shown) confirms that our theoretical and
numerical results likewise match the predictions made in the isothermal study of Busse
et al. (2013).

Expanding on the comparisons drawn in figure 10, figures 11(a,b) show the USF-derived
temperature profiles for the CHSYM and PIPE cases. Temperature profiles are here
specified with respect to Ts, Ti (defined as the inlet temperature for either fluid phase) and
T0, defined as the temperature measured at a fixed location far downstream and along the
plane or axis of symmetry, i.e. z = 0 or r = 0. In figure 11, theoretical data are shown with
the black and blue curves, and numerical data are shown with the red and green curves; as
with figure 10, excellent agreement is observed between the corresponding pairs of data
sets.

5. Results

5.1. Variation of water temperature with air layer thickness
A major objective of this study is to estimate the degree to which a surface-attached air
layer can serve as a thermal insulator. To this end, it is helpful to categorize the percentage
reduction of the cargo fluid (i.e. water) temperature as compared to a case where no air
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Figure 11. As in figure 10, but considering the non-dimensional temperature profile rather than the
non-dimensional velocity profile.
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Figure 12. Change in the water temperature, �T , with respect to the thickness of the air layer: (a) USF and
rectilinear channel flow; (b) USF and axisymmetric pipe flow.

0

–20

–40

–60�
T 

(%
)

–80

–100

0

–20

–40

–60

–80

–100
0 0.2 0.4 0.6 0.8 1.0

d = δ/H
0 0.2 0.4 0.6 0.8 1.0

d = δ/R

(a) (b) UST: PIPE3 and PIPE4UST: CHSYM3 and CHSYM4

Optimum
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Figure 13. As in figure 12, but considering UST rather than USF.

film exists such that the water is in direct contact with the (hot) solid boundary. Data of
this type are summarized in figure 12 for the USF case, and in figure 13 for the UST case.
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In these figures, the vertical axis variable �T (%) is defined as

�T(%) = Tmw − Td=0

Tmw0 − Td=0
× (−100 %), (5.1)

where Td=0 is the water mean temperature for the case d = 0. Note that in contrast to Tmw0,
Tmw and Td=0 are measured at the same location, situated sufficiently far downstream
that fully developed flow conditions apply. Note also that Tmw0 is the same for all values
of d, including d = 0. Thus the denominator of (5.1) measures the horizontal (axial)
temperature change experienced by the water when air is absent from the channel (pipe).
Meanwhile, the numerator compares the downstream temperature for cases where the
air layer is versus is not present. Thus �T can be best interpreted by considering the
following two limiting cases: (i) when the air layer contributes minimal thermal insulation,
Tmw → Td=0 and thus �T → 0 %; (ii) when the air layer instead serves as a highly
effective insulator, Tmw is little different from Tmw=0 and therefore �T → −100 %.

Because both theoretical and numerical solutions are possible for the USF cases,
figures 12(a,b) include both categories of data. Consistent with the discussion of § 4,
we find excellent agreement between the numerical results (red symbols) and the
analogue theoretical predictions (blue solid and black dashed curves). From either of the
theoretical or numerical data sets, therefore, figures 12(a,b) reveal that heat transfer can be
substantially impeded by increasing the air layer thickness. Note, however, the limitations
of increasing d too much: beyond the critical values indicated by the open diamonds, �T
increases rather than decreases. Such behaviour arises because of the impact of a thicker
air layer within the channel or pipe. A thicker layer of air occupies more vertical space in
the duct, resulting in a reduced cross-sectional area available for water flow. In turn, and
for fixed pressure gradient in x, the water mass flow rate and average velocity both fall.
The decrease of V̄w and H − δ cause Tmw to rise, as is evident from (2.48). Of course,
precisely the opposite behaviour is noted for the air layer, i.e. increasing δ causes V̄a to
increase along with Tma – see (2.45).

Upon comparing the solid blue and black dashed curves of figures 12(a,b), we find that
the cases for which ṁa > 0 admit more thermal resistance than their ṁa = 0 counterparts.
This observation is consistent with the velocity data shown in figure 10. The velocity
profiles in question demonstrate that flow speeds are larger overall when ṁa > 0 versus
when ṁa = 0. As a consequence, and considering e.g. the air layer, the advection of
thermal energy in x is more robust when the net mass flow rate is non-zero. In turn, thermal
energy advected in x is not conducted in z or r into the underlying water layer, suggesting
a more effective thermal insulator.

