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Abstract. A reconsideration is made on the basic concepts of the individual photon,
including its angular momentum (spin) and a possibly existing very small rest mass.
In terms of conventional classical theory, as well as of its quantum mechanical
counterpart, the results from a so far established Standard Model of an empty
vacuum state are not found to be reconcilable with an experimentally relevant
photon model. The main properties of such a model would on the other hand become
compatible with the results of a recently established revised quantum electrodynamic
theory based on a non-zero electric field divergence in the vacuum and a corresponding
symmetry breaking of the electromagnetic field.

1. Introduction
The basic concepts of the individual photon, with its
angular momentum (spin) and a possibly existing but
very small rest mass, have not been fully clarified in
terms of the so far established conventional theory
and its Standard Model of elementary particles. These
concepts are reconsidered here, with respect to the gen-
eral physically relevant requirements on an individual
photon model, to deductions based on the classical
field equations by Hertz in a pure vacuum (Stratton
1941; Hallén 1962), to the quantum theory of radiation
(Heitler 1954), and to a recently established revised
quantum electrodynamic theory (Lehnert 2013).

2. Basic physical requirements of an
individual photon model

Due to experimental experience, a model representing
the wave packet of an individual photon model has to
satisfy the following general requirements:

• The model should have a preserved and spatially lim-
ited geometrical shape of a wave packet propagating
in an undamped way and in a defined direction, even
at cosmical distances.

• To define and limit the geometrical photon shape, no
artificial spatial boundaries are to be imposed on the
corresponding solutions of the field equations.

• The angular momentum in the direction of propaga-
tion, the spin, should be non-zero and have the
constant value h/2π.

3. Deductions from the field equations in a
pure vacuum

The classical electrodynamical equations in a pure va-
cuum state form the basis of the conventional quantum

theory of radiation applied to the photon, as earlier de-
scribed by Heitler (1954) among others. These equations
are symmetric in the electric and magnetic field strengths
E and B, where both divE and div B vanish. They result
in two partial solutions (Stratton 1941; Hallén 1962):

E1 = ∇ (divΠ1) − 1

c2

∂2Π1

∂t2
, (3.1)

B1 =
1

c2
curl

(
∂Π1
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)
(3.2)

and

E2 = −μ0 curl

(
∂Π2

∂t

)
, (3.3)

B2 = μ0∇ (divΠ2) − μ0

c2

∂2Π2

∂t2
(3.4)

of electric and magnetic types, defined by the Hertz
vectors Π1 and Π2.

According to (3.1)–(3.4), a photon wave packet will
have no rest mass in a steady state for which ∂/∂t = 0.
The electromagnetic momentum density of a propagat-
ing wave is defined by

g = ε0E × B = S/c2, (3.5)

where S is the Poynting vector. The corresponding dens-
ity of angular momentum is given by

s = r × S/c2, (3.6)

where r stands for the radius vector. Expressions (3.5)
and (3.6) form the conventional basis for the quantum
mechanical analysis of the angular momentum (Heitler
1954). The component of s in the direction of propaga-
tion represents the local spin density of the photon. It
vanishes for a plane unbounded wave which is purely
transverse. Here, we will instead consider cylindrical and
spherical waves.
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3.1. Cylindrical waves

Electromagnetic waves in cylindrical geometry have the
possibility of satisfying the first two basic physical re-
quirements of a photon model, as defined in Sec. 2. The
classical analysis in terms of a cylindrical frame (r, ϕ, z),
with z along the direction of propagation, leads to a
magnetic TE wave type (1) and an electric TM wave type
(2) with elementary waveforms f(r) exp[i(−ωt+kz+nϕ)].
In all these cases, the spin density has the form (Stratton
1941; Hallén 1962; Lehnert 2013):

[sz1 and sz2] ∝ n [Jn (kr)]2 (sin 2nϕ) , (3.7)

where Jn(kr) is a Bessel function, and there is symmetry
between these TE and TM solutions. It has further to
be observed that the total spin is obtained from an
integration of sz over space. The result (3.7) can be
commented upon as follows:

• Already the local contributions to the spin density
vanish in the axisymmetric case n = 0.

• In the non-axisymmetric situation where n �= 0, there
is in fact a local non-zero contribution to the spin
density, but the total integrated spin still vanishes on
account of the symmetric factor sin 2nϕ in expression
(3.7).

The classical basis of the field equations just being
considered thus results in a vanishing spin. This leads to
the question whether a different result would be obtained
when these further become quantized. Here, two altern-
atives for quantization can be considered. The first one
is due to an analysis by Heitler (1954), which shows
that the quantized electrodynamic equations become
identical with the original classical equations in which
the electromagnetic potentials and currents are merely
replaced by their quantum mechanical expectation val-
ues. In this way, the electric and magnetic field strengths
of (3.1)–(3.4) will instead stand for these expectation
values. The corresponding result on the quantized total
spin then becomes the same as in the classical case, i. e.
it vanishes.

