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Abstract

We say that a positive integer d has property (A) if for all positive integers m there is an integer
x, depending on m, such that, setting n = m + d, x lies between m and n and x is co-prime
to mn. We show that infinitely many even d and infinitely many odd d have property (A) and
that infinitely many even d do not have property (A). We conjecture and provide supporting
evidence that all odd d have property (A).

Following A. R. Woods [3] we then describe conditions (A,) (for each u) asserting, for a
given d, the existence of a chain of at most # + 2 integers, each co-prime to its neighbours,
which start with m and increase, finishing at n = m + d. Property (A) is equivalent to condition
(A}), and it is easily shown that property (A;) implies property (A;,;). Woods showed that for
some u all d have property (Ay), and we conjecture and provide supporting evidence that the
least such u is 2.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 A 05.

In [3] Woods proved that there is a constant L such that if m, n are positive
integers with d = n — m > L, then there is a sequence of numbers m < x| <
X3 < -+ < X; < nwith 1 </ < L having greatest common divisors satisfying
(m,x)) =1, (x;,x;41) = 1 for 1 <i < (x,n) = 1. This led Woods to
conjecture that L = 1, that is, to conjecture that all numbers d > 1 have

PROPERTY (A). For all natural numbers m,n with n — m = d there is some
X withm < x < n and (x,mn) = 1.

© 1989 Australian Mathematical Society 0263-6115/89 $A2.00 + 0.00
84

https://doi.org/10.1017/51446788700031220 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031220

[2] Sequences of co-prime pairs 85

However, as Woods (private communication) has observed, this conjecture
is false, the smallest counterexample being d = 16, m = 2184 = 23.3.7.13,
n = 2200 = 23.52.11. This immediately gives infinitely many counterexam-
ples, as we now show. Since m < x < n implies (x,m) < d and (x,n) < d,
it follows that if (x, mn) > 1 then p|(x, mn) for some prime p < d. Thus if
m = my, n = ny is a counterexample to d having property (A) and P is the
product of all prime numbers less than d, then m = my +tP, n = ny + tP
gives another such counterexample for each natural number ¢.

It is thus natural to ask which values of d have property (A).

We answer this question for numbers d of certain forms, from which we
show that property (A) holds for infinitely many even 4 (and for infinitely
many odd d) and fails for infinitely many even d. We also modify the (in-
correct) original conjecture to

CoNJECTURE 1. All odd d > 1 have property (A); that is, ifn —m > 1 is
odd, then there is some x with m < x < n and (x,mn) = 1.

Note. The author has proved this conjecture for all odd d < 89 and
believes it to be true for all odd d < 219. A referee has checked the validity
of the conjecture for 1 < m < 1000,d =3,5,...,501.

THEOREM 1. Let t > 1. Let q > 2, ¢3 > q3 > --- > q; > 2 be primes,
1<i<t Ifd<gqf,d<qmin(g,q) x=d-q, ¢3=d—-q},....q: =
d —q{" and d = 1 mod g, then d does not have property (A). Furthermore, a
specific m and n illustrating the counterexample can be obtained by requiring
that q1q> - - - q,|\n and that all other primes less than d divide m.

ProOF. Initially requiring that all primes less than d divide m takes care of
all numbers between m and n except x = m+ 1. Now, if we no longer require

that g,|m, nor that g;|m, ..., nor that g;/m, then the only numbers between
m and n = m +d still requiring attention willbe m+1, m+qy,...,m +qf”',
m+qy,....m+¢g_and m+gq,; thatis, n—(d-1), n — q2,...,n — q,
n—gqi,...,n—q."% and n—gq!~'. The requirement that q,q; - - - ¢:|n takes care

of all of these since d — 1 = 0 mod g¢;.
Theorem 1 gives us a method for producing d not satisfying property (A).

EXAMPLE |: witht=2,i=1 and so ¢; < g,.
q1 = 5; g, = 11. This gives 2.3.7.13|m, 2.5.11ln=m+d=m+ 5+
11 = m + 16 and we have seen this one before.
@ =T q=29.
q =11, g, =23,67,89.
Etc.
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EXAMPLE 2: witht =3 and i = 1.

a1 = 3; (q2,93) = (13,7) (d = 16; this gives the ‘reverse’ of the other
d = 16 example),

(92, 93) = (19,13).
a1 = 5; (42,93) = (31, 11) (this is different from our other counter-
examples with d = 36),

(q2a q3) = (61’ 41)’
Etc.

As we might suspect from the examples, property (A) fails for infinitely
many even values of d.

Let P(k, ) be the least prime in the arithmetic progression n =/ (mod k),
where ged(k,!l) = 1.

LEMMA 2 [2]. Given ¢ > 0, there exists a constant c(¢) and infinitely many
primes q such that P(q,1) < c(e) q%*¢, where 0 = 2e'/4(2e!/* — 1)1 =
1.63773....

CoROLLARY 3. There exist infinitely many pairs of primes p,q satisfying
p=1lmodqgandp<q®—gq.

It follows from Theorem 1 (with ¢ = 2 and i = 1) and Corollary 3 that
property (A) fails for infinitely many even values of 4.

It turns out that property (A) holds for infinitely many even values of d
(and infinitely many odd values of 4).

THEOREM 4. If either
(a)d =q" + 1, q a prime, y >0,
or
(b) d = p{' + p5* = py'p3* + 1, where py, p, are distinct primes, By, B2, a;,
ay > 0,
then d has property (A).