The U-shape associated with the curves of figure 12 is reminiscent of the shapes of
the curves in figure 6(a,c) of Busse et al. (2013). Busse et al. (2013) were interested in
the drag reduction potential of surface-attached air bubbles, so plotted the change of drag
force (�D) as a function of the air film thickness d. However, beyond a mere qualitative
comparison between our results versus those of Busse et al. (2013), we prefer to make
a quantitative comparison that juxtaposes predictions for �T versus �D. To this end, a
remarkable observation is made, namely that the curves of �T versus d exactly overlap
with the curves of �D versus d. The explanation is as follows. For pressure-driven flow,
�D is defined based on the change in the mean streamwise pressure gradient, dp/dx.
Moreover, in the USF case, the mean water temperature measured at the duct outlet can be
estimated from Tmw,x=L = Tmw0 + (q̇As/ṁwCpw) (Çengel & Ghajar 2021). On the other
hand, and for the Poiseuille flows of interest here, ṁw is linearly related to the pressure
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Identifier �Toptimum (%) doptimum d90 %opt d50 %opt

CHSYM1 −96.64 0.414 0.0502 0.0083
PIPE1 −95.88 0.292 0.0354 0.0074
CHSYM2 −82.32 0.313 0.1104 0.0216
PIPE2 −81.24 0.236 0.0818 0.0171
CHSYM3 −99.60 0.623 0.0639 0.0177
PIPE3 −98.84 0.509 0.0858 0.0278
CHSYM4 −98.84 0.523 0.0777 0.0188
PIPE4 −93.12 0.456 0.1700 0.0623

Table 2. Values for the optimum temperature change and corresponding optimum air layer thickness. Also
shown are the air layer thicknesses required to achieve either 90 % or 50 % of the optimum (i.e. minimum)
value for �T .

gradient. As a result, any fractional reduction in the drag experienced by the cargo fluid
must be matched exactly by a fractional reduction of the temperature change.

For the UST cases, one does not have the luxury of computing a theoretical solution. For
this reason, figures 13(a,b) include only a single pair of curves, both of which are derived
from numerical output. The curves in blue and black respectively consider ṁa > 0 and
ṁa = 0. As compared to figure 12, the difference between the ṁa > 0 and ṁa = 0 cases
is relatively small, particularly for the rectilinear geometry. A more general comparison
of figures 12 and 13 reveals two additional insights. First, although similar trends arise,
the results of figures 12 and 13 are not identical. We conclude, therefore, that the UST
case is not the direct analogue of the drag reduction scenario studied by Busse et al.
(2013). Elaborating on this point, graphical evidence suggests that less thermal energy is
transferred from the solid surface to the cargo fluid when the thermal boundary condition
is UST versus USF. This observation is consistent with the engineering principle that
scalar transport is maximized when the driving force (here, the temperature difference
Ts − Tmw) is constant. By contrast, the UST boundary condition demands that Ts − Tmw
decrease monotonically with x, leading to a reduction in the overall transfer of thermal
energy.

The central conclusion of the paragraph above, namely that the UST case admits
solutions different to those derived by Busse et al. (2013), contrasts from the findings
of Maynes et al. (2008). Abandoning the adiabatic interface assumption, they performed
numerical simulations of micro-channel flow featuring transverse ribs maintained at a
fixed temperature. In the limit of vanishing rib thickness, their figure 11 suggests an
equal impact on momentum versus heat transfer. It is important to recall, however, that
the Maynes et al. (2008) result is derived for particular values of rib height and Reynolds
number, i.e. Re = 1000. For Re < 1000, figure 10 of Maynes et al. (2008) suggests that
the aforementioned equivalence is likely to disappear.