The second alternative for deduction of the total
quantized spin is described in the current literature. It is
based on the summarized contributions (Heitler 1954)

gλ = ε0Eλ × Bλ (3.8)

to the total momentum density from plane transverse
waves, each having the field components Eλ and Bλ.
Here, gλ is in the direction of the wave normal of
such a wave. These elementary waves are then quant-
ized separately. The total spin is finally obtained from
integration over the volume of the packet. However,
such a procedure appears both to be far-fetched and
questionable in this connection:

• Can a quantity such as the spin, which in the clas-
sical deductions is zero, become non-zero merely by
quantization?

• The local spin density can be non-zero, and be present
in the general formal analysis, even if the total spa-
tially integrated spin comes out to be zero.

• The symmetry of the fields and solutions given by
the classical equations (3.1)–(3.7) has to be broken by
the quantization process to result in a non-zero total
spin. A detailed analysis of this question is so far not
available.

• As just mentioned, the classical field quantities can
be directly quantized into their expectation values.
The question can be raised why it then should be
necessary to take the somewhat unclear roundabout
way by first expanding the classical field strengths
into a spectrum of plane transverse waves, then to
quantize each of these elementary waves, and finally
to integrate the obtained wave spectrum over the total
volume.

3.2. Spherical waves

Waves described in a spherical frame (r, θ, ϕ) would
not have the possibility of fulfilling the first two basic
physical requirements of Sec. 2. Additional arguments
against the experimental relevance of such a model are
as follows:

• The classical analysis leads to an integrated spin
which vanishes (Stratton 1941; Lehnert 2013), as in
the analysis of the cylindrical case.

• In the distant-field zone, the spin density vanishes
(Heitler 1954; Lehnert 2013). Therefore, the photon
would be ascribed a non-zero spin density only in
its near-field zone, and not at large distances (Heitler
1954). This is not compatible with a photon model
having a constant and given total spin.

4. Deductions based on revised quantum
electrodynamics

The vacuum is not merely an empty space, but includes
the density of a zero point energy. This forms the basis of
a recently established revised quantum electrodynamic
theory due to a non-zero electric field divergence in the
vacuum state. This Lorentz and gauge invariant theory
is characterized by intrinsic linear broken symmetry
between the field strengths E and B. The basic field
equations in the vacuum are (Lehnert 2013)

curlB

μ0
= ε0 (divE) C + ε0

∂E

∂t
, (4.1)

curlE = −∂B

∂t
, (4.2)

where the first source term of the right-hand member
of (4.1) stands for a space-charge current density, with
C2 = c2, C being a relativistic velocity vector, and c

the velocity constant of light. Due to the source term in
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(4.1), the theory includes steady electromagnetic states
for which ∂/∂t = 0, and massive particles can exist.

Concerning cylindrical waves in a frame (r, ϕ, z) with
z along the direction of propagation, the velocity vector
is written as

C = c (0, cos α, sin α) (4.3)

with a constant angle α. The dispersion relation then
becomes

ω = kv v = c (sin α) , (4.4)

having the phase and group velocities v. The analysis is
further restricted to a wave packet model of narrow line
width, having an average (main) wavelength λ0 = c/ν0,
with total mass m and rest mass m0 given by

m = hν0/c
2 m0 = m (cos α) . (4.5)

The field equations further yield a non-zero spin in the
classical case as well as due to the expectation values
from the quantization by Heitler. The same equations
also become consistent with a finite effective photon
radius r̂ in the radial (transverse) direction. For a spin
of the modulus h/2π, this radius has the values

r̂ =
λ0

2π (cos α)
·
{

1 (4.6a)

ε (4.6b)

Here, (4.6a) refers to a convergent generating function
(Lehnert 2013), and (4.6b) to a divergent such function
for which there is a smallness parameter ε with 0 <

ε� 1. Of main physical interest is the case for which
sin α = 1 − δ and cos α = (2δ)1/2 when 0 < δ � 1, with δ

standing for a small deviation of the velocity v from the
value c of a propagating plane wave.

A cylindrical wave packet model based on revised
quantum electrodynamics will thus be characterized by
the following properties:

• It satisfies all basic requirements specified in Sec. 2.

• There is both a non-zero spin and an associated
photon rest mass.

• A spin of the modulus h/2π can become reconcilable
both with a very small rest mass and with a small
characteristic radius r̂, the latter being required by
observed needle-like radiation and the photoelectric
effect.

• There are also possibilities for very small and hardly
detectable deviations δ from a propagation at the
velocity c. As an example, a deviation of δ = 10−8

for a wave packet of visible main wavelength λ0 =
3×10−7 m would result in characteristic radii of about
3 × 10−4 m and 5 × 10−8 m for ε = cos α in the cases
(4.6a) and (4.6b), respectively.

5. Summary
A reconsideration of the individual photon concept
indicates that the basis of the Standard Model related
to an empty vacuum space is incomplete for a relevant
description of its basic properties, such as the spin.
This applies both in terms of classical electromagnetic
theory and of its quantum mechanical counterpart. On
the other hand, a recently developed revised quantum
electrodynamic theory, based on a non-zero electric field
divergence in the vacuum state, yields results which
so far become reconcilable with experiments on the
individual photon.
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