ProOF. (a) Letd = ¢’ + 1. If y=0,wecantake x =m+ 1. If y > 0,
then if ¢ + n we can take x = m + 1, while if ¢ + m we can take x = n — 1.
(b) If py + m and p; 1 n, we can take x = m + p{"*. Similarly, if p t m and
p1 1 n, we can take x = m +pr. Finally, if p;p,jm we can take x =m + 1;
while if p,p,|n, then x = n — 1 suffices.

It follows from Case (a) of Theorem 4 with ¢ an odd prime that there are
infinitely many even values of d with property (A); and with g = 2 it follows
that there are infinitely many odd values of d with property (A).
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Between them, Theorems 1 and 4 go some way toward classifying all values
of d. The cases unclassified by Theorems 1 and 4 for d < 38 are d =
11,23,27,29,31, 35, 37. These can be all shown to have property (A).

We note that Theorems 1 and 4 classified all even values of d < 38.

QUuUESTION. Do Theorems 1 and 4 classify all even values of 4?

As we mentioned at the start of the paper, Woods [3] proved that there is
a constant L such that if m, n are positive integers withd = n—m > L, then
there is a sequence of numbers m < x; < --- < x; < n with 1 </ < L having
greatest common divisors satisfying (m, x;) =1, (x;,x;q)=1for 1 <i </,
(x;,n) = 1. We have shown that the smallest such L is at least 2; we now try
to find it.

First, we generalize the notion of property (A).

DEFINITIONS. Say x <y if and only if gcd(x,y)=1and x < y.
Say x <y ifand only if (gcd(x,y)=1and x <y)orx=y.

DEFINITION. For each u € N we say that d > 1 has property (A,) if and

only if
Vmvnim<n=m+d—32y,23,...,Z2,m=<2z K23 << Z, X n).
DEFINITION. For each u € N we say that d > u has property (B,) if and
only if
Vmvnim<n=m+d —3z\,23,...,Z,,Mm <2 <z3<--- <z, < n).

NoTtk. For all d, d has property (A) if and only if 4 has property (A;) and
if and only if d has property (B;). For all k and for all d, d has property
(By) implies d has property (Ax) which implies d has property (A;, ;). For
all k and for all d, d has property (B;) implies d + 1 has property (B, ),
which implies d + | has property (A, ;).

It follows from the above note that if Conjecture 1 is true then all d > 1
have property (A;). It will follow from Theorem 5 and Corollary 8 that if
Conjecture 1 is true then all 4 > 2 have property (B;).

We now gather further evidence to suggest that all 4 > 2 have property
(B,), in turn providing even stronger evidence that all 4 > 1 have property
(A2).

Our next result is based on Theorem 4.

THEOREM 5. Let d| have property (A). If p is a prime such that p ¢ d, and
k >0, then dy = d, + p* has property (B,).

ProofF. Consider m with m < z; < m + d, illustrating property (A). If
plm wehave m < z; < z; = m+d, < n = z,+pk. If p f m we have
m<m+pk=z<zy<n=2z +d.
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COROLLARY 6. If q, and q, are primes (not necessarily distinct), then d, =
q1 + q2 + 1 has property (B;).

PrROOF. Case 1. ¢y +q>=5and sod, =6. If 2{m and 2|n then m < 2|, =
m+l<zzy=m+5<ndoesthejob. If 2+ mn,thenm< z,=m+2<
Zz3 = m+ 4 < n does the job.

Case 2. q\ + q» # 5. Without loss of generality, suppose ¢; > ¢;. Then
q1 1 ¢2 + 1. By Theorem 4, d; = ¢, + 1 has property (A) So, by Theorem 35,
dy = q, + g2 + 1 has property (B,).

CoRrROLLARY 7. If Goldbach’s conjecture is true, then all odd d, > 3 have
property (By).

CoROLLARY 8. If d is odd and has property (A), and k > 1, then d; =
dy + 2% has property (B,).

These results tend to suggest that all odd d > 3 have property (B,). (This
would in turn imply that all 4 > 1 have property (A3).) Evidence that all
even d > 4 have property (B;) follows again from Theorem 5 requiring d;
and p to be odd (and possibly k to be zero).

Having gathered our evidence, we finish with two conjectures.
CONJECTURE 2. All d > 3 have property (B,).
CONJECTURE 3. All d > 2 have property (A;).

We recall that Conjecture 1 implies Conjecture 2, which implies Conjecture

Note added in proof

The author has written a computer program whose output to date tells
us that Conjecture 1 holds for 1 < m < n < 3,000,000. Furthermore, the
output tells us that the only value of d shown not to have property (A) from
inspecting 1 < m < n < 3,000,000 is d = 16.

Recalling the note after Conjecture 1, for a given d let n(d) equal the
product of all primes less than d. We note that if d does not have property
(A) and if the relevant (counter-)example (m, n) has each prime less than d
either dividing m or dividing n, then clearly n(d)|mn = m(m + d) and so
m > \/n(d)—d /2. Now, since n(53) > 5,000, 000, 0532 and since Conjecture
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1 holds for all odd d < 89, the evidence that Conjecture 1 likewise holds for
1 <m < n<5,000,000,000 is overwhelming.

We conclude that the approach of sequentially checking m and n (as in
the author’s program) is sluggish in the extreme compared to the alternative
approach of checking each value of d in turn; although the latter would
undoubtedly constitute a more difficult programming exercise. A copy of the
author’s program (written in Pascal), which sequentially checks m and n, is
available from the author upon request.
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