5.2. Optimum air layer thickness
Recall that figures 12 and 13 include open diamonds that indicate those optimum d
values that minimize �T . Motivated by the exposition of Busse et al. (2013), figures 12
and 13 also demarcate those points where, for d < doptimum, the value of �T is either
50 % or 90 % of the value indicated by the open diamond. Expanding on this graphical
information, table 2 quantifies the amount of the temperature decrease when d = doptimum.
For example, and considering CHSYM1, the minimum possible value of �T is −96.64 %
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Figure 14. Plots of Nuw versus d for (a) USF and rectilinear channel flow, (b) USF and axisymmetric pipe
flow, (c) UST and rectilinear channel flow, and (d) UST and axisymmetric pipe flow. Note the variation of the
y-axis limits.

and this minimum value is realized when d = 0.414, i.e. when just over 40 % of the channel
cross-section is occupied by a surface-attached air bubble. Recognizing the difficulty of
stabilizing such a thick air layer outside of a microfluidics context, it is welcome news that
still substantial �T values −86.97 % and −48.32 % can be realized for the much smaller
d values 0.0502 and 0.0083, respectively. So although it may prove difficult to achieve the
minimum possible value for �T , the steep sides associated with the U-shaped curves of
figures 12 and 13 suggest that close to optimal solutions may be realized with significantly
thinner air layers. This conclusion applies not only to CHSYM1 but to the other cases
considered in table 2 as well.

5.3. Nusselt number
Nusselt numbers are important in this study because they provide the most direct measure
of the thermal insulation efficacy of surface-attached air bubbles. In the limit d → 0, we
reproduce the classical Nusselt numbers relevant to single-phase flow, e.g. 4.36 in the case
of laminar pipe flow subject to USF. On the other hand, our study admits a far richer
behaviour because we allow d to assume values between zero and unity. To this end,
figure 14 confirms that Nuw is a strong function of d for all of the cases defined in tables 1
and 2. More specifically, and for each of the curves of figure 14, we observe a rapid initial
decrease of Nuw followed by a gradual relaxation to the limiting value Nuw = 0 when
d → 1.
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Figure 15. Plots of L̃t
slip versus L̃slip for USF and (a) rectilinear channel flow, and (b) axisymmetric pipe flow.

The complicated mathematical form of equations such as (2.49) and (2.53) makes it
difficult to predict, in purely mathematical terms, how Nuw should vary with d. On the
other hand, the monotone variations exhibited by the curves of figure 14 are straightforward
to reconcile using physical intuition. We expect, and observe, that as the air bubble
thickens, less thermal energy is transferred from the solid surface to the cargo fluid.
Consistent with the trends observed in figures 12 and 13, even a relatively thin air bubble
can non-trivially impede heat transfer; however, the law of diminishing returns manifests
when d � 0.1, regardless of the duct geometry and thermal forcing regime.

Until now, we have deliberately avoided introducing slip lengths into the discussion. In
the superhydrophobic surface context, however, Nusselt numbers are often plotted versus
slip lengths. It is therefore appropriate to include similar kinds of figures here, at least
for the USF cases, which offer the best opportunity for comparison with important earlier
studies. To this end, we define the hydrodynamic slip length Lslip as

Lslip = uin

∂u
∂z

∣∣∣∣
in

, (5.2)

where velocities and velocity gradients are measured at the location of the interface. We
also consider the thermal slip length Lt

slip, which is expressed as

Lt
slip = Tin − Ts

∂T
∂z

∣∣∣∣
in

; (5.3)

cf. figure 1 of Maynes & Crockett (2014). With a view towards comparing our slip
lengths with those estimated by Enright et al. (2014), we non-dimensionalize (5.2) and
(5.3) by defining L̃slip = Lslip/2(H − δ) and L̃t

slip = Lt
slip/2(H − δ), respectively, for the

CHSYM cases. For the corresponding PIPE cases, we instead write L̃slip = Lslip/2(R − δ)

and L̃tslip = Lt
slip/2(R − δ), respectively.

Within the range 0 ≤ L̃slip ≤ 1, figure 15 shows the connection between the thermal
and hydrodynamic slip lengths for CHSYM1 and CHSYM2 (figure 15a), and for PIPE1
and PIPE2 (figure 15b). In both plots, we note that L̃t

slip is larger when ṁa = 0 as
compared to when ṁa > 0. By contrast, figures 12(a,b) show that |�T| is larger (and
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Figure 16. Plots of Nuw versus L̃slip for USF and (a) rectilinear channel flow, (b) axisymmetric pipe flow. In
(a), results extracted from Enright et al. (2014) are included.

therefore the air layer acts as a more effective insulator) when ṁa > 0 versus ṁa = 0. The
apparent contradiction is reconciled by superposing the influence of the hydrodynamic
slip length: ṁa = 0 is associated with smaller L̃slip and smaller interfacial flow velocities,
and therefore longer residence times, for the water flowing along the channel or pipe – cf.
Enright et al. (2014) and Lam, Hodes & Enright (2015).

A further striking feature of figure 15 is that L̃t
slip varies approximately linearly with

L̃slip, particularly for the rectilinear geometry. This finding is consistent with that of Ng &
Wang (2014) (see their figures 6a–d) and Enright et al. (2014) (see their figure a). There,
likewise, nearly linear relationships are observed; (modest) deviations from linearity arise
owing to the different solids fractions for the superhydrophobic surfaces that entrap the
air layer. (Considerations of the solids fraction are, of course, moot in the perfect plastron
limit.)

Expanding on the comparison with Enright et al. (2014), we include data extracted
from their figure 6(b) in figure 16, which shows the variation of the Nusselt number
from figure 14 with the hydrodynamic slip length from figure 15. From figure 15(a), the
approximate ratio L̃t

slip/L̃slip for CHSYM1 (CHSYM2) is 0.5 (2.0). Fortuitously, Enright

et al. (2014) include data with L̃t
slip/L̃slip � 0.5 in their figure 6(b); extracting these data

and including them in figure 16(a) shows a near perfect overlap with our own predictions.
Although figure 6(b) of Enright et al. (2014) does not include comparable results for
L̃t

slip/L̃slip = 2.0, it does include data for L̃t
slip/L̃slip � 1.5 and L̃t

slip/L̃slip � 2.1, and
these results are likewise presented in figure 16(a). Here again, excellent agreement is
observed, i.e. our results lie between the corresponding curves of Enright et al. (2014),
and are much closer to the curve labelled L̃t

slip/L̃slip � 2.1 than they are to the curve

labelled L̃t
slip/L̃slip � 1.5. These observations are important because they affirm that

the relationship between the Nusselt number and the hydrodynamic slip length is, at
least in some scenarios (e.g. USF, modest solids fraction), independent of the details of
the superhydrophobic surface that defines L̃slip. Correspondingly, one may consider an
idealized superhydrophobic surface, e.g. one altogether devoid of pillars or ridges, and
thereby sidestep some of the more intricate mathematical calculations needed when such
topographical features are included. We return to the comparison between our approach
and that of Enright et al. (2014) and others in § 5.4.
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For completeness, figure 16 also includes results relevant to PIPE1 and PIPE2. The
trends on display are qualitatively very similar to CHSYM1 and CHSYM2 except that
the Nusselt number exhibits a more rapid initial decrease with L̃slip. Unfortunately, no
comparison with Enright et al. (2014) is possible here because they do not consider the
case of axisymmetric flow.

5.4. The perfect plastron limit and the adiabatic interface assumption
As suggested in the Introduction, our analysis takes a different approach to the seminal
studies of Maynes & Crockett (2014), Enright et al. (2014), Kirk et al. (2017), Karamanis
et al. (2018), Game et al. (2018) and others, wherein the air–water interface is regarded
as adiabatic such that heat transfer from the solid boundary to the cargo liquid occurs
via roughness elements. Juxtaposing our approach versus theirs, the perfect plastron limit
represents, in the words of Enright et al. (2014), ‘a flow completely insulated from the
channel surfaces’. The justification for considering an adiabatic interface often references
the small thermal conductivity of air or the relatively large solids fraction that is associated
with at least some superhydrophobic surfaces – see e.g. figure 3(a) of Ng & Wang (2014).
Elsewhere, attention has been drawn to the height versus spacing of roughness elements.
For instance, and citing the numerical data of Maynes et al. (2008), Game et al. (2018)
remark that ‘the rate of heat conducting into the liquid through the gas cavities is negligible
in comparison to the rate entering through the solid ridges for cavity depths greater than
about 25 % of the cavity width’.

The data of figure 14, derived as they are for a highly-idealized superhydrophobic
surface devoid of roughness elements, offer a different perspective. More specifically,
our results caution against always ignoring the air layer (or the depth ratio d = δ/H) in
assessing the relative importance of the interface as a vehicle for heat transfer. In other
words – and although Nuw is very small when d � 0.4 – Nuw � 1 when d � 0.1. For this
range of non-dimensional roughness heights, we predict Nusselt numbers not dissimilar
to those exhibited in figure 7 of Maynes et al. (2008), figure 6(b) of Enright et al. (2014)
or figure 7 of Kirk et al. (2017). In our opinion, the adiabatic interface assumption should
therefore be applied with some care in cases of relatively short roughness elements.

The conclusion of the last paragraph requires appropriate contextualization and should
not be misconstrued as a critique of the aforementioned seminal papers. After all, these
studies apply intricate theoretical and/or numerical techniques to solve for the velocity
and temperature distributions given e.g. mixed free-slip and no-slip bottom boundary
conditions. A non-trivial challenge, arguably tackled with the greatest theoretical rigour
by Game et al. (2017, 2018), is to account for the deflection of the air–water interface and
to remove the associated singularities that arise at the triple point. (The former topic is also
considered in healthy detail by Lam et al. (2015) and Kirk et al. (2017); meanwhile, a novel
extension to the Game et al. (2017, 2018) model is to superpose thermocapillary stresses
– see the recent study by Tomlinson et al. (2024).) Given the associated level of difficulty
of these calculations, we suggest retaining the edifice erected by Game et al. (2018) and
others, but softening the (sometimes restrictive) assumption of an adiabatic interface. In
practical terms, this could be achieved by replacing the requirement that Nu = 0 along
the interface (see e.g. equation 2.18 of Kirk et al. (2017)) with a result more reflective
of the trends exhibited in figure 14. In turn, and for each of Maynes & Crockett (2014),
Enright et al. (2014), Kirk et al. (2017), Karamanis et al. (2018) and Game et al. (2018),
the suggested incorporation would require explicitly defining the depth of the air layer (as
is done, for example, in the isothermal study of Game et al. (2017)). Stated differently,
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Figure 17. Change in the water temperature, �T , with respect to the thickness of the air layer. The black
dashed curve is reproduced from figure 13(a), whereas the coloured curves show the output from the numerical
simulations of § 3.3, where L/H = 180. The variables w and λ are as defined in figure 8.

one should not automatically assume that ‘the depth of the ribs exerts no influence on the
overall thermal transport’ (Maynes & Crockett 2014).

6. Application to real micro-channels

Subsection 5.4 discusses the parallel pathways for heat transfer from a real
superhydrophobic surface to the cargo liquid, namely along the axis of micro-topographical
elements or via the air bubbles situated in between such elements. Here, we revisit
this duality and thereby contextualize results pertinent to perfect plastrons versus results
anticipated in real micro-channel flows. Consistent with the discussion of § 3.3, attention
is focused on a CHSYM4-analogue case where the underlying solid includes micro-ridges
that are oriented perpendicular to the flow direction – cf. Maynes et al. (2008). In this
respect, we intend to answer the question: is the dashed-curve solution of figure 13(a)
relevant to real lab-on-a-chip-type flows?

Figure 17 reproduces figure 13(a), but eliminates the solid blue curve (ṁa > 0) and
adds ṁa = 0 results derived from the numerical simulations described in § 3.3. More
specifically, we consider ridge geometries characterized by four different w/λ ratios,
namely 0, 0.1, 0.2 and 0.278. (The former value indicates no ridges and is included for
comparison with the solution derived at much larger L/H; the latter value is selected
to approximately coincide with the figure considered by Rosengarten et al. (2008).) In
comparing the two curves labelled ‘w/λ = 0’, we find from their difference that the full
insulation benefit of surface-attached air bubbles is realized only for sufficiently long
channels. On the other hand, the difference in question remains relatively small except
for relatively large values of d, i.e. d � 0.7. Meanwhile, in comparing the curves labelled
‘w/λ = 0.1’, ‘w/λ = 0.2’ and ‘w/λ = 0.278’, we find that as the transverse ridges are
made wider, a greater proportion of the heat is conducted through these ridges, and a
lesser proportion is transferred through the entrapped air bubbles. As such, the curve
corresponding to w/λ = 0.278 shows the greatest difference with the perfect plastron
solution. Better agreement is noted when w/λ is reduced to 0.1, in which case �T values
as low as approximately −80 % can be realized, i.e. when d � 0.3. Up to and even slightly
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Figure 18. Change in the water temperature, �T , with respect to the non-dimensional channel length L/H,
for two different air layer thicknesses d = δ/H.

beyond this value for d, the perfect plastron limiting solution from figure 13(a) represents
an ambitious but still representative upper bound vis-à-vis bubble thermal insulation
efficacy. As d increases still further, however, a greater divergence is noted between the
curves of figure 17. Within this latter range of d, therefore, the perfect plastron limit cannot
be considered an especially meaningful descriptor of actual heat transfer processes. Most
notably, the dashed curve extracted from figure 13(a) predicts that �T > 0 only when
d � 0.97, whereas the numerical results suggest that �T > 0 for d as small as 0.68.

The precise values for d quoted at the end of the last paragraph must be interpreted with
some care: the coloured curves of figure 17 assume the same channel length, i.e. L/H =
180. As the channel length is either increased or decreased, numerically determined values
for �T likewise adjust. This behaviour is exhibited in figure 18, which fixes the value of
w/λ at 0.278, and plots �T versus L/H for two different values of d. In both cases, we find
that as the channel is elongated, �T increases until reaching a plateau. In the context
of figure 17, this behaviour suggests a greater separation between the perfect plastron
solution and its counterpart numerical curve. Synthesizing the results of both figures 17
and 18, caution is therefore recommended in applying the perfect plastron solution when
L/H and w/λ or d are too large. Although we expect this caution to apply equally to
other scenarios (e.g. pipe flow versus channel flow, or pillar-type micro-topography versus
ridge-type micro-topography), there obviously remain numerous quantitative details to
resolve. Pursuit of the research in question is the topic of ongoing research.

7. Conclusions

This study is motivated by the simple question of whether surface-attached air bubbles,
here modelled as a continuous air film, can serve as effective thermal insulators for
pressure-driven internal flow. The basis for pursuing this topic comes from the long line
of inquiry devoted to drag reduction and the influence of the hydrodynamic boundary
condition (no-slip versus free-slip) on said drag reduction. Thus are we guided by the
earlier theoretical investigation of Busse et al. (2013), who meticulously characterized
the degree of drag reduction realized for different internal flows with different air layer
thicknesses δ. Relative to this list of flows studied by Busse et al. (2013), we restrict
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attention to those enumerated in tables 1 and 2, i.e. we focus on symmetric rectilinear
channel flow and on axisymmetric pipe flow. However, and in a major extension to Busse
et al. (2013), we introduce temperature differences between the boundary (or solid surface)
and the water and air flowing inside of the duct. In so doing, and by superposing a thermal
energy balance and thermal energy equation onto the Busse et al. (2013) analysis, we are
able to characterize the effectiveness of bubbles as insulators for 0 < d < 1, where d =
δ/H (rectilinear geometry) or d = δ/R (axisymmetric geometry). The characterization in
question employs as (interrelated) metrics the percentage temperature change relative to
the no air bubble case (figures 12 and 13) and the Nusselt number Nuw, which is plotted
versus d in figure 14, and versus the non-dimensional hydrodynamic slip length L̃t

slip in
figure 16.

A remarkable aspect of figure 12, which considers the case of USF, is the exact overlap
of its curves of �T versus d with the corresponding drag reduction curves presented in
figures 6(a,c) of Busse et al. (2013). The reason for this coincidence is that both �T and
�D are linked to the water mass flow rate, so a change in this quantity, due e.g. to an
increase or decrease in the thickness of the air layer, will impact the cross-stream transport
of momentum and of thermal energy in equal proportion. This point notwithstanding,
the aforementioned coincidence is lost when the surface boundary condition is changed
from uniform surface heat flux (figure 12) to uniform surface temperature (figure 13).
In this latter case, which we explore only numerically and without the benefit of a
complementary analytical solution, there is a comparatively smaller difference between
solutions characterized as ṁa > 0 versus ṁa = 0, where ṁa represents the net mass flow
rate of air.

A limitation of our theoretical work, inherited from the precursor studies of McHale
et al. (2011) and Busse et al. (2013), is that we consider the ‘perfect plastron’ limit
and do not, therefore, make theoretical or numerical reference to the micro-pillars,
-ridges or -posts that characterize real superhydrophobic surfaces. In other words, our
hydrodynamic solutions of § 2 do not consider the protrusion of solid elements into the
flow, or the loss of a purely no-slip boundary condition e.g. along the air–water interface.
Although we can nonetheless reproduce important results from earlier studies, e.g. the
Nuw − L̃t

slip relationship derived by Enright et al. (2014) – see figure 16(a) – our study
cannot thoroughly resolve broader questions of bubble stability and the possibility of
air–solid detachment or ‘flushing’, the term applied by Cowley et al. (2018). With this
limitation in mind, results from our analysis are likely more applicable to lab-on-a-chip
technologies than they are to larger-scale engineering devices for which it may prove
difficult to maintain an air layer with relative thickness d � 0.1 (cf. table 2) and absolute
thickness exceeding the capillary length. Of course, air (or some similar gas) may be
added continually along the solid boundary e.g. by direct injection or, as examined by
Panchanathan et al. (2018), as a byproduct of a chemical reaction. A further possibility,
relevant to the case of a hot boundary, is that air dissolved into the cargo fluid effervesces
out of solution and thereby regenerates those portions of the plastron lost due to shear
stress (Cowley et al. 2018; see also Lam et al. 2015). Unfortunately, it would be difficult
to balance precisely the air lost versus regenerated by direct addition, chemical reaction
and/or effervescence. If too little air is added relative to the volume lost, then the solid
surface will eventually be wet. Conversely, if too much air is added, then one risks
obstructing too large a fraction of the channel or pipe cross-sectional area. In this latter
case, substantial increases to the drag force may result, as reported by Cowley et al. (2018)
– see e.g. their figure 7.
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Returning to the application of e.g. figures 12, 13, 14 and 16 to microfluidic devices, it
is necessary to reiterate a further assumption applied in the development of our theoretical
model, namely that the flow is fully developed. Even at small scales, such a state may not be
fully realized except in the limit of small Reynolds number. For example, and considering
single-phase pipe flow, the thermal entry length Lt can be estimated from

Lt = Pr Lh, where Lh � 0.05 Re D (7.1)

(Çengel & Ghajar 2021). Here, Lh is the hydrodynamic entry length, Pr is the Prandtl
number, Re is the Reynolds number, and D = 2R is the pipe diameter. The impact of
entrance effects has been considered by a variety of authors, including Maynes et al. (2013)
and Lam et al. (2015). Although the related core annular flow analysis of Mukerjee &
Davis (1972) suggests that the Nusselt number ought to be larger throughout the developing
regime, it remains to quantify this effect more precisely for the perfect plastron limit and
the flow types summarized in table 1.

Whereas the restrictions described in the last two paragraphs may give the impression
of a study of limited scope or applicability, the discussion of § 6 argues that the theoretical
and numerical solutions presented in figures 12 and 13 are meaningful provided that
the micro-topographical dimensions are modest and the micro-channel is not too long.
Consider also that the theoretical solutions of § 2 can be adapted immediately to fluid
pairs besides water and air. In other words, it is a trivial exercise to extend our ṁa > 0
solutions to other examples of core annular flows, e.g. the pipeline transport of heavy
oils in the presence of a lubricating water layer (Joseph et al. 1997). Indeed, heat transfer
considerations may be especially important to this latter flow example given (i) the strong
sensitivity of heavy oil viscosity to temperature, and (ii) the strong sensitivity of drag to
viscosity.
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